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Piecewise expanding maps

Let I = [0, 1] denote the unit interval equipped with Borel

σ-algebra B and a Lebesgue measure m. We say that T : I → I is

a piecewise expanding map if there exists a partition

0 = x0 < x1 < . . . < xk−1 < xk = 1

and α > 1 such that:

1 restriction T |(xi−1,xi ) is a C 1 function which can be extended

to a C 1 function on [xi−1, xi ];

2 |T ′(x)| ≥ α for x ∈ (xi−1, xi );

3 g(x) = 1
|T ′(x)| is a function of bounded variation.
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Deterministic setting

Let T be a piecewise expanding map and consider the associated

transfer operator L : L1(m)→ L1(m) by

Lf (x) =
∑

y∈T−1(x)

f (y)

|T ′(y)|
.

We note that L doesn’t have good spectral properties as an

operator on L1(m). However, it has as an operator on BV (space

of functions of bounded variation). More precisely, L : BV → BV

is a quasicompact operator. This means that it can be written as

L =
k∑

i=1

λiΠi + N,

where λi are eigenvalues for L, |λi | = r(L) = 1, each Πi is a
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projections onto an one-dimensional subspace of BV ,

ΠiN = NΠi = 0 and r(N) < 1. Some important consequences:

1 there exist an absolutely continuous invariant measure for

T , i.e. 1 is an eigenvalue of L with a positive eigenvector;

2 under some additional assumptions acim is unique and

mixing; we denote it by µ (from now on we assume that this

is the case);

3 we have exponential decay of correlation and limit laws

(central limit theorem, local central limit theorem, large

deviations, almost sure invariance principle...)
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Central limit theorem

Assume that φ : I → R bounded observable in BV such that∫
[0,1] φ dµ = 0. For each n ∈ N, let

Sn =
n−1∑
k=0

φ ◦ T k .

Theorem (Rousseau–Egele, 1983)

We have that limn→∞
∫

[0,1]
S2
n
n = σ2, where

σ2 =

∫
[0,1]

φ2 dµ+ 2
∞∑
n=1

∫
[0,1]

φ(φ ◦ T n) dµ <∞.

If σ2 > 0, then Sn√
n
converges in distribution to N(0, σ2).
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Large deviation principle

Theorem

If σ2 > 0, then there exists δ > 0 and a strictly convex, continuous

and nonnegative function c : (−δ, δ)→ R which vanishes only at 0

such that

lim
n→∞

1

n
logµ(Sn > nε) = −c(ε), for ε ∈ (0, δ).
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Ideas of the proofs

We define

Lθ(g) = L(eθφg), for g ∈ BV and θ ∈ C.

Since θ 7→ Lθ is analytic, for θ sufficiently close to 0,

Lθ = ω(θ)Π(θ) + N(θ),

where Π(θ) is a projection of rank 1 and r(N(θ)) < |ω(θ)|. CLT

(dµ = f dm): for t ∈ R we have that

lim
n→∞

∫
[0,1]

e itSn/
√
n dµ = lim

n→∞

∫
[0,1]

(Lit/
√
n)n(f ) dm = lim

n→∞
ω(it/

√
n)n

= e−t
2σ2/2.
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LDP:

we first show that ω′(0) = 0 and ω′′(0) = σ2 and then that

lim
n→∞

1

n
log

∫
[0,1]

eθSn dµ = Λ(θ),

where Λ(θ) = logω(θ), for θ ∈ R sufficiently close to 0.
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Random Lasota-Yorke maps

Let (Ω,F ,P) be a probability space and assume that σ : Ω→ Ω is

invertible transformation that preserves P. Furthermore, assume

that P is ergodic. We now take the collection Tω, ω ∈ Ω of

piecewise expanding maps. By Lω we denote the transfer operator

associated to Tω. For ω ∈ Ω and n ∈ N, set

T n
ω = Tσn−1ω ◦ . . . ◦ Tσω ◦ Tω

and

Lnω = Lσn−1ω ◦ . . . ◦ Lσω ◦ Lω.

