METHODS AND TOOLS IN PUBLIC HEALTH
A Handbook for Teachers, Researchers and Health Professionals

Editors:
Lijana Zaletel-Kragelj and Jadranka Božikov

MetaNET and FPH-SEE Project coordinators:
Doris Bardehle, Luka Kovačić, Ulrich Laaser and Oliver Razum

Lage, 2010
CONTENTS

Preface V
List of Authors VII

Chapter 1: METHODS OF STUDYING POPULATION HEALTH 1

1.1 Basic Concepts
1.1.1 Measurement of Health and Disease: An Introduction 3
 Tatjana Pekmezović
1.1.2 Probability – Basic Concepts 13
 Jadranka Božikov

1.2 Description of Health Phenomena and Their Quantification
1.2.1 Organizing and Describing Data 23
 Lijana Zaletel-Kragelj
1.2.2 Frequency Measures: Prevalence and Incidence 63
 Lijana Zaletel-Kragelj
1.2.3 Age Standardization Procedure: Direct Method 93
 Jadranka Božikov, Lijana Zaletel-Kragelj, Doris Bardehle
1.2.4 Measures of Location: Measures of Central Tendency and Dispersion 115
 Gena Grancharova, Silviya Aleksandrova
1.2.5 Measures of Location: Quantiles 147
 Gena Grancharova, Silviya Aleksandrova
1.2.6 Frequency Measures: Estimating Risk 161
 Lijana Zaletel-Kragelj, Jadranka Božikov

1.3 Analysis of Health Phenomena
1.3.1 Measures of Association and Potential Impact 179
 Lijana Zaletel-Kragelj
1.3.2 Cluster Analysis 215
 Anca Vitcu
1.3.3 Total Risk Assessment 245
 Mariana Dyakova, Emilia Karaslovova, Hristo Mateev

1.4 Quantitative Study Designs
1.4.1 Introduction to Epidemiological Studies 267
 Enver Roshi, Genc Burazeri
1.4.2 Features of Epidemiological Studies 275
 Lijana Zaletel-Kragelj, Ivan Eržen, Doncho Donev

1.4.3 Ecological Studies: Basic Principles 289
 Lijana Zaletel-Kragelj, Ivan Eržen

1.4.4 Cross-sectional Studies 309
 Lijana Zaletel-Kragelj, Ivan Eržen

1.4.5 Case-control Studies 333
 Slavenka Janković

1.4.6 Cohort Studies 345
 Slavenka Janković

1.4.7 Introduction to Intervention (Experimental) Studies 359
 Tatjana Pekmezović, Lijana Zaletel-Kragelj

1.5 Qualitative Study Designs 381

1.5.1 Acquiring Qualitative Skills for Public Health Research: Using Interviews to Generate Data
 Danica Rotar Pavlič

1.5.2 Qualitative Methods: Focus Groups 403
 Rok Fink, Andreja Kukec, Mojca Jevšnik

1.5.3 Delphi Analysis 423
 Neda Milevska-Kostova, William N. Dunn

Chapter 2: SPECIAL EPIDEMIOLOGICAL AND OTHER METHODS 437

2.1 Environmental and Occupational Health Epidemiology 439

2.1.1 Principles and Methods of Environmental Epidemiology: An Overview
 Ivan Eržen, Lijana Zaletel-Kragelj

2.1.2 The Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children
 Rok Fink, Andreja Kukec, Matej Ivartnik, Ivan Eržen

2.1.3 Epidemiological Indicators of Environmental Health 497
 Alexandra Cucu, Maria Nitescu

2.1.4 Environmental Health Risk Assessment Studies 525
 Dragan Gjorgjev, Vladimir Kendrovski, Fimka Tozija

2.1.5 The Geographic Information System (GIS) Use in Analysis of Traffic Air Pollution
 Andreja Kukec, Rok Fink, Saša Erlih, Ivan Eržen

2.1.6 Basic Occupational Health Indicators on Sick Leave 573
 Marjan Bilban, Lijana Zaletel-Kragelj
Chapter 2: METHODS AND TOOLS IN PUBLIC HEALTH

2.1.7 Workplace Risk Assessment

Elisaveta Stikova, Neda Milevska-Kostova, Petar Bulat Doncho Donev, Neda Jocić

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.7</td>
<td>Elisaveta Stikova, Neda Milevska-Kostova, Petar Bulat Doncho Donev, Neda Jocić</td>
</tr>
</tbody>
</table>

2.2 Infectious Diseases Epidemiology

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>Irena Klavs</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Maja Sočan</td>
</tr>
</tbody>
</table>

2.3 Oral Health Epidemiology

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1</td>
<td>Barbara Artnik</td>
</tr>
</tbody>
</table>

2.4 Quality of Life Measurements

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1</td>
<td>Gorka Vušetić Mavrinac</td>
</tr>
</tbody>
</table>

Chapter 3: METHODS OF PUBLIC HEALTH INTERVENTIONS

3.1 Health Communication

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Dobriana Sidjimova, Mariana Dyakova, Zaharina Savova</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Zaharina Savova, Dobriana Sidjimova</td>
</tr>
</tbody>
</table>

Chapter 4: METHODS OF PLANNING AND EVALUATION

4.1 Evaluation of Health Outcome Change

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>Doncho Donev, Lijana Zaletel-Kragelj, Vesna Bjegović, Genc Burazeri</td>
</tr>
</tbody>
</table>

4.2 Screening and Diagnostic Tests Evaluation

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Jadranka Božikov, Lijana Zaletel-Kragelj</td>
</tr>
</tbody>
</table>

METHODS AND TOOLS IN PUBLIC HEALTH III
4.3 Evaluation of Economic Efficiency

4.3.1 Basic Concepts in Health Economics and Methods for Economic Evaluation
 Doncho Donev

4.3.2 Economic Evaluation in Healthcare: Practical Approach
 Pia Vračko, Lijana Zaletel-Kragelj

4.4 Public Health Planning

4.4.1 SWOT Analysis
 Andrej Plesničar, Lijana Zaletel-Kragelj

4.4.2 Rapid Assessment and Response – RAR
 Enida Imamović, Dragana Nikšić

4.4.3 Measurement, Monitoring and Evaluation of Public Health Systems: Assessment of Essential Public Health Functions
 Fimka Tozija, Draga Gjorgjev, Dance Gudeva Nikovska

