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Abstract.  Fiber-reinforced concrete (FRC) is a material with increasing application in civil engineering. 

Here it is assumed that the material consists of a great number of rather small fibers embedded into the 

concrete matrix. It would be advantageous to predict the mechanical properties of FRC using nondestructive 

testing; unfortunately, many testing methods for concrete are not applicable to FRC. In addition, design 

methods for FRC are either inaccurate or complicated. In three-point bending tests of FRC prisms, it has 

been observed that fiber reinforcement does not break but simply pulls out during specimen failure. 

Following that observation, this work is based on an assumption that the main components of a simple and 

rather accurate FRC model are mechanical properties of the concrete matrix and fiber pullout force. 

Properties of the concrete matrix could be determined from measurements on samples taken during concrete 

production, and fiber pullout force could be measured on samples with individual fibers embedded into 

concrete. However, there is no clear relationship between measurements on individual samples of concrete 

matrix with a single fiber and properties of the produced FRC. This work presents an inverse model for FRC 

that establishes a relation between parameters measured on individual material samples and properties of a 

structure made of the composite material. However, a deterministic relationship is clearly not possible since 

only a single beam specimen of 60 cm could easily contain over 100000 fibers. Our inverse model assumes 

that the probability density function of individual fiber properties is known, and that the global sample load-

displacement curve is obtained from the experiment. Thus, each fiber is stochastically characterized and 

accordingly parameterized. A relationship between fiber parameters and global load-displacement response, 

the so-called forward model, is established. From the forward model, based on Levenberg-Marquardt 

procedure, the inverse model is formulated and successfully applied. 
 

Keywords:  fiber-reinforced concrete, inverse model, Levenberg-Marquardt procedure, fiber pullout, 

probability density function (pdf) 

 
 
1. Introduction 
 

Fiber-reinforced concrete consists of a large number of stochastically distributed fibers 
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embedded into concrete matrix. Stochastic distribution of fibers can be described with a 

probability distribution function, e.g., see Sampson (2009). For fiber-reinforced concrete, the 

probability distribution function is assumed to be known, i.e., it could be determined based on 

some destructive experiments or X-ray or magnetic scans. Knowledge of the probability 

distribution function enables computer generation of material samples needed for numerical 

experiments. Chapter 2 describes computer generation of fiber positions and their orientations 

within the prismatic concrete beam. We have compared those computer-generated beams with 

laboratory specimens that were subjected to X-ray scans (described in detail in Kalinčević 2016). 

The purpose of computer-generated samples is numerical analysis and comparison of results 

with experiments. However, numerical analysis of FRC samples is demanding in terms of time and 

resources, with the large number of fibers being the main obstacle. There are several approaches 

that address the problem; one could apply the conforming finite element model where fibers are 

discrete and are placed along finite element edges, like in Smolčić and Ožbolt (2017). The 

conforming approach results with a huge model that is very demanding on computer resources. In 

addition, one could apply the fiber bundle model for composites, like in Raischel (2008). Both 

approaches assume that the material sample comprises rather small constituents (matrix elements 

and fibers) that have some local properties, and under experimentation, the sample exhibits some 

global properties. Description of various models of fiber behavior and corresponding pullout tests 

could be found in Do et al. (2015a, 2015b), Ngo et al. (2014) and Imamovic et al. (2015). 

The goal of the numerical model is connecting those local and global properties into a useful 

model. Achieving usefulness requires adjusting the local parameters to match the global results. Ad 

hoc approach is based on parametric analysis and material parameters with the most convenient 

results being chosen as model parameters. Besides many limitations, the result of such an approach 

is difficult to generalize because the parameter determination problem is not formulated as a global 

optimization problem, so there is no clear overview of the relation between local and global 

extremes in the parameter space. 

The forward model presented in this work is based on the fiber bundle model. At this stage, the 

model does not take into account the concrete matrix; only steel fibers contribute to its behavior. 

