
WEATHER CONDITIONS IN THE 2013 -2015 GROWING SEASONS FOR MAIZE IN CROATIA AND BOSNIA AND HERZEGOVINA

Vlado KOVACEVIC¹, Vojo RADIC², Dario ILJKIC¹, Jurica JOVIC¹, Meho MAJDANCIC³

¹Faculty of Agriculture of University J. J. Strossmayer in Osijek, Kralja P. Svacica street 1d, 31000 Osijek, Croatia; e-mail: vlado.kovacevic@pfos.hr

² Faculty of Agriculture, University of Banja Luka, Sq. Vojvoda Bojovic bb, 78000 Banja Luka, Bosnia and Herzegovina; e-mail: vojo.radic@yahoo.com

³University of Tuzla, Faculty of Technology Tuzla, University Street 8, 75107 Tuzla, Bosnia and Herzegovina; e-mail: meho.majdancic@bih.net.ba

Abstract

Maize is main field crop on the arable lands in Croatia and Bosnia and Herzegovina (B&H). In the 2001-2010 period, maize was grown on 333736 ha (average yield 6.50 t ha⁻¹) in Croatia and 195800 ha (4.42 t ha⁻¹) in B&H. Yield variations among years were from 3.86 to 7.98 t ha⁻¹ and from 2.74 to 5.13 t ha⁻¹, respectively. Aim of this study was survey of maize yield and weather data (precipitation and mean air-temperature) in Croatia and B&H in the 2013, 2014 and 2015 growing seasons.

Average yields of maize were 6.5, 8.1 and 6.5 t ha⁻¹ (Croatia), 4.0, 5.0 and 4.1 t ha⁻¹ (B&H) in 2013, 2014 and 2015, respectively.

The 2014 growing season was very favorable for maize growth. Precipitation and temperature in April-September period were as follows: 520 mm and 18.2°C (Osijek), 910 mm and 17.2°C (Varazdin), 731 mm and 18.5°C (Bijeljina), 1228 mm and 18.0°C (Banja Luka). These precipitation values are higher for 41% (Osijek), 75% (Varazdin and Bijeljina), and 116% (Banja Luka) compared to averages 1961-1990. In extremely unfavorable 2012 (yield 4.34 and 2.74 t ha⁻¹, in Croatia and B&H, respectively), precipitation and temperature at the same period were 293 mm and 20.0°C (Osijek), 461 mm and 18.8°C (Varazdin), 288 mm and 21.0°C (Bijeljina), 488 mm and 20.1°C (Banja Luka). However, in 2013 and 2015, yields, precipitation and temperature regimes in both countries were more close to average values. Considerable variation of precipitation in the short 2012 -2014 period and higher temperatures are in accordance with climate change.

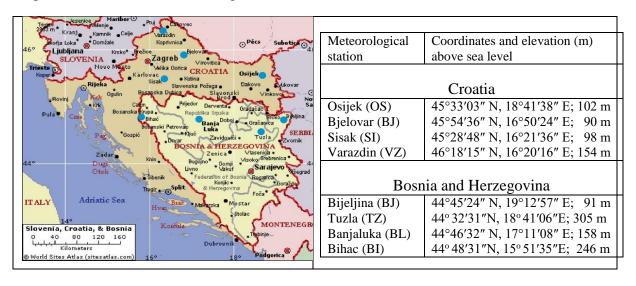
Key words: maize, yield, Croatia, Bosnia and Herzegovina, precipitation, temperature, climatic change

Introduction

Maize is main field crop on the arable lands in Croatia and Bosnia and Herzegovina (B&H). In the 2001-2010 period, maize was grown on 333736 ha (average yield 6.50 t ha⁻¹) in Croatia and 195 800 ha (4.42 t ha⁻¹) in B&H. In general, the harvested areas of maize among years in both countries are mainly stabile, while annual yield variations in mentioned period were

considerable and in ranges from 3.86 to 7.98 t ha⁻¹ and from 2.74 to 5.13 t ha⁻¹, respectively (SY 2005, 2010; FAO, 2016). Weather conditions, particularly precipitation quantity and temperature regimes, are responsible for considerable variation maize yields in the mentioned period. With that regard, low yields of maize are in close connection with the lower precipitation and the higher air-temperature in summer months (Shaw 1988; Kovacevic et al., 2013). Impacts of weather conditions on maize yield in Croatia in 2001-2010 period were elaborated in previous study (Kovacevic et al., 2012). Majdancic et al., (2016) reported survey of maize growing in Federation of B&H with emphasis on Tuzla Canton in 15-year period 2000-2014, while Iljkic et al. (2014) collected data of maize growing in Croatia and B&H in 2008-2012 period.