4.4.4 Strategic Planning in Health Care – General Approach
 Doncho Donev, Neda Milevska-Kostova, Adriana Galan

4.4.5 Priority Setting in Health Care
 Vladimir Lazarevik, Doncho Donev, Dance Gudeva Nikovska, Blaško Kasapinov

Chapter 5: SUPPORTIVE METHODS/TOOLS/TECHNOLOGIES

5.1 Information and Communication Technology

5.1.1 Databases and Their Organization
 Josipa Kern, Slavica Sović

5.2 Capacity Building

5.2.1 Public Health Capacity Building: Adult Education Principles and Methods
 Gordana Pavleković, Lijana Zaletel-Kragelj, Anja Kragelj

5.2.2 Tele-education as a New Method of Medical and Public Health Education
 Izet Mašić

5.2.3 Designing and Planning Educational Programmes in Public Health
 Gordana Pavleković, Lijana Zaletel-Kragelj, Anja Kragelj, Nataša Škerget

Index
PREFACE

This is the sixth out of seven books planned to be published in a series as a support to teachers and trainers in teaching public health in South Eastern Europe. Originally planned to be on the internet platform only, the Forum for Public Health in South Eastern Europe (FPH-SEE) and the MetaNET project as its continuation together with the Hans Jacobs Publishing Company decided later to publish this training material also as hard copy books. The first four books were published with the support of FPH-SEE, and the last two with the support of MetaNET. Both projects are supported by the German Academic Exchange Service (DAAD - Deutsche Academic Austauschdienst) with funds from the Stability Pact for South Eastern Europe, provided by the German Ministry of Foreign Affairs.

We are proud that this book will be published on the 10th year of the Public Health Network in South Eastern Europe.

The book Methods and Tools in Public Health is a collection of 47 teaching modules in 5 chapters written by 53 authors from 11 countries. The teaching modules in this book cover areas of methods of studying population health, special epidemiological methods and methods of public health interventions, methods of planning and evaluation and modules as the supportive tools and technologies. Authors had autonomy in preparation the teaching modules, they were asked to present their own teaching/training materials with the idea to be as practical and lively as possible. The role of editors was to stimulate the authors in writing modules and to collaborate with them in editing the final version of the manuscripts in order to get them as much as possible to the planned format. By preparing and publishing this teaching/training modules authors and editors expect and wish to support and improve public health education and training of public health professionals.

The editors asked and encouraged authors to incorporate in their teaching modules exercises, tests, questionnaires and other practical forms of training. We will be thankful for any comments on use of them in everyday practice.

The next and the last book will be entitled “International Public Health”.

You can find all volumes on the website of the Forum of Public Health: http://www.snz.hr/ph-see/publications.htm, and the volumes 4-6 on the open access Literature database of the University Bielefeld: http://biecoll.ub.uni-bielefeld.de.

Editors and Project coordinators:
Lijana Zaletel-Kragelj, Jadranka Božikov,
Doris Bardehle, Luka Kovačić, Ulrich Laaser and Oliver Razum

October 2010
Forum for Public Health in South Eastern Europe and Hans Jacobs Publishing Company in this series published the following books:

All books can be found at: http://www.snz.hr/ph-see/publications.htm, and all modules included in volumes 4-6 on the open access Literature database of the University Bielefeld: http://biecoll.ub.uni-bielefeld.de.

In preparation:

7. INTERNATIONAL PUBLIC HEALTH to be published in 2011.
LIST OF AUTHORS

1. **Aleksandrova Silviya, MD, MB, Assistant professor**, Faculty of Public Health, Medical University of Pleven, Bulgaria
2. **Artnik Barbara, DMD, PhD, Teaching Assistant**, Chair of Public Health, Faculty of Medicine, University of Ljubljana, Slovenia
3. **Bardehle Doris, MD, PhD, Professor**, Faculty of Health Sciences, University of Bielefeld, Germany
4. **Bilban Marjan, MD, PhD, Professor**, Chair of Public Health, Faculty of Medicine, University of Ljubljana, Slovenia
5. **Bjegović Vesna, MD, PhD, Professor**, Institute of Social Medicine and Centre School of Public Health, School of Medicine, University of Belgrade, Serbia
6. **Božikov Jadranka, PhD, Professor**, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Croatia
7. **Bulat Petar, MD, PhD, Professor**, University of Belgrade, School of Medicine, Occupational Health Department, Belgrade, Serbia
8. **Burazeri Genc, MD, PhD**, Department of International Health, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
9. **Cucu Alexandra, MD, PhD, Lecturer**, Department of Public Health and Management, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
10. **Donev Doncho, MD, PhD, Professor**, Institute of Social Medicine, Medical Faculty, University of Skopje, Republic of Macedonia
11. **Dunn William N, PhD, Professor**, Graduate School of Public and International Affairs, University of Pittsburgh, PA, USA
12. **Dyakova Mariana, MD, PhD, Associate Professor**, Faculty of Public Health, Medical University Sofia, Bulgaria
13. **Erlih Saša, BSc, MSc**, Institute for Comprehensive Development Solutions, Slovenia
14. **Eržen Ivan, MD, PhD, Assistant Professor**, Chair of Public Health, Faculty of Medicine, University of Ljubljana, Slovenia
15. **Fink Rok, BSc, MSc candidate, Teaching Assistant**, Department of Sanitary Engineering, Faculty of Health Studies, University of Ljubljana, Slovenia
17. **Gjorgjev Dragan, MD, PhD, Professor**, Republic Institute for Health Protection and Faculty of Medicine, University Ss Cyril and Methodius, Skopje, Republic of Macedonia
18. **Grancharova Gena, MD, PhD, Associate Professor**, Faculty of Public Health, Medical University of Pleven, Bulgaria
20. **Imamović Enida, MD, DDM**, Public Health Institute of Federation B&H, Bosnia and Herzegovina