The purpose of the model is to prove the concept of the inverse model formulation and parameter 

determination. Our forward model demonstrates how stochastic characterization of small 

constituents (fibers) leads to generation of the specimen load-displacement curve. Chapter 3 

presents models where two common probability distributions, normal and cosine, characterize 

fiber behavior. Consequently, there are two possible choices of parameters. Although the model 

takes into account only fibers without the matrix, there are no conceptual limitations in upgrading 

the model so that a concrete matrix model is taken into account, like in Mishnaevsky (2011). Even 

without the matrix contribution, the model can produce realistic global load-displacement curves, 

as seen in e.g., Ožbolt and Ananiev (2003). The forward model numerically simulates laboratory 

experiments and can be deterministic or stochastic, and in the latter case it is usually based on 

Monte Carlo method. However, Monte Carlo method is not suitable for the inverse model 

formulation because parameters change value from calculation to calculation. Parameters could be 

fixed in the domain of the probability distribution function when ‘order statistics’ is used (see 

Rinne (2010)). The new model produces a very similar global response as the one based on Monte 

Carlo method.  

The inverse model in Chapter 4 is based on the Levenberg-Marquardt procedure that is often 

used for inverse models in parameter determination, see Kožar et al. (2017) and Carvalho et al. 

(2011). The formulation of the inverse model is only possible when one alleviates the need for 
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Monte Carlo simulations; in this work, it is achieved using order statistics whose precision 

(compared to Monte Carlo) is controlled with a proper choice of subdivisions (histogram ‘bins’) in 

the domain of the probability distribution function. On the other hand, the number of measurement 

(control) points on the load-displacement curve controls the accuracy of the inverse model. 

Sensitivity of the model regarding various parameters is assessed in Chapter 5. It comes out 

naturally from the cost function of the Levenberg-Marquardt procedure. 

Chapter 6 presents examples of convergence in parameter estimation using the inverse 

procedure. Accurate results are obtained for fiber material parameters estimated from sample load-

displacement curves. For now, only the simplest tensile experiments and corresponding load-

displacement curves are addressed. Considering the mentioned limitations, the current inverse 

model can be thought of as a proof of concept, but there is no inherent limitation preventing the 

inverse model from being extended to include the concrete matrix into the model. 

Figures throughout the paper come from results of numerical simulations, using both forward 

and inverse models. Throughout the paper, all lengths have unit of (m), material modulus (kN/m2) 

and forces (kN). 

 

 

2. Material stochastic characterization 
 

The distribution of fibers within the concrete matrix is the main parameter of fiber reinforced 

concrete. One can take the arrangement of fibers from X-ray scans or some other imaging 

procedure, but in order to establish a relation between fiber distribution and loading response, it is 

necessary to parameterize the fiber distribution. This stochastic parameter is characterized with its 

probability distribution function. Furthermore, the knowledge of the probability distribution 

function enables computer generation of synthetic material samples suitable for numerical 

experimentation. 

 

2.1 Fiber position distribution 
 

The generation of fibers within the matrix starts with the generation of points in x and y 

directions (for 2D models that are the only ones addressed in this work). Points are generated 

independently according to the uniform distribution 𝑈(𝑥; 𝑎, 𝑏) = 1/(𝑏 − 𝑎) , where a and b 

represent the interval of the distribution. However, points are not uniformly distributed within the 

specimen, but are clustered according to the Poisson distribution (Sampson 2009) 𝑃(𝑋) =
𝜆𝑘

𝑘!
𝑒−𝜆. 

Poisson distribution gives the probability of a fiber being within a sample segment. 