The associated skew-product transformation τ : Ω× I → Ω× I is

given by τ(ω, x) = (σω,Tωx).
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We assume that:

1 there exists K > 0 such that ‖Lω‖ ≤ K for P-a.e. ω ∈ Ω;

2 there exists N ∈ N and measurable αN , βN : Ω→ (0,∞) with∫
Ω logαN(ω) dP(ω) < 0 such that for any f ∈ BV and P-a.e.

ω ∈ Ω,

‖LNω f ‖BV ≤ αN(ω)‖f ‖BV + βN(ω)‖f ‖1;

3 there exist D, λ > 0 such that ‖Lnωf ‖BV ≤ De−λn‖f ‖BV for

f ∈ BV ,
∫
f dm = 0, n ∈ N and P-a.e. ω ∈ Ω;

4 there exists N ∈ N such that for any a > 0 and sufficiently

large n ∈ N, there is c > 0 such that essinf LnNω f ≥ c‖f ‖1, for

P-a.e. ω ∈ Ω,

f ∈ Ca := {f ∈ BV : f ≥ 0 and var(f ) ≤ a‖f ‖1}.
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Then, there exists a unique acim (w.r.t. P×m) µ for τ such that

π∗µ = P, where π : Ω× I → Ω is a projection. We can regard µ as

a collection of fiber measures µω, ω ∈ Ω on I :∫
Ω×I

φ(ω, x) dµ =

∫
Ω

∫
I
φ(ω, x) dµω(x) dP(ω).

We consider observables φ : Ω× I → R such that

esssup(ω,x)|φ(ω, x)| <∞ and esssupω var(φ(ω, ·)) <∞.

Moreover, we assume that∫
[0,1]

φ(ω, ·) dµω = 0, ω ∈ Ω.

We form Birkhoff sums

Sn(ω, x) =
n−1∑
i=0

(φ ◦ τ i )(ω, x) =
n−1∑
i=0

φ(σiω,T i
ωx).
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We are interested in the quenched type of limit theorems i.e.

those that give an information about the asymptotic behaviour of

Birkhoff sums w.r.t. to µω for ”typical” ω.

Previous work:

1 Kifer, 1998: quenched limit theorems but not with spectral

method (main example: random subshifts of finite type);

2 Aimino-Nicol-Vaienti, 2014: spectral method but the base

space is assumed to be a Bernoulli shift (piecewise expanding

maps);

3 Ayyer-Liverani-Stenlund, 2008: same as above but for random

toral automorphisms.
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Related work on sequential dynamics: Bakhtin, Conze-Raugi,

Conze-Le Borgne-Roger, Nandori-Szasz-Varju.
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MET, Froyland/Lloyd/Quas, 2013.

Assume that (Ω,F ,P, σ) is an ergodic m.p.s. where Ω is a Borel

subset of a separable, complete metric space. Furthermore, let B

be a Banach space and L = Lω, ω ∈ Ω a family of bounded linear

operators on B such that the map ω 7→ Lω is Borel-measurable.

Then, for a.e. ω ∈ Ω, the following limits exist

Λ(L) := lim
n→∞

1

n
log‖Lnω‖ and κ(L) := lim

n→∞

1

n
log ic(Lnω),

where ic(Lnω) = inf{r > 0 :

Lnω(B(0, 1)) can be covered with finitely many balls of radius r}.
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MET2

If κ(L) < Λ(L), then there exists 1 ≤ l ≤ ∞ and a sequence of

Lyapunov exponents

Λ(L) = λ1 > λ2 > . . . > λl > κ(L) (if 1 ≤ l <∞)

or

Λ(L) = λ1 > λ2 > . . . and lim
n→∞

λn = κ(L) (if l =∞);

and for P-almost every ω ∈ Ω there exists a unique splitting (called

the Oseledets splitting) of B into closed subspaces

B = V (ω)⊕
l⊕

j=1

Yj(ω),
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MET3

depending measurably on ω and such that:

1 For each 1 ≤ j ≤ l , dimYj(ω) <∞, Yj is equivariant i.e.

LωYj(ω) = Yj(σω) and for every y ∈ Yj(ω) \ {0},

lim
n→∞

1

n
log ‖Lnωy‖ = λj .