21. **Ivartnik Matej, MSc**, Regional Institute of Public Health Ravne na Koroškem, Slovenia

22. **Janković Slavenka, MD, PhD, Professor**, School of Medicine, University of Belgrade, Serbia

23. **Jevšnik Mojca, PhD, Senior Lecturer**, Department of Sanitary Engineering, Faculty of Health Studies, University of Ljubljana, Slovenia

24. **Jocić Neda, MD, PhD, Professor**, Faculty of medicine, Novi Sad, Serbia

25. **Karaslavova Emilia, MD, PhD, Assistant Professor**, Department of social medicine and health management, Medical University Plovdiv, Bulgaria

26. **Kasapinov Blaško, MD, Teaching Assistant**, Institute of Social Medicine, Faculty of Medicine Ss Cyril and Methodius University, Skopje, Republic of Macedonia

27. **Kendrovski Vladimir, MD, PhD, Assistant Professor**, Republic Institute for Health Protection and Faculty of Medicine, University Ss Cyril and Methodius, Skopje, Republic of Macedonia

28. **Kern Josipa, PhD, Professor**, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Croatia

29. **Klavs Irena, MD, PhD, Assistant Professor**, Institute of Public Health of the Republic of Slovenia, Ljubljana, Slovenia

30. **Kragelj Anja, Student** of Andragogy at Department of Pedagogy and Andragogy, Faculty of Arts, University of Ljubljana, Slovenia

31. **Kukčec Andreja, BSc, PhD candidate**, Teaching Assistant, Chair of Public Health, Faculty of Medicine, University of Ljubljana, Slovenia

32. **Lazarevik Vladimir, MD, MPH, Teaching Assistant**, Institute of Social Medicine, Faculty of Medicine Ss Cyril and Methodius University, Skopje, Republic of Macedonia

33. **Mašić Izet, MD, PhD, Professor**, Chair for Medical Informatics, Medical faculty, University of Sarajevo, Bosnia and Herzegovina

34. **Mateev Hristo, MD**, University Hospital “Lozenetz”, Sofia, Bulgaria

35. **Milevska-Kostova Neda, MSc, MCPPM**, Centre for Regional Policy Research and Cooperation “Studiorum”, Skopje, Republic of Macedonia

36. **Nikšić Dragana, MD, PhD**, Medical Faculty, University of Sarajevo, Bosnia and Herzegovina

37. **Nitescu Maria, MD, PhD, Lecturer**, Department of Hygiene and Ecology, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania

38. **Pavleković Gordana, MD, PhD, Professor**, Andrija Štampar School of Public Health, Medical School, University of Zagreb, Croatia

39. **Pekmezović Tatjana, MD, PhD, Professor**, Institute of Epidemiology, School of Medicine, University of Belgrade, Serbia
40. **Plesničar Andrej, MD, PhD, Teaching Assistant**, Faculty of Health Studies, University of Ljubljana, Slovenia

41. **Roshi Enver, MD, MPH**, Faculty of Medicine, University of Tirana, Albania

42. **Rotar Pavlič Danica, MD, PhD, Assistant Professor**, Department of Family Medicine, Faculty of Medicine, University of Ljubljana, Slovenia

43. **Savova Zaharina, PhD, Associate Professor**, Faculty of Public Health, Medical University, Sofia, Bulgaria

44. **Sidjimova Dobriana, PhD, Assistant Professor**, Faculty of Public Health, Medical University, Sofia, Bulgaria

45. **Sočan Maja, MD, PhD, Assistant Professor**, National Institute of Public Health, Ljubljana, Slovenia, Ljubljana, Slovenia

46. **Sović Slavica, MD, PhD candidate**, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Croatia

47. **Stikova Elisaveta, MD, PhD, Professor**, National Public Health Institute and Faculty of Medicine, University “Ss. Cyril and Methodius”, Skopje, Republic of Macedonia

48. **Škerget Nataša, Student** of Pedagogy at Department of Pedagogy and Andragogy, Faculty of Arts, University of Ljubljana, Slovenia

49. **Tozija Fimka, MD, PhD, Associate Professor**, Republic Institute for Health Protection and Faculty of Medicine, University Ss Cyril and Methodius-Skopje, Republic of Macedonia

50. **Vitcu Anca, PhD, Assistant Professor**, Faculty of Computer Science, University “Al. I. Cuza”, Iasi, Romania

51. **Vračko Pia, MD, PhD candidate, Research Assistant, Teaching Assistant**, National Institute of Public Health, Ljubljana, Slovenia, Ljubljana, Slovenia

52. **Vuletić Mavrinac Gorka, PhD**, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Croatia

53. **Zaletel-Kragelj Lijana, MD, PhD, Associate Professor**, Chair of Public Health, Faculty of Medicine, University of Ljubljana, Slovenia
Title

AGE STANDARDIZATION PROCEDURE: DIRECT METHOD

Module: 1.2.3

ECTS (suggested): 0.15

Author(s), degrees, institution(s):

- **Jadranka Božikov**, PhD, Professor
 Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Croatia
- **Lijana Zaletel-Kragelj**, MD, PhD, Associate Professor
 Chair of Public Health, Faculty of Medicine, University of Ljubljana, Slovenia
- **Doris Bardehle**, MD, PhD, Professor
 Faculty of Health Sciences, University of Bielefeld, Germany

Address for correspondence:

Jadranka Božikov
Andrija Štampar School of Public Health
Rockefellerova 4, 10000 Zagreb, Croatia
E-mail: jbozikov@snz.hr

Keywords

Confounding, standardization, age standardization, direct standardization, indirect standardization, cumulative rate

Learning objectives

After completing this module students should:

- understand a role confounding in epidemiologic studies;
- increase knowledge about methods of controlling of confounding in epidemiologic studies;
- understand principles of direct standardization;
- be capable to calculate age-standardized death rates using direct method.