 

2.2 Fiber orientation distribution 
 

After the points are generated, fibers with orientation θ are introduced at their positions. The 

length of the fibers is assumed to be known, and their orientation θ is generated stochastically 

according to the uniform distribution within the range [0,2π]. A mathematical model that relates 

material properties and the load-displacement diagram requires knowledge of fiber length or fiber 

stiffness. They are completely determined with the probability distribution function (that is 

different from the pdf of their orientation θ). For fibers with orientation θ distributed uniformly 

within [0,2π], it is possible to calculate the probability distribution of fiber length or fiber stiffness. 
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The length and stiffness distribution follows 𝑥 = cos 𝜃 , and cosine distribution belongs to the 

family of ‘location-scale distributions’; it is calculated according to the rule for transformation of 

random variables 𝑝𝑑𝑓(𝑥) = 𝑝𝑑𝑓(𝜃) |
𝑑𝜃

𝑑𝑥
|. The result is the cosine probability distribution  

𝑝𝑑𝑓(𝑥) = {

1

𝜋√1 − 𝑥2
;  −1 < 𝑥 < 1

0     otherwise

 (1) 

This result is confirmed in numerical experiments with Monte Carlo simulation. 

 

2.3 Fiber generation (and X-ray comparison) 
 

Numerical experiments require generated material samples that are discretized with finite 

elements and analyzed for different loading conditions. Synthetic material samples are generated 

in Mathematica (Wolfram Research, 2015) according to a given probability distribution function; 

comparison with X-ray is presented in Fig. 1. 

 

 

  

(a) (b) 

Fig. 1(a) X-ray scan of a beam sample 4×4×16 cm, (b) generated fibers 

 

 

It is visible from Fig. 1 that fiber generation is quite realistic and can be used for numerical 

simulations. 

 

 

3. Forward stochastic model 
 

The main purpose of the forward model is to provide parameterization that relates material 

parameters and experimental results and is suitable for the formulation of an inverse model. The 

forward model can be easily built using the Monte Carlo method but such a model is not suitable 

for the inverse model formulation. Instead, the forward (and later inverse) model is based on order 

statistics. Order statistics is characterized with iid (independent identically distributed) variables Xi 

being arranged in ascending order 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛.  

The transition from ordinary to order statistics is essential for the success of the inverse 

procedure. We will explain order statistics on the normal distribution model with 𝑝𝑑𝑓(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [

−1

2𝜎2
(𝑥 − 𝜇)2]. Monte Carlo simulation with mean 𝜇 = 1.0, and standard deviation 𝜎 =

0.25 for the length of 500 bars gives results as presented in Fig. 2(a) (each simulation produces 

somewhat different results). 
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(a) (b) 

Fig. 2(a) 500 normally distributed bar lengths, (b) sorted bar lengths and their bin representatives 

 

 

In Fig. 2(b) there are sorted values of randomly generated bar lengths. The simulation domain 

is divided into segments (bins), and a histogram is produced, see Fig. 3. 

 

 

  
(a) (b) 

Fig. 3(a) normalized histogram of 50 bins for 500 normally distributed bar lengths generated in Monte Carlo 

experiment, (b) normalized histogram with bin representatives from order statistics pdf 

 

 

In Fig. 3 normalized histograms for 50 bins are presented, i.e., the bin width is adjusted so that 
∑ ℎ𝑏𝑖𝑛 = 𝑁𝑜𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑖𝑛𝑠 = 500 (in this example). In Fig. 3(a), the normalized histogram is 

from Monte Carlo simulation, and in Fig. 3(b) from bin representatives for order statistics. Figs. 2-

3 support the intuitive feeling that sorting of the randomly generated values does not change its 

statistics; mathematical proof will not be given here. In our models, we will use order statistics and 

bin representative values generated from the probability distribution function and not from the 

Monte Carlo simulation. However, Monte Carlo will be used for generation of load-displacement 

curves as a substitute for real experiments. 

 

3.1 Stiffness vs. Length Stochastic Model 
 

The forward model for the load-displacement curve is formulated as a sum of forces from 

201



 

 

 

 

 

 

Ivica Kožar, Neira Torić Malić and Tea Rukavina 

individual bar contributions, which can be obtained with either bar stiffness or bar length as 

random parameters:  

𝐹𝑏𝑎𝑟 =  {

𝐸𝐴𝜇

𝐿𝑠𝑡𝑜𝑐ℎ.
𝛿 𝑖𝑓 

𝛿

𝐿
≤ 𝑑𝑡  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝐹𝑏𝑎𝑟 =  {

𝐸𝐴𝑠𝑡𝑜𝑐ℎ.