Phenomenon considerable variation of maize yield among years is also associated with recently climatic change which has often adverse influences on field crop yields. Annual global temperatures have increased by about 0.4 °C since 1980 (IPCC, 2001). Lobell and Field (2007) estimated that about 30% variations of global average yields for the world's six most widely grown crops (wheat, rice, maize, soybeans, barley and sorghum) are result of growing season precipitation and temperature variations.


Aim of this study was survey of maize yield and weather data (precipitation and mean air-temperature) in Croatia and B&H in the 2013, 2014 and 2015 growing seasons.

Material and methods

FAO database and publications of Croatian Bureau of Statistics were used as sources of arable land, maize harvested areas and yields for tested period.

Eight meteorological stations (Osijek, Bjelovar, Sisak and Varazdin in Croatia; Bijeljina, Tuzla, Banjaluka and Bihac in B&H: Map 1) were selected for elaboration of weather conditions during maize growing seasons because by these localities are covered majority growing area of maize in both countries. These towns are situated in northern part of Croatia (Panonian region) and northern Bosnia. Meteorological data were collected by courtesy of State Hydrometerological Service in Zagreb, Federal Hydrometeorological Institute in Sarajevo and Hydrometerological Institute of Republic of Srpska in Banjaluka (permited access in climatologically lists).

Map 1. Situation of the meteorological stations

Results and discussion

Average maize harvested area in Croatia in decade 2001-2010 period were 333 736 ha, while in the last three year period 2013-2015 it was 268 300 ha or for 20% lower. Decreasing trend of maize growing area were found also in B&H (195 800 ha and 178 590 ha, respectively) but less strong than in Croatia. Average yields of maize in decade period were 6.24 t ha⁻¹ (Croatia) and 4.42 t ha⁻¹ (B&H).

Maize yield in the 2014 growing season in Croatia was for 30% higher and in B&H for 11% higher compared to the 2001-2010 decade average yields. In the remaining two growing seasons maize yields in Croatia were close to decade average, while in B&H yields were about 10% lower. Degree of arable land utilization is serious problem of agriculture in both countries because about 40% of arable land is unfarmed (Table 1).

Average air-temperatures for April-September period in eight selected meteorological stations were 18.2 °C (2013), 17.7 °C (2014) and 18.8 °C (2015) and they are higher in comparison with 1961-1990 average (16-9 °C). These data are in accordance with climate change toward global warming (Allen et al., 2003; Chi-Chung et al, 2004; FAO, 2007). Also, considerable higher amplitude of precipitation is in accordance with change of climate (Jolankai and Birkas, 2013). For example, precipitation in April-September period of 2013 and 2014 (Table 2) in Bijeljina (373 mm and 731 mm), Tuzla (443 mm and 1021 mm), Banja Luka (370 mm and 1228 mm) and Bihac (479 mm and 1135 mm) are in agreement with this opinion. At the same period, average air-temperatures were as follows (°C): 19.1 and 18.5 (Bijeljina), 17.4 and 16.6 (Tuzla), 18.9 and 18.0 (Banja Luka), 17.8 and 17.1 (Bihac), respectively.

The higher yields of maize in Croatia and B&H in 2014 and considerable lower yields in 2013 and 2015 (Table 1) could be explained by general opinions regarding impact of weather conditions on maize growth and productivity in Corn Belt of USA (Shaw 1988) and experiences from Croatia and neighboring countries (Kovacevic et al., 2012, 2013; Iljkic et al., 2014; Majdancic et al., 2016).