Abstract

Basic theoretical background of standardization as one of methods for controlling the effect of confounding in epidemiology is presented. Direct method of standardization as most common standardization method is presented in details, using a case study. Step by step the procedure is described using simple spreadsheet computer tool for facilitating it.

Teaching methods

Teaching methods include introductory lecture, exercises, and interactive methods such as small group discussions.

Students after introductory lectures first carefully read the recommended sources in age standardization. Afterwards they discuss standardization as method of controlling confounding with other students. In continuation, they in practice in groups of 2-3 students perform the procedure of direct standardization using the programme tool (e.g. MS Excel) on given data. At the end they compare and discuss their results.

Specific recommendations for teachers

- work under teacher supervision/individual students’ work proportion: 50%/50%;
- facilities: a computer room;
- equipment: computers (1 computer per 2-3 students), LCD projection, access to the Internet;
- target audience: master degree students according to Bologna scheme.

Assessment of students

Assessment is based on multiple choice questionnaire (MCQ) and case-study.
AGE STANDARDIZATION PROCEDURE: DIRECT METHOD
Jadranka Božikov, Lijana Zaletel-Kragelj, Doris Bardehle

THEORETICAL BACKGROUND

Population diversity and confounding

When examining the health of populations one of the fundamentals of this process is the comparison of health indicators among across and/or across different population subgroups within the countries.

Whenever we want to compare epidemiologic measures, irrespective of what they represent: morbidity (e.g. incidence or prevalence measures), mortality or other measure, across different populations or population groups we should take into account their diversity (1). Namely, populations/population groups are heterogeneous in regard to various health related characteristics (e.g. age, gender, education, religion, genetic and geographic factors, etc.) (2).

When the epidemiological measures are calculated without taking into account this diversity, such kind of epidemiological measures are called crude measures. The potential influence of the diversity could be imagined if the procedure of calculation of crude values is taken into consideration - the value of crude population measure is in fact an average of the values for the individual subgroups within a population (e.g. subgroups according to age), weighted by their relative sizes (1). This means, the larger the subgroup (e.g. age subgroup), the more influence it will have on the crude measure. The comparison of crude measures across populations (or population groups) can be thus misleading because they can be greatly affected by the influence of such characteristics (e.g. different age distributions in the populations/population groups being compared).

In statistical terms, these characteristics are so called confounders. Confounding (from the Latin “confundere” that means to mix together) is according to Last et al. defined as an effect which appears when the measurement of the effect of an exposure on a risk is distorted by the relation between the exposure and other “extraneous” factor (or multiple factors) that also influence the outcome under study (3). In this context extraneous factors are considered as factors other than the relationships between two phenomena under study. But not every characteristic meets the criteria for being confounder. A confounding factor (or confounder) must meet three criteria:

- to be a known risk factor for the result of interest (4),
- to be a factor associated with exposure but not a result of exposure (4), and
- to be a factor that is not an intermediate variable between them.

Thus, when crude rates are interpreted, this interpretation would have been confounded by differences in the populations being compared (e.g. differences in age distribution). We therefore need to control for the effects of confounders in order to remove the confounding effect.
Controlling for the effects of confounding

There exist several procedures for controlling for the effects of confounding. Some of them could be performed in the designing and planning phase of a study, and the others in the phase of data analysis (5-7). The first group of procedures (e.g. randomization, restriction, matching) is usually performed in experimental studies while the second group (stratification, standardization, statistical modelling) in observational studies (5-7). This concept of control of confounding in epidemiology derives from the limited opportunities for experimental control in non-experimental design of studies.

In practice, age is the factor that is most frequently controlled or adjusted for confounding. In an older population higher rates of certain diseases that more frequently appear in older age-groups (e.g.cancers) could be observed not because of the presence of risk factors, but because of the higher age itself (8). Traditionally in controlling for age confounding, standardization is applied (8).

Standardization

Definition and description

Standardization of health indicators is a classic epidemiological method defined as:

- a set of techniques used to remove as much as possible the effects of differences in age or other confounding variables when comparing two or more populations (3),
- a method that removes the confounding effect of variables that we know (or think) that they could influence the comparison between two or more populations (5,6),
- a statistical method for deriving measures that are comparable across populations that differ in age and other demographic characteristics (9).

Standardization provides an easy-to-calculate and easy-to-use summary measures e.g. standardized mortality (abbreviated sometimes as SMR\(^2\)) or standardized death rate (abbreviated as SDR\(^3\)) when the outcome is death, or a standardized morbidity measure when the outcome is disease occurrence (e.g. standardized incidence rate in the case the morbidity measure is incidence - abbreviated sometimes as SIR\(^4\)). These measures can be useful for information users, such as decision-makers.

Types of standardization

Two approaches to standardization could be used, direct and indirect (1,3,5-9). They are used in different situations what will be described in continuation.

\(^2\) We should be aware that this abbreviation, SMR, is also used in the case of standardized mortality ratio as an outcome measure in indirect standardization procedure which is not the subject of this module.

\(^3\) The term standardized death rate (abbreviated as SDR) is commonly used in Health for All Data Base of WHO, European Region (10).

\(^4\) The same as under 1.
Direct standardization
Direct standardization is a procedure that forms a weighted average of age specific rates or risks, using as weights the distribution of a specified standard population (1,3,8,9).

The method is called “direct” because it uses the actual morbidity or mortality rates of the populations being compared (9).

In the direct standardization method, according to Last et al. (3), the directly standardized rate represents what the crude rate would have been in the observed population if that population had the same structure as the standard population with respect to the variable (or more variables) for which the standardization was performed.

Thus, these rates are hypothetical and by themselves they are not meaningful because they are not real. These rates are useful only if they are used in comparisons of populations in the case that standardized rates in all compared populations are derived by the same procedure using the same standard population.