2 V is equivariant i.e. LωV (ω) ⊆ V (σω) and for every

v ∈ V (ω),

lim
n→∞

1

n
log ‖Lnωv‖ ≤ κ(L).
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In order to be able to apply MET for our cocycle of transfer

operators, we will require that: Ω is a Borel subset of a separable,

complete metric space and that

the map ω → Tω has a countable range

We have dimY1(ω) = 1 and Y1(ω) = span{v0
ω}, where

dµω = v0
ωdm.

We also form a twisted cocycle. More precisely, for ω ∈ Ω and

θ ∈ C, we define

Lθω(h) = Lω(eθφ(ω,·)h), h ∈ BV .
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Theorem

For θ ∈ R, we have

lim
n→∞

1

n
log

∫
[0,1]

eθSn(ω,·) dµω = Λ(θ),

for P-a.e. ω ∈ Ω where Λ(θ) is a top Lyapunov exponent of the

cocycle Lθω, ω ∈ Ω.
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Regularity of Λ

Key points (dµω = v0
ω dm):

1 we construct the top space as v0
ω +Wθ(ω, ·) where Wθ is a

(unique) solution of F (θ,W) = 0, where

F (θ,W) =
Lθσ−1ω(v0

σ−1ω +W(σ−1ω, ·))∫
(Lθ

σ−1ω
(v0
σ−1ω

+W(σ−1ω, ·))) dm
−W(ω, ·)−v0

ω,

where W ∈ S and

S := {W : Ω×I → C :W(ω, ·) ∈ BV , esssupω‖W (ω, ·)‖BV <∞}.

2 for θ close to 0, the top Oseledets space of the twisted cocycle

Lθω is one-dimensional;

3 Λ(θ) =
∫

log|
∫
eθφ(ω,·)(v0

ω +Wθ(ω, ·)) dm| dP(ω).
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Also, Λ′(0) = 0 and Λ′′(0) = Σ2, where Σ2 is a variance.

Theorem (Large deviation principle)

Assume that Σ2 > 0. Then, there exists ε0 > 0 and a function

c : (−ε0, ε0)→ R which is nonnegative, continuous, strictly

convex, vanishing only at 0 and such that

lim
n→∞

1

n
logµω(Sn(ω, ·) > nε) = −c(ε), for 0 < ε < ε0 and a.e. ω.

We can also obtain CLT.

Theorem (Central limit theorem)

If Σ2 > 0, we have that

lim
n→∞

∫
g(Sn(ω, ·)/

√
n) dµω =

∫
g dN(0,Σ2),

for g continuous and bounded and a.e. ω ∈ Ω.
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Idea of the proof

We need to show that

lim
n→∞

∫
e
it Sn(ω,·)√

n dµω = e−
t2Σ2

2 , for a.e. ω ∈ Ω.

This follows by proving that:

1

lim
n→∞

∫
e
it Sn(ω,·)√

n dµω = lim
n→∞

n−1∏
j=0

λ
it√
n

σjω
,

where

λθω =
∫
Lθσ−1ω(v0

σ−1ω +Wθ(σ−1ω, ·)) dm =: H(θ,Wθ)(ω);

2 by Taylor expansion of θ → H(θ,Wθ) around 0:

lim
n→∞

1

n

n−1∑
j=0

log λ
it√
n

σjω
= − t2Σ2

2
.
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LCLT

Theorem

Assume that Λ(it) < 0 for t ∈ R \ {0}. Then, for P-.a.e. ω ∈ Ω

and every bounded interval J ⊂ R, we have

lim
n→∞

sup
s∈R

∣∣∣∣Σ√nµω(s + Snφ(ω, ·) ∈ J)− 1√
2π

e−
s2

2nΣ2

∣∣∣∣ = 0.

Theorem

The following is equivalent:

1 Λ(it) < 0 for t ∈ R \ {0};

2 the equation e itφ(ω,·)L∗ωψσω = γ itωψω, where γ
it
ω ∈ S1,

ψω ∈ BV ∗ has measurable solutions only for t = 0 (when

γ0
ω = 1 and ψω = m).
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Further developments

Our results include piecewise expanding maps in higher

dimension:

D. Dragičević, G. Froyland, C. González-Tokman and S. Vaienti: A

spectral approach for quenched limit theorems for random

expanding dynamical systems, Communications in Mathematical

Physics, in press.

Work in progress: random composition of hyperbolic

diffeomorphisms.
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