Table 1. The harvested area and yields of maize in Croatia and B&H (FAO, 2016; SY, 2005, 2010, 2013, CBS 2016)

Harvested area and yields of maize (maize for grain) in Croatia and B&H										
Croatia				Bosnia and Herzegovina						
2001-2010	2013	2014	2015	2001-2010	2013	2014	2015			
Harves	sted area o	of maize (h	a)	Harvested area of maize (ha)						
333 736	288 365	252 567	263 970	195 800	190 000	170 000	175 770			
Yie	eld of maiz	e (t ha ⁻¹)		Yield of maize (t ha ⁻¹)						
6.24	6.5	8.1	6.5	4.42	4,0	5.0	4.1			
Annual yield	variation ir	n 2001-201	0 period:	Annual yield variation in 2001-2010 period:						
fro	om 3.86 to 7	7.98 t ha ⁻¹		from 2.79 to 5.13 t ha ⁻¹						
Index of yield	(mean 200)1-2010 =	100)	Index of yield (mean 2001-2010 = 100)						
100	104	130	104	100	89	111	91			
Util	ized arable	land (ha)		Utilized arable land (ha)						
859 839	874 863	811 067	841 939	1 013 500	1 010 000	1 011 000	1 029 000			
То	tal arable l	and (ha)		Total arable land (ha)						
1	460 000 (SI	J, 2005)		1 589 000 (FAO, 2009)						
Te	rritory: 56	542 km^2		Territory: 51 197 km ²						

Drought and the higher temperatures are responsible for lower yields of maize in 2013 and 2014 With that regard, the eastern parts of both countries were more affected by weather stress

conditions (Tables 2 and 3). For example, precipitation in April-September period of 2015 in Bijeljina was only 302 mm (Bijeljina) and 316 mm (Osijek), while in west situated Varazdin and Bihac precipitation was 555 mm and 634 mm, respectively. At the same period, temperatures were 20.2 0 C (Bijeljina), 19.5 0 C (Osijek), 18.2 0 C (Varazdin) and 18.6 0 C (Bihac). Maize crops were affected by drought and high temperature mainly in August.

Table 2. Monthly values of precipitation and mean air-temperatures

	Precipitation and mean air-temperatures in 2013-2015 and average 1961-1990 (61-90)													
Year	Monthly precipitation (mm)							Monthly mean air-temperatures (°C)						
1001	Apr.	May	June	July	Aug	Sept	Σ	Apr.	May	June	July	Aug	Sept	X
	Bijeljina													
2013	28	182	57	37	18	51	373	13.2	17.1	20.7	23.4	24.0	16.4	19.1
2014	83	252	67	73	147	109	731	13.1	16.1	20.8	22.6	21.4	17.0	18.5
2015	57	100	22	11	39	73	302	12.5	18.5	21.2	25.7	24.5	18.7	20.2
61-90	68	81	86	68	61	53	417	11.0	16.3	19.8	21.7	21.1	16.8	17.8
	Osijek													
2013	45	119	63	37	33	129	426	13.1	16.7	20.2	22.9	22.9	15.9	18.6
2014	81	159	91	66	54	69	520	13.2	16.1	20.4	21.8	20.8	17.0	18.2
2015	13	113	17	26	106	41	316	12.1	17.8	20.8	24.6	23.7	17.9	19.5
61-90	54	59	88	65	58	45	368	11.3	16.5	19.5	21.1	20.3	16.6	17.6
	Tuzla											,		
2013	31	168	74	55	36	79	443	12.8	15.7	18.6	20.9	21.6	15.0	17.4
2014	187	339	64	112	184	135	1021	11.5	14.5	18.5	20.3	19.6	15.6	16.7
2015	58	122	93	11	55	81	420	10.7	16.6	19.0	23.3	22.9	17.3	18.3
61-90	76	92	111	94	84	64	521	10.4	14.8	17.7	19.3	18.9	15.5	16.1
							Banj	aluka						
2013	63	120	54	27	36	70	370	13.4	16.6	20.4	23.0	23.5	16.7	18.9
2014	214	218	97	139	276	284	1228	13.1	15.8	20.3	21.7	20.6	16.4	18.0
2015	54	118	61	21	23	75	352	11.8	17.4	20.9	25.2	24.0	18.3	19.6
61-90	87	98	111	95	93	82	566	10.9	15.6	18.9	20.6	19.7	15.9	16.9
							Bjel	ovar						
2013	56	94	53	49	71	103	426	13.1	16.5	20.0	23.2	22.4	15.4	18.4
2014	106	168	80	144	126	204	828	13.0	15.4	20.1	21.6	20.2	16.0	17.7
2015	21	145	39	40	51	99	395	12.1	17.2	20.8	24.2	23.4	17.3	19.2
61-90	63	79	96	78	82	65	461	10.8	15.6	18.7	20.4	19.5	15.8	16.8
			1	1	1	1		sak		1			1	1
2013	76	58	35	97	49	149	464	13.4	16.5	20.2	23.0	22.3	15.7	18.5
2014	124	193	74	153	169	214	927	13.1	15.8	20.3	21.7	20.2	16.2	17.9
2015	50	171	62	26	117	112	538	12.2	17.4	20.8	24.4	23.0	17.0	19.1
61-90	73	82	91	77	85	76	484	11.1	15.8	19.1	20.8	19.8	16.0	17.1
			T			1 4 5 -		zdin	I					
2013	62	96	60	34	103	139	494	12.2	15.7	19.4	22.4	21.1	15.1	17.7
2014	105	109	118	134	153	291	910	12.7	15.0	19.3	21.1	19.2	15.8	17.2
2015	21	165	79	98	90	102		11.4		19.8	23.0	21.9	16.4	18.2
61-90	70	84	98	92	98	81	524	10.3	15.1	18.3	19.8	18.9	15.4	16.3
2012	Bihac													
2013	88	98	73	36	85	99	479	12.5	15.4	19.3	22.0	21.7	15.7	17.8
2014	187	199	87	228	105	329	1135	12.3	14.9	19.5	20.5	19.8	15.5	17.1
2015	91	172	80	44	97	150	634	11.6	17.3	20.0	23.8	22.1	17.0	18.6
61-90	115	116	109	107	109	108	664	10.7	15.1	18.9	20.0	19.2	15.9	16.6