Direct standardization could be used to compare observed populations for which the specific crude rates are known and statistically stable. It is commonly used in reports of vital statistics (e.g., mortality) or major disease incidence trends (e.g., cancer incidence).

Indirect standardization
Indirect standardization is used to compare observed populations for which the specific crude rates are unknown or statistically unstable (3). This is frequently in small populations or when the observed phenomenon is rare.

It is different from direct standardization in both, method and interpretation. Instead of using the structure of the standard population, we utilize its specific rates and apply them to the populations under comparison, previously stratified by the variable to be controlled. The total of expected cases is obtained this way. The SDR is then calculated by dividing the total of observed cases by the total of expected cases. This ratio allows comparison of each population under study to the standard population. A conclusion can be reached by simply calculating and looking at the SDR. A SDR higher than one (or 100% if expressed in percentage) indicates that the risk of dying in the observed population is higher than what would be expected if it had the same experience or risk than the standard population. On the other hand, a SDR lower than one (or 100%) indicates that the risk of dying is lower in the observed population than expected if its distribution were the same as the reference population.

Indirect standardization plays a major role in studies of occupational disease.

Age standardization
Although age standardization is not a special type of standardization we think it is worthy to emphasize it. As already mentioned, age is the factor that is most frequently standardized for, since the age is one of the most important confounders. Compared populations could have very different age structure that can influence the interpretation of differences in crude rates of observed phenomenon.
Age-standardized rates calculated using the direct method represent what the crude rate would have been if the population had the same age distribution as the standard population.

Age-standardization is particularly used in comparative mortality studies, since the age structure has an important impact on a population’s overall mortality.

Limitations of standardization

It is important to know that standardization as method for controlling confounding has some limitations. Any summary measure can hide patterns that might have important public health implications. For example, with age standardization, one might fail to detect age-specific differences in risk across time or place. This might arise if a disease is displaying an increasing incidence due to a birth cohort effect (people at younger ages might have a higher risk in recent years compared to previous years, while older people could have the opposite pattern). An age-standardized rate could hide these trends. Despite this risk, standardized rates have proved to be very useful summary measures.

The procedure of direct age standardization

Entry data for the procedure

For accomplishing the procedure of direct age standardization we need three sets of data:

1. Number of cases of a health phenomenon (death, disease) to be standardized.
 We need absolute frequency (number of cases) of a health phenomenon to be standardized across the age groups.
 These data are usually derived from registration of health phenomena (mortality, morbidity data) - health statistics of a country. Usually are administered by national public health institutes. Mortality data are usually available, while morbidity data (e.g. cancer incidence) are more difficult to obtain. In Slovenia for example cancer incidence for several sites could be obtained from a high quality Cancer Registry of the Republic of Slovenia. The Registry’s annual reports, Cancer Incidence in Slovenia, are one of the regular ways of disseminating information of this registry. They are publicly available from their homepage as PDF files (11).

2. Observed population data.
 Next set of data that is needed for direct standardization is distribution of population according to age.
 These data are usually derived from on-going registration of population and/or population censuses. They are usually provided by every country’s statistical office. For example, for Slovenia these data are provided by the Statistical Office of the Republic of Slovenia. They are publicly available in Office’s annual reports, Statistical Yearbook, from their homepage as PDF files (12).

 For most of countries of the world these data could also be obtained from the U.S. Census Bureau International Data Base Entry (13).

3. Standard population data.
An important step in direct standardization is the selection of a standard population (4), since value of the adjusted rate depends on the standard population used.

The standard population may come from the populations under study - average for example. In this case however, it is important to ensure that the populations do not differ considerably in their size, since a larger population may influence the adjusted rates (14). The standard population may also be a population without any relation to the data under study, but in general, its distribution with regard to the adjustment factor should not be radically different from the populations we wish to compare.

In European region of World Health Organization, for comparison across countries within this region, age-standardized death rates are calculated using the European standard population while in other regions other standard populations. The detailed description of the European standard population could be obtained from the European Health for All Database manual (15). The age distribution of four different hypothetical standard populations is presented in Table 1 (15,16).

<table>
<thead>
<tr>
<th>Age group</th>
<th>European standard population (100,000)</th>
<th>European standard population (million)</th>
<th>World standard population (million)</th>
<th>1996 Canadian standard population (million)</th>
<th>2000 US standard population (million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,600</td>
<td>16,000</td>
<td>24,000</td>
<td>12,342</td>
<td>13,818</td>
</tr>
<tr>
<td>1-4</td>
<td>6,400</td>
<td>64,000</td>
<td>96,000</td>
<td>53,893</td>
<td>55,317</td>
</tr>
<tr>
<td>5-9</td>
<td>7,000</td>
<td>70,000</td>
<td>100,000</td>
<td>67,985</td>
<td>72,533</td>
</tr>
<tr>
<td>10-14</td>
<td>7,000</td>
<td>70,000</td>
<td>90,000</td>
<td>67,716</td>
<td>73,032</td>
</tr>
<tr>
<td>15-19</td>
<td>7,000</td>
<td>70,000</td>
<td>90,000</td>
<td>67,841</td>
<td>72,169</td>
</tr>
<tr>
<td>20-24</td>
<td>7,000</td>
<td>70,000</td>
<td>80,000</td>
<td>67,761</td>
<td>66,478</td>
</tr>
<tr>
<td>25-29</td>
<td>7,000</td>
<td>70,000</td>
<td>80,000</td>
<td>72,914</td>
<td>64,529</td>
</tr>
<tr>
<td>30-34</td>
<td>7,000</td>
<td>70,000</td>
<td>60,000</td>
<td>87,030</td>
<td>71,044</td>
</tr>
<tr>
<td>35-39</td>
<td>7,000</td>
<td>70,000</td>
<td>60,000</td>
<td>88,510</td>
<td>80,762</td>
</tr>
<tr>
<td>40-44</td>
<td>7,000</td>
<td>70,000</td>
<td>60,000</td>
<td>80,055</td>
<td>81,851</td>
</tr>
<tr>
<td>45-49</td>
<td>7,000</td>
<td>70,000</td>
<td>60,000</td>
<td>71,847</td>
<td>72,118</td>
</tr>
<tr>
<td>50-54</td>
<td>7,000</td>
<td>70,000</td>
<td>50,000</td>
<td>55,812</td>
<td>62,716</td>
</tr>
<tr>
<td>55-59</td>
<td>6,000</td>
<td>60,000</td>
<td>40,000</td>
<td>44,869</td>
<td>48,454</td>
</tr>
<tr>
<td>60-64</td>
<td>5,000</td>
<td>50,000</td>
<td>40,000</td>
<td>40,705</td>
<td>38,793</td>
</tr>
<tr>
<td>65-69</td>
<td>4,000</td>
<td>40,000</td>
<td>30,000</td>
<td>37,858</td>
<td>34,264</td>
</tr>
<tr>
<td>70-74</td>
<td>3,000</td>
<td>30,000</td>
<td>20,000</td>
<td>32,589</td>
<td>31,773</td>
</tr>
<tr>
<td>75-79</td>
<td>2,000</td>
<td>20,000</td>
<td>10,000</td>
<td>23,232</td>
<td>26,999</td>
</tr>
<tr>
<td>80-84</td>
<td>1,000</td>
<td>10,000</td>
<td>5,000</td>
<td>15,424</td>
<td>17,842</td>
</tr>
<tr>
<td>85+</td>
<td>1,000</td>
<td>10,000</td>
<td>5,000</td>
<td>11,617</td>
<td>15,508</td>
</tr>
<tr>
<td>Total</td>
<td>100,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>
The European standard population which will be used in our case study is also presented in Figure 1.