𝐿𝜇
𝛿 𝑖𝑓 

𝐸𝐴𝑠𝑡𝑜𝑐ℎ.

𝐿
𝛿 ≤ 𝐹𝑡  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2) 

These equations represent a linear-elastic material with sudden rupture, where δ is 

displacement, EA is bar stiffness, L is bar length, 𝑑𝑡 is damage threshold in strain and 𝐹𝑡 is damage 

threshold in stress. The influence of the above equations on the load-displacement curve can be 

seen from Fig. 4. 

 

 

  
(a) (b) 

Fig. 4(a) load-displacement curve for the stiffness bar model, (b) load-displacement curve for the length bar 

model 

 

 

In Fig. 4 we could compare results for models with stiffness random generation vs. length 

random generation. Parameters for the length stochastic model were 𝐿𝜇 = 1.0, 𝜎𝐿 = 0.25, 𝑑𝑡 =

0.25 and for the stiffness stochastic model 𝐸𝐴𝜇 = 1000.0, 𝜎𝐸𝐴 = 500, 𝐹𝑡 = 200. The stiffness 

stochastic model has been chosen for numerical experiments since it is considered more realistic; it 

is the directional stiffness that varies according to fiber orientation. 

 

3.2 Normal distribution model 
 

Fiber stiffness is generated using Monte Carlo method and normal distribution, as shown in Eq. 

(2). An experiment with 500 generated bars produced mean bar stiffness 𝐸𝐴𝑚𝑒𝑎𝑛 = 942.7 with 

standard deviation for bar stiffness 𝐸𝐴𝜎 = 495.5, and the load-displacement curve in Fig. 4(a). 

In Fig. 5(a), a force-displacement curve for some bars is shown, it is linear with sudden failure. 

Since the distribution of stiffness in bars is stochastic, failures happen at different displacement 

levels (and some bars do not fail at all). In Fig. 5(b) there is a sorted contribution of all the bars at 

different displacement levels; at the displacement level 𝛿 = 0.1 almost all the bars contribute to 
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the load-displacement curve, at the displacement level 𝛿 = 0.3  somewhat above 100 bars 

contribute to the load-displacement curve, etc. 

 

 

  

(a) (b) 

Fig. 5(a) force-displacement curve for some bars, (b) force-displacement curve for bars at different 

displacement levels 

 

 

3.3 Cosine distribution model 
 

Fiber angles are generated using Monte Carlo method with uniform pdf; for orientation, an 

experiment produced mean angle 𝜃𝑚𝑒𝑎𝑛 = 3.103 and the analytic mean is 𝜃𝑚𝑒𝑎𝑛 =  𝜋 = 3.146. 

Bar stiffness is generated from uniformly distributed angles using pdf from Eq. (1); for orientation, 

an experiment with 1500 generated bars produced mean bar stiffness 𝐸𝐴𝑚𝑒𝑎𝑛 = 794.3 and the 

maximum possible stiffness was given 𝐸𝐴𝑚𝑎𝑥 = 1250. 

 

 

  
(a) (b) 

Fig. 6(a) load-displacement curve for stiffness bar model for cosine distribution, (b) comparison of 

normalized histograms of generated bar stiffness and cosine distribution 

 

 

In Fig. 6(a) a load-displacement curve for the cosine distribution model is shown and in Fig. 

6(b) there is a normalized histogram for generated stiffness and its comparison with cosine 
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distribution. There are not many parameters in this distribution that could serve to fine-tune the 

load-displacement curve. There are some propositions for how to introduce an additional 

variability, like considering the influence of the granulometric diagram of concrete on angle 

distribution (there could be no fibers in the place where the aggregate is), but that will not be 

addressed here. 

