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Human- and mouse-derived neurons can be simultaneously 
obtained by co-cultures of human oral mucosal stem cells and 
mouse neural stem cells
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Objective: To observe simultaneous differentiation and analyse possible interactions 
between co-cultured human oral mucosal stem cells (hOMSC) and mouse neural stem 
cells (mNSC).
Materials and Methods: hOMSC and mNSC were co-cultured in mouse and in human 
medium, and their immunocytochemical characterization to detect survival rate and 
differentiation pattern was performed. Co-cultures in different media were compared 
to hOMSC in human medium and mNSC in mouse medium as controls.
Results: Co-culture of hOMSC and mNSC in medium for human cells led to normal 
differentiation pattern of human cells, while mNSC were directed towards astrocytes. 
When the same cells were cultivated in the mouse medium, both cell types succeeded 
to form neurons, although mNSC showed a tendency to overgrow hOMSC. hOMSC 
alone in the human-specific medium differentiated towards ectodermal (Oct4, Map2) 
and mesodermal (Osterix) cell populations. mNSC in the mouse-specific medium  
differentiated towards Map2-, β3-tubulin- and NeuN-positive neurons.
Conclusions: hOMSC and mNSC can form co-cultures. Different media considerably 
affected the differentiation pattern of co-cultures, whereas one cell population itself 
modestly influenced differentiation of the other cell type. The in vitro differentiation 
pattern of hOMSC in the mouse neural tissue environment suggested that hOMSC 
could be beneficial in the brain tissue affected by ischaemia.
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1  | INTRODUCTION

Neurological diseases bring a huge burden for humankind. Due to 
the lack of easy access to the central nervous system and its inher-
ent scarce capacity for regeneration, options for treatment of neuro-
logical diseases are limited. Therapeutic approaches based on stem 

cells (SC) bring promise that preclinical achievements observed in 
the last decades could evolve into the new treatment modalities for 
neurological diseases (Bohl et al., 2016; Mitrecić, Nicaise, Gajović, & 
Pochet, 2010; Mitrecic et al., 2012). Mouse neural stem cells (mNSC) 
are multipotent cell population, which can differentiate in neurons and 
astrocytes. Intravenously administered rodent NSC successfully mi-
grated and differentiated in the rat model of amyotrophic lateral scle-
rosis (Mitrecić, Gajović, & Pochet, 2009), and also, when transplanted 
in the brain of a murine ischaemic stroke model, mNSC successfully 
differentiated into mature neurons (Alić et al., 2016; Mitrečić, Alić, & 
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Gorup, 2017; Nicaise, Mitrecic, Falnikar, & Lepore, 2015). Although 
stem cells have been proven as very useful in preclinical trials, appli-
cations in human patients require obtaining cells from easy accessible 
sources within patients. Obtaining of human oral mucosa stem cells 
(hOMSC) does not result in irreparable tissue damage, which makes 
oral mucosa an excellent source of any cells (Mitrečić, 2011; Mitrečić, 
Mavrić, & Gajović, 2008), including SC, compared to any other oral tis-
sues (Arthur et al., 2008; Young, Sloan, & Song, 2013). Moreover, the 
excellent potential of hOMSC has been shown by the fact that they 
can differentiate towards ectodermal, mesodermal and endodermal 
cell lineages (Marynka-Kalmani et al., 2010). hOMSC transplanted into 
various neural damage mouse models resulted in clinical improvement 
and possible regeneration of the neural tissue (Cho et al., 2014; Ganz, 
Arie, Buch, et al.s, 2014). As hOMSC are very promising candidates 
for transplantation in the mouse model of brain ischaemia, in which 
regenerative process includes reactivation of neurogenesis, the main 
aim of this study was to perform the analyses by observing interac-
tions between hOMSC and mNSC cell populations in vitro. For this 
purpose, we performed their co-cultivation in various combinations 
of media and here we describe the success rate of their survival and 
differentiation.

2  | MATERIALS AND METHODS

2.1 | Donors

hOMSC were isolated from buccal punch biopsies of six healthy 20- to 
44-year-old volunteers who signed informed consent. The study and 
hOMSC sampling were in accordance with Declaration of Helsinki and 
approved by the Independent Ethical Committee of the University of 
Zagreb School of Dental Medicine.

2.2 | Animal cells

In this study, a GFP mouse strain, kept on an albino C57Bl6 back-
ground, has been used. The animals were kept in the animal facility of 
the Croatian Institute for Brain Research. All experiments on animals 
were approved by the Internal Review Board of the Ethical Committee 
of the School of Medicine University of Zagreb (04-77/2010-238) and 
Faculty of Veterinary Medicine (251/61-01/139-13-4), and they were 
carried out in accordance with the EU Directive 2010/63/EU on the 
protection of animals used for scientific purposes.