Figure 1. European standard population (100,000). Adapted from Health for All database Manual (15).

For all three sets of entry data the same age distribution is needed.

The procedure

Directly standardized rate is, in general, calculated by dividing the number of deaths by the actual local population in a particular age group multiplied by the standard population for that particular age group and summing across the relevant age groups. The rate is usually expressed per 100,000. The exact procedure for calculating standardized death rates in 4 steps is as follows:

1. Step 1 - calculation of the specific crude death rate for every (specific) age group.

The crude specific death rate for every age group is obtained by dividing the number of deaths in every specific age group by the observed (actual local) population in this age group multiplied by a multiplier (usually 100,000) (Equation 1):

\[
\text{crude } DR_{(\text{spec. group})} = \frac{N_{\text{deaths(spec. group)}}}{N_{\text{pop(spec. group)}}} \times 100,000 \tag{Equation 1}
\]

\(\text{crude } DR_{(\text{spec. group})} \) = crude death rate in a specific population group

\(N_{\text{deaths(spec. group)}} \) = number of deaths in a specific population group

\(N_{\text{pop(spec. group)}} \) = number of population in a specific population group
2. Step 2 - calculation of the crude rate for total population.
The crude rate for total population is calculated using the similar formula as in calculating specific death rate for every age group (Equation 1), except that in this calculation totals of number of cases and population are used (Equation 2).

\[
crude DR_{\text{total pop}} = \frac{N_{\text{deaths(total pop)}}}{N_{\text{pop(total pop)}}} \times 100,000
\]

Equation 2.

\[
N_{\text{exp.deaths(spec.group)}} = \frac{\text{crude } DR_{\text{(spec.group)}} \times N_{\text{stand.pop(spec.group)}}}{100,000}
\]

Equation 3.

These totals need to be calculated prior calculation of the crude rate for total population.

3. Step 3 - calculation of the expected number of deaths in the standard population for every specific age group.
The expected number of deaths in a specific age group is calculated by multiplying the result obtained in step 1 by the number of population in standard population in this specific age group and dividing it by the multiplier used in step 1 (usually 100,000) (Equation 3):

\[
N_{\text{exp.deaths(spec.group)}} = \frac{\text{crude } DR_{\text{(spec.group)}} \times N_{\text{stand.pop(spec.group)}}}{100,000}
\]

Equation 3.

The result of this step, the expected number of deaths in every specific age group, is in fact the standardized death rate in this particular age group.

4. Step 4 - calculation of the standardized death rate in a total population.
Finally, the standardized death rate is obtained by summation of expected number of deaths in a specific age group across all age groups (Equation 4).

\[
\text{stand } DR_{\text{total pop}} = \sum N_{\text{exp.deaths(spec.group)}}
\]

Equation 4.

\[
\text{stand } DR_{\text{total pop}} = \text{standardized death rate in a total population}
\]

\[
N_{\text{exp.deaths(spec.group)}} = \text{number of expected deaths in the standard population in a specific population group}
\]
CASE STUDY: THE PROCEDURE OF DIRECT AGE STANDARDIZATION OF DISEASE D MORTALITY IN CROATIA

Entry data

For accomplishing the procedure of direct age standardization of disease D mortality in Croatia we need following sets of data:

1. Number of deaths of a disease D to be standardized.
 In table 2 the number of cases of the disease D in every age group for the male population for year 2000 is presented. The data were obtained from National Health Institute of Croatia (17).

Table 2. Number of death cases (absolute incidence) of the disease D in Croatia for male population for every age group for year 2000. Source: National Health Institute of Croatia (17).

<table>
<thead>
<tr>
<th>Age group</th>
<th>Number of cases</th>
<th>Age group</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>45-49</td>
<td>80</td>
</tr>
<tr>
<td>1-4</td>
<td>0</td>
<td>50-54</td>
<td>143</td>
</tr>
<tr>
<td>5-9</td>
<td>0</td>
<td>55-59</td>
<td>237</td>
</tr>
<tr>
<td>10-14</td>
<td>2</td>
<td>60-64</td>
<td>258</td>
</tr>
<tr>
<td>15-19</td>
<td>3</td>
<td>65-69</td>
<td>249</td>
</tr>
<tr>
<td>20-24</td>
<td>4</td>
<td>70-74</td>
<td>200</td>
</tr>
<tr>
<td>25-29</td>
<td>15</td>
<td>75-79</td>
<td>253</td>
</tr>
<tr>
<td>30-34</td>
<td>14</td>
<td>80-84</td>
<td>159</td>
</tr>
<tr>
<td>35-39</td>
<td>36</td>
<td>85+</td>
<td>68</td>
</tr>
<tr>
<td>40-44</td>
<td>52</td>
<td>Total</td>
<td>1773</td>
</tr>
</tbody>
</table>

2. Observed population data.
 In Table 3 the number of population in every age group of the Croatian population is presented. The 1991 census data are used (Table 3, Figure 2). The data were obtained from Central Bureau of Statistics of Republic of Croatia (18).