 

 

4. Inverse stochastic model 
 

The main purpose of the inverse model is to enable a reliable calculation of model parameters 

from experimental results. That is enabled with the introduction of order statistics that alleviates 

the need for Monte Carlo simulations. The parameter estimation is formulated as a global 

optimization problem that is solved by applying Levenberg-Marquardt procedure. The objective 

function that is minimized in the Levenberg-Marquardt procedure can easily be applied for 

sensitivity analysis, it only needs to be treated as a function in parametric space. 

Inverse parameter estimation can be formulated as a global optimization problem by applying 

the minimization procedure to a suitable objective function. The objective function that is 

minimized in Levenberg-Marquardt procedure reads  

𝑆𝑒𝑟𝑟 = ∑ [𝐹𝛿𝑖𝑚 − 𝐹𝑢(𝛿𝑖𝑚, 𝜎, 𝜇, 𝑑𝑡)]2

𝑛𝑚

𝑖𝑚=1

 (3) 

where 𝑆𝑒𝑟𝑟  is the cumulative error, 𝐹𝛿  are measured values at measuring points im (from the 

experimentally determined load-displacement curve), and 𝐹𝑢(𝛿𝑖𝑚, 𝜎, 𝜇, 𝑑𝑡) are expected values 

from the stochastic model that are function of the parameters we would like to determine (mean, 

variance, damage threshold). 

The minimization procedure leads to iterative explicit equations for each parameter calculation, 

e.g., for variance 

∆𝜎 =
∑ [𝐹𝛿𝑖𝑚 − 𝐹𝑢(𝛿𝑖𝑚, 𝜎, 𝜇, 𝑑𝑡)]𝑖𝑚 𝑋𝜎𝑖𝑚

∑ (𝑋𝜎𝑖𝑚)2
𝑖𝑚

 (4) 

where 𝑋𝜎  is the sensitivity parameter calculated at each measuring point. The procedure is 

iterative, and parameter update is additive, 𝜎𝑖+1 = 𝜎𝑖 + ∆𝜎. Other parameters are calculated in a 

similar manner. 

The objective function and the minimization procedure for cosine distribution differ only in the 

number of parameters and the model function. 
 

 

5. Sensitivity analysis 
 

The objective function for Levenberg-Marquardt procedure is analyzed in parameter space. 

Sensitivity analysis is performed through numerical experiments performed for a range of 

parameter values of the objective function. There are 21 values for each parameter and all are 

chosen so that they include the optimal value. 

In Fig. 7(a), graphical representation of the sensitivity analysis is shown. Figures present 

parameter sensitivity of the normal distribution model; in order to emphasize the extremes, the 

error function is in semi-logarithmic scale. 
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(a) 

  

(b) 

  

(c) 

  

Fig. 7 Sensitivity analysis for (a) stiffness variance, (b) force damage threshold, (c) stiffness mean 
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From Fig. 7, it is visible that the inverse procedure based on the Levenberg-Marquardt model is 

well posed and stable and all minima clearly visible. The existence of some local minima for force 

damage threshold and stiffness mean value is evident. Consequently, one may conclude that 

sensitivity analysis is necessary in parameter identification based on the above inverse procedure. 

However, careful selection of measuring points along the load-displacement curve can reduce or 

eliminate the appearance of local minima. 

Cosine distribution (in this work) does not have parameters, and sensitivity analysis can be 

assessed from parameter sensitivity presented in Fig. 8. 

 

 

6. Parameter estimation-examples  
 

First, the forward model based on the Monte Carlo method is employed to produce a global 

load-displacement curve. Material parameters in the forward model are 𝐸𝐴𝑚𝑒𝑎𝑛 = 100, 𝜎𝐸𝐴 =
500, 𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 200. Those are the parameters to be retrieved from "wrong guesses" using the 

inverse model. Second, the order statistics model is used to generate the global response that is 

compared with Monte Carlo simulation; the difference in results between the two models 

represents the maximal possible precision of the inverse procedure. Figs. 8-9 illustrate the 

precision of the order statistics (and maximum possible accuracy of the inverse model).  

