Limit theorems for random dynamical systems using the spectral method

Davor Dragičević, University of Rijeka, Croatia

(joint work with Gary Froyland, Cecilia González-Tokman and Sandro Vaienti)

Workshop on Ergodic Theory and limit theorems in Dynamical Systems, University of Rouen Normandy

February 27, 2018

D.D was supported by the Croatian Science Fundation under the project HRZZ-IP-09-2014-2285

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let I = [0, 1] denote the unit interval equipped with Borel σ -algebra \mathcal{B} and a Lebesgue measure m. We say that $T: I \rightarrow I$ is a **piecewise expanding map** if there exists a partition

$$0 = x_0 < x_1 < \ldots < x_{k-1} < x_k = 1$$

and $\alpha > 1$ such that:

• restriction $T|_{(x_{i-1},x_i)}$ is a C^1 function which can be extended to a C^1 function on $[x_{i-1}, x_i]$;

2
$$|T'(x)| \ge \alpha$$
 for $x \in (x_{i-1}, x_i)$;

3 $g(x) = \frac{1}{|T'(x)|}$ is a function of bounded variation.

Let T be a piecewise expanding map and consider the associated transfer operator $\mathcal{L}\colon L^1(m)\to L^1(m)$ by

$$\mathcal{L}f(x) = \sum_{y \in \mathcal{T}^{-1}(x)} \frac{f(y)}{|\mathcal{T}'(y)|}.$$

We note that \mathcal{L} doesn't have good spectral properties as an operator on $L^1(m)$. However, it has as an operator on BV (space of functions of bounded variation). More precisely, $\mathcal{L} : BV \to BV$

is a quasicompact operator. This means that it can be written as

$$\mathcal{L} = \sum_{i=1}^{k} \lambda_i \Pi_i + N,$$

where λ_i are eigenvalues for \mathcal{L} , $|\lambda_i| = r(\mathcal{L}) = 1$, each $\prod_{i \in I}$ is a

projections onto an one-dimensional subspace of BV,

- $\Pi_i N = N \Pi_i = 0$ and r(N) < 1. Some important consequences:
 - there exist an absolutely continuous invariant measure for *T*, i.e. 1 is an eigenvalue of *L* with a positive eigenvector;
 - e under some additional assumptions acim is unique and mixing; we denote it by μ (from now on we assume that this is the case);
 - S we have exponential decay of correlation and limit laws (central limit theorem, local central limit theorem, large deviations, almost sure invariance principle...)

Central limit theorem

Assume that $\phi \colon I \to \mathbb{R}$ bounded observable in BV such that $\int_{[0,1]} \phi \, d\mu = 0$. For each $n \in \mathbb{N}$, let

$$S_n = \sum_{k=0}^{n-1} \phi \circ T^k.$$

Theorem (Rousseau–Egele, 1983)

We have that
$$\lim_{n\to\infty}\int_{[0,1]}rac{S_n^2}{n}=\sigma^2$$
, where

$$\sigma^{2} = \int_{[0,1]} \phi^{2} d\mu + 2 \sum_{n=1}^{\infty} \int_{[0,1]} \phi(\phi \circ T^{n}) d\mu < \infty.$$

If $\sigma^2 > 0$, then $\frac{S_n}{\sqrt{n}}$ converges in distribution to $N(0, \sigma^2)$.

Theorem

If $\sigma^2 > 0$, then there exists $\delta > 0$ and a strictly convex, continuous and nonnegative function $c: (-\delta, \delta) \to \mathbb{R}$ which vanishes only at 0 such that

$$\lim_{n\to\infty}\frac{1}{n}\log\mu(S_n>n\varepsilon)=-c(\varepsilon),\quad\text{for }\varepsilon\in(0,\delta).$$

We define

$$\mathcal{L}^{ heta}(g) = \mathcal{L}(e^{ heta \phi}g), \quad ext{for } g \in BV ext{ and } heta \in \mathbb{C}.$$

Since $\theta \mapsto \mathcal{L}^{\theta}$ is analytic, for θ sufficiently close to 0,

$$\mathcal{L}^{\theta} = \omega(\theta) \Pi(\theta) + N(\theta),$$

where $\Pi(\theta)$ is a projection of rank 1 and $r(N(\theta)) < |\omega(\theta)|$. CLT $(d\mu = f \, dm)$: for $t \in \mathbb{R}$ we have that

$$\lim_{n\to\infty}\int_{[0,1]}e^{itS_n/\sqrt{n}}\,d\mu=\lim_{n\to\infty}\int_{[0,1]}(\mathcal{L}^{it/\sqrt{n}})^n(f)\,dm=\lim_{n\to\infty}\omega(it/\sqrt{n})^n\\=e^{-t^2\sigma^2/2}.$$