<table>
<thead>
<tr>
<th>Age group</th>
<th>Males</th>
<th>Females</th>
<th>Age group</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26361</td>
<td>26361</td>
<td>45-49</td>
<td>147304</td>
<td>148308</td>
</tr>
<tr>
<td>1-4</td>
<td>130000</td>
<td>148272</td>
<td>50-54</td>
<td>155474</td>
<td>161793</td>
</tr>
<tr>
<td>5-9</td>
<td>168031</td>
<td>159688</td>
<td>55-59</td>
<td>146177</td>
<td>162304</td>
</tr>
<tr>
<td>10-14</td>
<td>166573</td>
<td>159218</td>
<td>60-64</td>
<td>105909</td>
<td>146527</td>
</tr>
<tr>
<td>15-19</td>
<td>162383</td>
<td>155564</td>
<td>65-69</td>
<td>69655</td>
<td>113449</td>
</tr>
<tr>
<td>20-24</td>
<td>169107</td>
<td>164779</td>
<td>70-74</td>
<td>43815</td>
<td>71653</td>
</tr>
<tr>
<td>25-29</td>
<td>179330</td>
<td>175245</td>
<td>75-79</td>
<td>44536</td>
<td>75999</td>
</tr>
<tr>
<td>30-34</td>
<td>192397</td>
<td>184039</td>
<td>80-84</td>
<td>23986</td>
<td>44564</td>
</tr>
<tr>
<td>35-39</td>
<td>184654</td>
<td>174497</td>
<td>85+</td>
<td>12844</td>
<td>27651</td>
</tr>
<tr>
<td>40-44</td>
<td>142937</td>
<td>139918</td>
<td>Total</td>
<td>2271473</td>
<td>2439829</td>
</tr>
</tbody>
</table>
The same data are presented also in Figure 2.

Figure 2. Number of population by sex in nineteen age groups of the Croatian population, the 1991 census data. Source: Central Bureau of Statistics of Republic of Croatia (18).

3. Standard population data.
Given the fact that we want to compare the mortality rate of disease D in Croatia to other countries of World Health Organization (WHO) European region mortality rates, the European standard population is the best choice for standard population. This standard population has been already presented (Table 1, Figure 1).

Setting the frame table for the standardization procedure
The procedure for standardization of rates could be automatised by using an appropriate computer programmes. Spreadsheet programme like Microsoft Excel could be used. The frame table for the procedure should contain following columns:
- Age group,
- Number of cases of deaths,
- Population (observed),
- Rate per 100,000,
- European standard population, and
- Expected cases of deaths (in European standard population).

In Figure 3 this frame is presented while in Figure 4 in this frame entry data are already filled in.
Figure 3. The frame table for the standardization procedure in Microsoft Excel computer programme.

Figure 4. The frame table for the standardization procedure in Microsoft Excel computer programme filled in with entry data.

Age Standardization Procedure: Direct Method

METHODS AND TOOLS IN PUBLIC HEALTH 103
The procedure
The four steps are as follows:

1. Step 1 - calculation of the specific crude death rate for every (specific) age group.

The crude specific death rate for every age group is calculated by using the Equation 1. In Figure 5 the equation for calculating the crude specific death rate for the age group 0 using corresponding cells for number of deaths and the observed (actual local) population in this age group in a spreadsheet is presented.

![Figure 5](image-url)

Figure 5. Calculation of the specific rate for age group 0 using corresponding cells for number of deaths, and the observed (actual local) population in this age group in a spreadsheet.

In Figure 6 the results of this step in the procedure is presented.

In Equation 5 the procedure for calculating the crude specific death rate for the age group 40-44 is presented, as well as the result.

\[\text{crude DR}_{\text{age 40-44}} = \frac{52}{142,937} \times 100,000 = 36.38 \]

Equation 5.

In continuation, the formula from the cell containing the function for calculating the crude specific death rate for the age group 0 is copied to other cells in the same column by dragging the right lower corner of the cell and extending it to the last age group cell (Figure 7).
Age Standardization Procedure: Direct Method

Methods and Tools in Public Health

105

Figure 6. The result of calculation of the specific rate for age group 0.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Number of cases</th>
<th>Population</th>
<th>Rate per 100,000</th>
<th>European population (100,000)</th>
<th>Expected cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>0</td>
<td>28301</td>
<td>0.00</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>5-9</td>
<td>0</td>
<td>13000</td>
<td>0.00</td>
<td>6400</td>
<td></td>
</tr>
<tr>
<td>10-14</td>
<td>4</td>
<td>168351</td>
<td>0.00</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>15-24</td>
<td>2</td>
<td>168351</td>
<td>0.00</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>25-29</td>
<td>10</td>
<td>178306</td>
<td>0.00</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>30-34</td>
<td>14</td>
<td>192309</td>
<td>0.00</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>35-39</td>
<td>26</td>
<td>194554</td>
<td>0.00</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>40-44</td>
<td>52</td>
<td>142037</td>
<td>0.00</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>45-49</td>
<td>80</td>
<td>147304</td>
<td>0.00</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>50-54</td>
<td>143</td>
<td>175614</td>
<td>0.00</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>55-59</td>
<td>237</td>
<td>145177</td>
<td>0.00</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>60-64</td>
<td>258</td>
<td>185959</td>
<td>0.00</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>65-69</td>
<td>249</td>
<td>69095</td>
<td>0.00</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>70-74</td>
<td>206</td>
<td>43815</td>
<td>0.00</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>75-79</td>
<td>253</td>
<td>44556</td>
<td>0.00</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>80-84</td>
<td>159</td>
<td>23966</td>
<td>0.00</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>85+</td>
<td>68</td>
<td>12344</td>
<td>0.00</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10000</td>
</tr>
</tbody>
</table>

Figure 7. Copying of the function used for calculation of the specific rate for age group 0 to all age groups by dragging the right lower corner of the cell and extending it to the last age group cell.
In Figure 7 we can verify if the result of calculation of the crude specific death rate for the age group 40-44 is correct.