2.3 | Cell culture

Buccal hOMSC were isolated as described previously (Liu et al., 1997; 
Marynka-Kalmani et al., 2010) and expanded in low-glucose DMEM 
medium (Gibco) with 10% foetal calf serum (FCS). After prolifera-
tion (2–3 passages), cells were plated on fibronectin (Gibco)-coated 
coverslips and differentiated towards ectodermal and mesodermal 
cell population. For ectodermal differentiation, cells were cultured 
in DMEM medium supplemented with 10 ng/ml β-NGF, 50 ng/ml 
BDNF, N2-supplement and antibiotics, all provided by Gibco, while, 

for the mesodermal differentiation, cells were cultured in αMEM 
medium (Gibco) supplemented with 12% FCS, 50 μg/ml vitamin C 
(Sigma), 10−7 M dexamethasone and 10 mM glycerol-2-phosphate. 
Cells were fixed on days 1, 3, 5, 7 and 14 of differentiation, and  
immunocytochemistry was performed.

2.4 | Co-culture of hOMSC and mouse NSC

Mouse neural stem cells were isolated and proliferated as described 
previously (Alić et al., 2016; Kapuralin et al., 2015). For this purpose, 
we cultured cells in four different condition: (i) hOMSC in human-
specific DMEM medium supplemented with ectodermal factors,  
(ii) hOMSC + mNSC in the same medium, (iii) hOMSC + mNSC in 
mouse-specific DMEM/F12 medium supplemented with ectodermal 
factors and (iv) mNSC in mouse DMEM/F12 medium.

2.5 | Live/dead assay

A live/dead cell viability assay (Thermo Fisher Scientific) was per-
formed as a single experiment (thus limiting significance of this result) 
to show percentage of live and dead cells in the cell cultures.

2.6 | Immunocytochemistry

Immunocytochemistry was performed as described previously 
(Kapuralin et al., 2015; Kosi et al., 2015). Primary and secondary anti-
bodies used in this study are shown in Table S1. Fluorescence analysis 
was made with a Zeiss LSM510 Meta confocal microscope.

3  | RESULTS AND DISCUSSION

3.1 | Differentiation of hOMSC

After isolation of cells according to the original protocol (Marynka-
Kalmani et al., 2010), we analysed cellular fate by markers of dif-
ferentiation (multipotency—Sox2, Mash1, Oct4, Nestin; ectodermal 
fate—Map2, β3-tubulin, NeuN; and mesodermal—Osterix, Collagen 
1 and CD 44) (see, e.g. Figure 1). In addition, cell viability was meas-
ured using live/dead assay (Thermo Fisher Scientific). On the first day 
of differentiation, we detected 90% live and 10% dead cells. On the 
seventh day of differentiation, the total number of dead cells reached 
27% (Figure 2d). This is consistent with data published in our previous 
publications (Nicaise, Mitrecic, & Pochet, 2011).

When differentiated in the medium that promotes ectodermal 
derivatives, hOMSC expressed Nestin, Oct4 and Sox2. Interestingly, 
Nestin and Sox2 were positive during the whole studied period 
(14 days). Cells expressed Nestin in the cytoplasm, especially in the 
perinuclear part of cells (Figure 1a). As we observed in our previous 
studies using mouse cells, Sox2 was well expressed in cytoplasm of 
hOMSC (Figure 1a and c). Mash1 and Oct4 were also present in cy-
toplasm, and they co-localized during the first week of differentiation. 
This might suggest that hOMSC retain their multipotent potential 
much longer than mNSC, which lose the presence of these markers 
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already after a few days. Another possible explanation could be that 
mouse cells, which originated from embryonic tissue, are highly pre-
destined for complete differentiation. The human cell population used 
in this study is a specific one, and it represents a small isolated popu-
lation that keeps its multipotent niche throughout the life of an adult 
person. With maturation, these cells express Map2 and β3-tubulin 
markers. After the 7th day of differentiation, around 90% of these cells 
express Map2 (Figure 1c).

When we cultivated cells in the medium that supports a meso-
dermal direction of differentiation, more than 90% of cells highly 
expressed Osterix after the 7th day of differentiation (Figure 1d). 
Osterix is one of the crucial transcription factors needed for the 
development and differentiation of osteoblasts, one of the major 
cellular derivatives of mesoderm. The same cells were collagen 1 
and CD 44 negative (not shown). This might be linked to the time of 
cultivation being limited to 2 weeks in this experiment. Some publi-
cations suggest that onset of collagen 1 production requires longer  
incubation times.