LDP:

we first show that $\omega'(0)=0$ and $\omega''(0)=\sigma^2$ and then that

$$\lim_{n\to\infty}\frac{1}{n}\log\int_{[0,1]}e^{\theta S_n}\,d\mu=\Lambda(\theta),$$

where $\Lambda(\theta) = \log \omega(\theta)$, for $\theta \in \mathbb{R}$ sufficiently close to 0.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and assume that $\sigma \colon \Omega \to \Omega$ is invertible transformation that preserves \mathbb{P} . Furthermore, assume that \mathbb{P} is ergodic. We now take the collection $\mathcal{T}_{\omega}, \omega \in \Omega$ of piecewise expanding maps. By \mathcal{L}_{ω} we denote the transfer operator associated to \mathcal{T}_{ω} . For $\omega \in \Omega$ and $n \in \mathbb{N}$, set

$$T_{\omega}^{n} = T_{\sigma^{n-1}\omega} \circ \ldots \circ T_{\sigma\omega} \circ T_{\omega}$$

and

$$\mathcal{L}_{\omega}^{n}=\mathcal{L}_{\sigma^{n-1}\omega}\circ\ldots\circ\mathcal{L}_{\sigma\omega}\circ\mathcal{L}_{\omega}.$$

The associated skew-product transformation $\tau: \Omega \times I \to \Omega \times I$ is given by $\tau(\omega, x) = (\sigma \omega, T_{\omega} x)$. We assume that:

- **1** there exists K > 0 such that $\|\mathcal{L}_{\omega}\| \leq K$ for \mathbb{P} -a.e. $\omega \in \Omega$;
- 2 there exists $N \in \mathbb{N}$ and measurable $\alpha^N, \beta^N \colon \Omega \to (0, \infty)$ with $\int_{\Omega} \log \alpha^N(\omega) d\mathbb{P}(\omega) < 0$ such that for any $f \in BV$ and \mathbb{P} -a.e. $\omega \in \Omega$,

$$\|\mathcal{L}_{\omega}^{N}f\|_{BV} \leq \alpha^{N}(\omega)\|f\|_{BV} + \beta^{N}(\omega)\|f\|_{1};$$

- **3** there exist $D, \lambda > 0$ such that $\|\mathcal{L}_{\omega}^{n}f\|_{BV} \leq De^{-\lambda n}\|f\|_{BV}$ for $f \in BV$, $\int f \, dm = 0$, $n \in \mathbb{N}$ and \mathbb{P} -a.e. $\omega \in \Omega$;
- ④ there exists $N \in \mathbb{N}$ such that for any a > 0 and sufficiently large $n \in \mathbb{N}$, there is c > 0 such that essinf $\mathcal{L}_{\omega}^{nN} f \ge c \|f\|_1$, for \mathbb{P} -a.e. $\omega \in \Omega$,

$$f \in C_a := \{ f \in BV : f \ge 0 \text{ and } var(f) \le a \| f \|_1 \}.$$

Then, there exists a **unique acim** (w.r.t. $\mathbb{P} \times m$) μ for τ such that $\pi_*\mu = \mathbb{P}$, where $\pi \colon \Omega \times I \to \Omega$ is a projection. We can regard μ as a collection of **fiber measures** μ_{ω} , $\omega \in \Omega$ on I:

$$\int_{\Omega \times I} \phi(\omega, x) \, d\mu = \int_{\Omega} \int_{I} \phi(\omega, x) \, d\mu_{\omega}(x) \, d\mathbb{P}(\omega).$$

We consider **observables** $\phi \colon \Omega \times I \to \mathbb{R}$ such that

$${\rm esssup}_{(\omega,x)} |\phi(\omega,x)| < \infty \quad {\rm and} \quad {\rm esssup}_{\omega} \, \textit{var}(\phi(\omega,\cdot)) < \infty.$$

Moreover, we assume that

$$\int_{[0,1]} \phi(\omega,\cdot) \, d\mu_\omega = 0, \quad \omega \in \Omega.$$

We form Birkhoff sums

$$S_n(\omega, x) = \sum_{i=0}^{n-1} (\phi \circ \tau^i)(\omega, x) = \sum_{i=0}^{n-1} \phi(\sigma^i \omega, T^i_\omega x).$$

We are interested in the **quenched** type of limit theorems i.e. those that give an information about the asymptotic behaviour of Birkhoff sums w.r.t. to μ_{ω} for "typical" ω . Previous work:

- Kifer, 1998: quenched limit theorems but not with spectral method (main example: random subshifts of finite type);
- Aimino-Nicol-Vaienti, 2014: spectral method but the base space is assumed to be a Bernoulli shift (piecewise expanding maps);
- Ayyer-Liverani-Stenlund, 2008: same as above but for random toral automorphisms.