2. Step 2 - calculation of the crude rate for total population.
Prior calculating the crude rate for total population, the totals of number of cases and population need to be calculated. Figure 8 presents the procedure for calculating the totals by using the SUM function.

![Figure 8](attachment:image.png)

Figure 8. The procedure of calculation of totals for number of deaths and for Croatian population.

In Figure 9 the results of this procedure are presented. By comparing the totals in Tables 2 and 3 we can verify if they are correct.

In continuation, the crude rate for total population is calculated by using the Equation 2 (Equation 6).

\[
\text{crude } DR_{(total \ pop)} = \frac{1,773}{227,1473} \times 100,000 = 78.06
\]

Equation 6.

The procedure of calculation of the crude rate for total population using corresponding cells for number of deaths and the observed (actual local) total population in the spreadsheet is presented in Figure 10, while the result in Figure 11.
Figure 9. The result of the procedure of calculation of totals for Croatian population, number of cases and European standard population.

Figure 10. The procedure of calculation of the crude rate for total population using corresponding cells for number of deaths and the observed (actual local) total population.
3. Step 3 - calculation of the expected number of deaths in the standard population for every specific age group.

In the next step, the expected number of deaths in a specific age group is calculated by using Equation 3. In Figure 12 the equation for calculating the expected number of deaths in the standard population for the age group 0 using corresponding cells for crude death rate and the standard population in this age group in a spreadsheet is presented. In Figure 13 the results of this step in the procedure is presented.

In Equation 7 the procedure for calculating the expected number of deaths in the standard population for the age group 40-44 is presented, as well as the result.

\[
N_{\text{expected}_{40-44}} = \frac{36.38 \times 7,000}{100,000} = 2.55
\]
\text{Equation 7.}

In continuation, the equation from the cell containing the function for calculating the crude specific death rate for the age group 0 is copied to other cells in the same column by dragging the right lower corner of the cell and extending it to the last age group cell (Figure 14).
Figure 12. Calculation of the number of expected number of deaths in the standard population for age group 0 by using corresponding cells for crude death rate and the standard population in this age group in a spreadsheet.

Figure 13. The result of calculation of expected number of deaths in the standard population for age group 0.
Age Standardization Procedure: Direct Method

Methods and Tools in Public Health

Figure 14. Copying of the function used for calculation of the number of expected number of deaths in the standard population for age group 0 to all age groups by dragging the right lower corner of the cell and extending it to the last age group cell.

Figure 15. The procedure of calculation of the crude rate for total population using the SUM function in MS Excel programme.
4. Step 4 - calculation of the standardized death rate in a total population. Finally, the standardized death rate is obtained by summation of number of expected cases in standard population across all age groups. Figure 15 presents the procedure for calculating the totals by using the SUM function in MS Excel programme, while Figure 16 presents the final result of the procedure.

![Figure 15.](image)

Figure 15. Procedure for calculating the totals by using the SUM function in MS Excel programme.

Figure 16. Final result of the procedure of calculating standardized death rate.

EXERCISE

Task 1
Carefully read the theoretical background of this module and discuss the confounding phenomenon with other students.

Task 2
Compare and interpret the crude rate and the SDR for disease D for male population of Croatia (Figure 16) given the disease is cancer (all sites). What do you think such a result mean?

Task 3
Perform the standardization procedure for female population for the disease D mortality in Croatia. Number of death cases (absolute incidence) is presented in Table 4.
Table 4. Number of death cases (absolute incidence) of the disease D in Croatia for female population for every age group for year 2000 (8). Source: National Health Institute of Croatia

<table>
<thead>
<tr>
<th>Age group</th>
<th>Number of cases</th>
<th>Age group</th>
<th>Number of cases</th>
<th>Age group</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>30-34</td>
<td>10</td>
<td>65-69</td>
<td>270</td>
</tr>
<tr>
<td>1-4</td>
<td>0</td>
<td>35-39</td>
<td>29</td>
<td>70-74</td>
<td>240</td>
</tr>
<tr>
<td>5-9</td>
<td>0</td>
<td>40-44</td>
<td>24</td>
<td>75-79</td>
<td>330</td>
</tr>
<tr>
<td>10-14</td>
<td>1</td>
<td>45-49</td>
<td>67</td>
<td>80-84</td>
<td>238</td>
</tr>
<tr>
<td>15-19</td>
<td>0</td>
<td>50-54</td>
<td>136</td>
<td>85+</td>
<td>102</td>
</tr>
<tr>
<td>20-24</td>
<td>2</td>
<td>55-59</td>
<td>158</td>
<td>Total</td>
<td>1825</td>
</tr>
<tr>
<td>25-29</td>
<td>9</td>
<td>60-64</td>
<td>209</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Follow the procedure presented in this paper from Step 1 to Step 4 (Figures 3 thru 16).\(^5\)

Task 4

Compare:
- your results obtained in the Task 3 to results of other students,
- the results of female part of the population (Task 3) to the male part of the population (Case study),
- try critically to discuss the differences.

Task 5

Critically discuss strengths and limitations of standardization procedure in controlling the confounding phenomena.

REFERENCES

\(^5\) The answer:
- Crude death rate: 74.80
- Standardized death rate: 62.53
Age Standardization Procedure: Direct Method

METHODS AND TOOLS IN PUBLIC HEALTH 113
RECOMMENDED READINGS