3.2 | Co-culture of hOMSC and mNSC

To analyse survival and differentiation of hOMSC in different con-
ditions, we have grown hOMSC in co-culture with mNSC in the 
media primarily designed for either human or mouse stem cells. 
The ratio of live and dead cells in co-culture in both tested media 

(human and mouse) was 70%–85% live cells and 15%–30% dead 
cells during the seventh day of differentiation. While the mNSC 
in the mouse-specific medium survived similarly to hOMSC in 
human medium (Figure 2d), hOMSC appeared as small round cells 
(Figure 2a) and they changed morphology soon after plating on cov-
erslips in differentiation medium (Figure 2b). In the co-culture, we 
easily distinguished hOMSC and mNSC (Figure 2c). After observing 
their separate behaviour, we co-cultured and differentiated them 
towards ectodermal cell populations. To distinguish mouse and 
human cells, we used a mouse strain, which expresses GFP (green 
fluorescent protein) in all cells. When we co-cultured hOMSC and 
mNSC in the medium suitable for human cells, more than 70% of 
both cell types survived and differentiated. hOMSC showed the 
same differentiation pattern as we described above (Figure 2e). 
Interestingly, in human-specific medium, more than 90% of mNSC 
expressed GFAP (glial fibrillary acid protein), while the only few 
cells were Map2, β3-tubulin and NeuN positive. This massive in-
duction of GFAP-positive astrocytes was probably caused by FCS 
present in human medium. Moreover, those GFAP-positive cells 
were Nestin positive during all studied periods, which suggests that 
human-specific medium caused a delay in differentiation of mNSC. 
On the other hand, survival of co-cultured hOMSC and mNSC in 
the mouse-specific medium was the same, but we noted that in 
the mouse-specific medium, more hOMSC died while the mNSC 
survived better (Figure 2f). In the mouse-specific medium, as we 

F IGURE  1  In vitro differentiation of 
hOMSC towards ectodermal (a, b and c) 
and mesodermal lineage (d). On the 7th day 
(a, b) of differentiation, hOMSC express 
cytoplasmic embryonic stem cells markers 
(Nestin, Oct4 and Mash1) and nuclear 
marker (Sox2). On the 14th day, most of 
ectodermal cells express Map2 and retain 
Sox2 expression (c). Mesodermal cells 
highly express Osterix on the 14th day of 
differentiation (d). Scale bar 50 μm

(a) (b)

(c) (d)
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F IGURE  2 hOMSC on the day 0 in proliferation medium (a), hOMSC on the day 2 of differentiation in human-specific medium (b) and 
co-culture hOMSC and NSC on day 1 of differentiation in mouse-specific medium (c). Analysis of survival during differentiation period (d). 
Fluorescence analysis of hOMSC and mNSC in different conditions: co-culture in human-specific medium on 7th day of differentiation shows 
Sox2 expression, intranuclear and cytoplasmic in both hOMSC and mNSC, while the Oct 4 expression is very weak at this time point; GFP was 
expressed only in mouse cells (e). Co-culture in mouse-specific medium shows neuronal differentiation of mNSC stained with β3-tubulin, while 
the hOMSC were small and round on the 3rd day of differentiation (f). Differentiation of mNSC in mouse-specific medium on the 3rd day in 
culture (g). Scale bar 200 μm (a, b and c) and 100 μm (e, f, and g). Arrows show hOMSC in co-culture

(a) (d)

(e)

(f)

(g)

(b)

(c)
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usually differentiate mNSC (Figure 2g), most of cells were neurons 
and they overgrew hOMSC, making them sometimes very hard to 
find between mature and branched neurons. In the mouse-specific 
medium, only 3% of cells expressed GFAP, which has been already 
reported in our own publications (Alić et al., 2016).

There is an increasing interest in utilizing SC derived from the 
oral region tissues in various models of neurological diseases. Most 
of published work relates to dental pulp stem cells (DPSC) (Arthur 
et al., 2008; Young et al., 2013). However, mature functional neu-
rons could not be differentiated from DPSC (Aanismaa et al., 2012). 
Dental pulp was considered as a convenient source of SC, yet in 
order to harvest SC from the pulp, tooth vitality is irreparably dam-
aged or the tooth needs to be extracted. The regenerative ability 
of nasal mucosa stem cells has been recently well proven: in a par-
kinsonian rat model (Müller et al., 2015), in an hemi-parkinsonian 
rat model (Ganz, Arie, Buch, et al.s, 2014) and in a spinal cord in-
jury model (Cho et al., 2014). Moreover, hOMSC in an experimental 
rat model of sciatic nerve injury revealed a neuroprotective effect, 
improving the motor function following transplantation (Ganz, Arie, 
Ben-Zur, et al., 2014). The major idea of the current work was to test 
co-cultivation of hOMSC and mNSC. As we plan to use hOMSC in 
experiments in which those cells will be transplanted into the mouse 
model of brain ischaemia (MCAO), here we analysed processes 
occurring during in vitro cultivation of hOMSC and mNSC. In our 
hands, this was proven as a useful in vitro model of neurogenesis 
following ischaemic brain stroke. Here, we showed that co-culturing 
of hOMSC and mNSC yielded better results in the mouse medium. In 
this condition, mNSC grow and differentiate normally, while hOMSC 
exhibit similar parameters as when grown alone in their own me-
dium. The most obvious difference was in the rate of expansion of 
hOMSC, which was slower in the mouse-specific medium.

The results of this study suggest that hOMSC exhibit a rather high 
level of robustness and that their transplantation into the mouse brain 
affected by ischaemia could be a feasible step forward towards testing 
the potential of this population for future clinical trials and application 
in treatment of human stroke.
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