Related work on **sequential dynamics**: Bakhtin, Conze-Raugi, Conze-Le Borgne-Roger, Nandori-Szasz-Varju. Assume that $(\Omega, \mathcal{F}, \mathbb{P}, \sigma)$ is an ergodic m.p.s. where Ω is a Borel subset of a separable, complete metric space. Furthermore, let Bbe a Banach space and $\mathcal{L} = \mathcal{L}_{\omega}, \ \omega \in \Omega$ a family of bounded linear operators on B such that the map $\omega \mapsto \mathcal{L}_{\omega}$ is Borel-measurable. Then, for a.e. $\omega \in \Omega$, the following limits exist

$$\Lambda(\mathcal{L}) := \lim_{n \to \infty} \frac{1}{n} \log \|\mathcal{L}_{\omega}^n\| \text{ and } \kappa(\mathcal{L}) := \lim_{n \to \infty} \frac{1}{n} \log ic(\mathcal{L}_{\omega}^n),$$

where $ic(\mathcal{L}_{\omega}^{n}) = \inf\{r > 0 :$ $\mathcal{L}_{\omega}^{n}(B(0,1))$ can be covered with finitely many balls of radius $r\}$. If $\kappa(\mathcal{L}) < \Lambda(\mathcal{L})$, then there exists $1 \le l \le \infty$ and a sequence of Lyapunov exponents

$$\Lambda(\mathcal{L}) = \lambda_1 > \lambda_2 > \ldots > \lambda_l > \kappa(\mathcal{L}) \quad (\text{if } 1 \le l < \infty)$$

or

$$\Lambda(\mathcal{L}) = \lambda_1 > \lambda_2 > \dots \quad \text{and} \quad \lim_{n \to \infty} \lambda_n = \kappa(\mathcal{L}) \quad (\text{if } I = \infty);$$

and for \mathbb{P} -almost every $\omega \in \Omega$ there exists a unique splitting (called the *Oseledets splitting*) of *B* into closed subspaces

$$B = V(\omega) \oplus \bigoplus_{j=1}^{l} Y_j(\omega),$$

depending measurably on ω and such that:

• For each $1 \le j \le l$, dim $Y_j(\omega) < \infty$, Y_j is equivariant i.e. $\mathcal{L}_{\omega}Y_j(\omega) = Y_j(\sigma\omega)$ and for every $y \in Y_j(\omega) \setminus \{0\}$,

$$\lim_{n\to\infty}\frac{1}{n}\log\|\mathcal{L}_{\omega}^n y\|=\lambda_j.$$

2 V is equivariant i.e. $\mathcal{L}_{\omega}V(\omega) \subseteq V(\sigma\omega)$ and for every $v \in V(\omega)$, $\lim_{n \to \infty} \frac{1}{n} \log \|\mathcal{L}_{\omega}^{n}v\| \leq \kappa(\mathcal{L}).$ In order to be able to apply MET for our cocycle of transfer operators, we will require that: Ω is a Borel subset of a separable, complete metric space and that

the map $\omega \rightarrow T_{\omega}$ has a countable range

We have dim $Y_1(\omega) = 1$ and $Y_1(\omega) = span\{v_{\omega}^0\}$, where $d\mu_{\omega} = v_{\omega}^0 dm$. We also form a twisted cocycle. More precisely, for $\omega \in \Omega$ and

 $\theta \in \mathbb{C}$, we define

$$\mathcal{L}^{ heta}_{\omega}(h) = \mathcal{L}_{\omega}(e^{ heta \phi(\omega, \cdot)}h), \quad h \in BV.$$

Theorem

For $\theta \in \mathbb{R}$, we have

$$\lim_{n\to\infty}\frac{1}{n}\log\int_{[0,1]}e^{\theta S_n(\omega,\cdot)}\,d\mu_\omega=\Lambda(\theta),$$

for \mathbb{P} -a.e. $\omega \in \Omega$ where $\Lambda(\theta)$ is a top Lyapunov exponent of the cocycle $\mathcal{L}^{\theta}_{\omega}$, $\omega \in \Omega$.