Fig. 8 presents a comparison between experimental and model load-displacement curve for 

cosine distribution and change in global response for different values of the force damage 

threshold (“model exact” is for 𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 200). 

 

 

 
Fig. 8 Comparison of experimental and model load-displacement curve for cosine distribution 

 

 

In Fig. 9, there is a comparison of experimental and model load-displacement curves for normal 

distribution, and changes in global response for various values of model parameters. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 9 Comparison of experimental and model load-displacement curve for different (a) stiffness      

variance, (b) force damage threshold, (c) stiffness mean 

 

 

In Fig. 9, “model exact” stands for exact values of parameters as used in the forward model to 

produce the global load-displacement curve. 

 

 

 
Fig. 10 Comparison of 10 Monte Carlo simulations and order statistics for 50 bins 
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Fig. 10 illustrates the precision of order statistics; it is evident that the order statistics is within 

the variance of the Monte Carlo experiment. Number of intervals ("bins") in order statistics in the 

example is 10; a higher number of intervals increases the precision. A detailed precision analysis 

will not be performed here. 

Afterwards, measurement points are selected; in the example there are 10 points along the load-

displacement curve. Points should be taken along the whole load-displacement curve; they are 

visible in Figs. 8-9 as orange dots. Points in only one part of the curve tend to produce local 

minima that could lead to poor accuracy of the inverse procedure. 

An illustration of convergence and accuracy is given by selecting wrong parameters, 𝐸𝐴𝑚𝑒𝑎𝑛 =
900, 𝜎𝐸𝐴 = 400, 𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 200. After 3 iterations, increment errors dropped below 0.1% and 

estimated parameters were 𝐸𝐴𝑚𝑒𝑎𝑛 = 926., 𝜎𝐸𝐴 = 475.8, 𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 198.7. The errors between 

estimated and exact parameter values are ∆𝐸𝐴𝑚𝑒𝑎𝑛 = 4.8%, ∆𝜎𝐸𝐴 = 7.3%, ∆𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.6%. 

The comparison of the error function calculated from estimated parameters with their value from 

the forward simulation is presented in Fig. 11. The presented inverse procedure cannot achieve 

better accuracy unless the number of intervals in order statistics is increased. The errors in 

parameters for a division into 150 intervals are ∆𝐸𝐴𝑚𝑒𝑎𝑛 = 3.7%, ∆𝜎𝐸𝐴 = 5.7%, ∆𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
0.1%. For a division into 250 intervals, and after 11 iterations, the errors are ∆𝐸𝐴𝑚𝑒𝑎𝑛 = 1.8%, 

∆𝜎𝐸𝐴 = −0.2%, ∆𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = −0.3%. Fig. 11 illustrates the change in error with bin number 

increase. 

 

 

  
(a) (b) 

Fig. 11 Comparison of error in load-displacement at measuring points for the exact and estimated   values of 

parameters for order statistics for (a) 50 bins, (b) 150 bins 
 

 

Examples presented throughout the paper are programmed and calculated in Mathcad (PTC 

Mathcad 2007). 

 

 

7. Conclusions  
 

This work is a proof of concept showing that parameters of fiber reinforced concrete could be 

obtained using an inverse procedure that is formulated as a global optimization problem. The 

forward model is formulated using a stochastic approach and order statistics. From the forward 
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model, applying Levenberg-Marquardt method, an inverse model is produced. Stable convergence 

has been obtained for all parameters: variability of fiber stiffness variance, variation in fiber mean 

stiffness and variation in damage threshold. However, there are some local minima for certain 

parameters and it is advisable to perform the sensitivity analysis to assure that the global minimum 

has been reached and that the optimal value of parameters has been determined. 
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