≣ । ह

Regularity of Λ

Key points $(d\mu_{\omega} = v_{\omega}^0 dm)$:

1) we construct the top space as $v^0_{\omega} + W^{\theta}(\omega, \cdot)$ where W^{θ} is a (unique) solution of $F(\theta, W) = 0$, where

$$F(\theta, \mathcal{W}) = \frac{\mathcal{L}_{\sigma^{-1}\omega}^{\theta}(v_{\sigma^{-1}\omega}^{0} + \mathcal{W}(\sigma^{-1}\omega, \cdot))}{\int (\mathcal{L}_{\sigma^{-1}\omega}^{\theta}(v_{\sigma^{-1}\omega}^{0} + \mathcal{W}(\sigma^{-1}\omega, \cdot))) \, dm} - \mathcal{W}(\omega, \cdot) - v_{\omega}^{0},$$

where $\mathcal{W} \in \mathcal{S}$ and

$$\mathcal{S} := \{ \mathcal{W} \colon \Omega \times I \to \mathbb{C} : \mathcal{W}(\omega, \cdot) \in BV, \text{ esssup}_{\omega} \| \mathcal{W}(\omega, \cdot) \|_{BV} < \infty \}.$$

2 for θ close to 0, the top Oseledets space of the twisted cocycle $\mathcal{L}^{\theta}_{\omega}$ is one-dimensional;

$$\mathbf{S} \ \Lambda(\theta) = \int \log |\int e^{\theta \phi(\omega, \cdot)} (v_{\omega}^{0} + \mathcal{W}^{\theta}(\omega, \cdot)) \ dm | \ d\mathbb{P}(\omega).$$

Also, $\Lambda'(0) = 0$ and $\Lambda''(0) = \Sigma^2$, where Σ^2 is a variance.

Theorem (Large deviation principle)

Assume that $\Sigma^2 > 0$. Then, there exists $\varepsilon_0 > 0$ and a function $c: (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}$ which is nonnegative, continuous, strictly convex, vanishing only at 0 and such that

$$\lim_{n\to\infty}\frac{1}{n}\log\mu_{\omega}(S_n(\omega,\cdot)>n\varepsilon)=-c(\varepsilon),\quad\text{for }0<\varepsilon<\varepsilon_0\text{ and a.e. }\omega.$$

We can also obtain CLT.

Theorem (Central limit theorem)

If $\Sigma^2 > 0$, we have that

$$\lim_{n\to\infty}\int g(S_n(\omega,\cdot)/\sqrt{n})\,d\mu_\omega=\int g\,dN(0,\Sigma^2),$$

for g continuous and bounded and a.e. $\omega \in \Omega$.

We need to show that

$$\lim_{n\to\infty}\int e^{it\frac{S_n(\omega,\cdot)}{\sqrt{n}}}\,d\mu_\omega=e^{-\frac{t^2\Sigma^2}{2}},\quad\text{for a.e. }\omega\in\Omega.$$

This follows by proving that:

1

$$\lim_{n\to\infty}\int e^{it\frac{S_n(\omega,\cdot)}{\sqrt{n}}}\,d\mu_{\omega}=\lim_{n\to\infty}\prod_{j=0}^{n-1}\lambda_{\sigma^j\omega}^{\frac{it}{\sqrt{n}}},$$

where

$$\lambda^{ heta}_{\omega} = \int \mathcal{L}^{ heta}_{\sigma^{-1}\omega}(v^0_{\sigma^{-1}\omega} + \mathcal{W}^{ heta}(\sigma^{-1}\omega, \cdot)) \, dm =: H(heta, \mathcal{W}^{ heta})(\omega);$$

2 by Taylor expansion of $\theta \to H(\theta, W^{\theta})$ around 0:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\log\lambda_{\sigma^j\omega}^{\frac{it}{\sqrt{n}}}=-\frac{t^2\Sigma^2}{2}.$$

LCLT

Theorem

Assume that $\Lambda(it) < 0$ for $t \in \mathbb{R} \setminus \{0\}$. Then, for \mathbb{P} -.a.e. $\omega \in \Omega$

and every bounded interval $J \subset \mathbb{R}$, we have

$$\lim_{n\to\infty}\sup_{s\in\mathbb{R}}\left|\Sigma\sqrt{n}\mu_{\omega}(s+S_n\phi(\omega,\cdot)\in J)-\frac{1}{\sqrt{2\pi}}e^{-\frac{s^2}{2n\Sigma^2}}\right|=0.$$

Theorem

The following is equivalent:

1
$$\Lambda(it) < 0$$
 for $t \in \mathbb{R} \setminus \{0\}$;

2 the equation $e^{it\phi(\omega,\cdot)}\mathcal{L}^*_{\omega}\psi_{\sigma\omega} = \gamma^{it}_{\omega}\psi_{\omega}$, where $\gamma^{it}_{\omega} \in S^1$,

 $\psi_{\omega} \in BV^*$ has measurable solutions only for t = 0 (when $\gamma_{\omega}^0 = 1$ and $\psi_{\omega} = m$).

Our results include **piecewise expanding maps in higher dimension**:

D. Dragičević, G. Froyland, C. González-Tokman and S. Vaienti: *A* spectral approach for quenched limit theorems for random expanding dynamical systems, Communications in Mathematical Physics, in press.

Work in progress: random composition of hyperbolic diffeomorphisms.