Absolute maximal temperatures were recorded at end of July / beginning of August 2013 (Bihac 42.0 $^{\rm o}$ C, Varazdin 39.4 $^{\rm o}$ C, Bijeljina 39.2 $^{\rm o}$ C and Osijek 38.4 $^{\rm o}$ C) and in July / August 2015 (Bihac 37.9 $^{\rm o}$ C, Bijeljina 37.8 $^{\rm o}$ C, Osijek 37.2 $^{\rm o}$ C and Varazdin 35.6 $^{\rm o}$ C). However, in favorable

2014 growing season for maize, absolute maximal temperatures were in range from 31.6 °C in Varazdin to 34.4 °C in Osijek and Bijeljina (Table 3).

Iljkic et al. (2014) reported 5-year data (2008-2012) regarding impact of weather conditions on maize yield in Croatia and B&H. In both countries the lowest maize yields were realized in 2012 (4.30 and 2.90 t/ha in Croatia and B&H, respectively) and they were lower for 48% (Croatia) and 40% (B&H) than in 2008. Precipitation and mean air temperature in July + August 2012 were as follows: 52 mm and 24.5 °C (Osijek), 8 mm and 23.5 °C (Tuzla).

Table 3. Mean maximal and absolute maximal air-temperatures

	Average maximal (AverageM) and absolute maximal (AbsoluteM) air-temperature in the 10-days													
Month	intervals in July and August 2010 and 2012 (a = 1-10; b = $11 - 20$; c = $21 - 30/31$)													
		East	ern part	of the re	gion	Western part of the region								
	Ave	erageM	(°C)	AbsoluteM (°C)			AverageM (°C)			AbsoluteM (°C)				
	a	b	С	a	b	c	a	b	c	a	b	c		
	The 2013 growing season													
	Osijek							Varazdin						
July	28.9	28.2	32.2	30.5	30.9	38.4	27.9	27.2	32.0	29.4	30.3	37.6		
August	34.5	30.2	25.4	38.2	34.3	28.5	33.8	28.0	23.3	39.4	32.6	26.6		
	Bijeljina							Bihac						
July	28.9	28.5	32.4	30.2	32.0	39.2	27.4	27.6	33.0	30.6	31.0	39.3		
August	35.4	31.0	26.9	39.1	35.8	31.2	35.9	29.3	24.9	42.0	34.2	28.4		
	The 2014 growing season													
	Osijek							Varazdin						
July	27.9	28.0	28.0	32.1	31.5	31.7	25.7	28.0	26.2	31.6	31.1	28.9		
August	28.0	27.7	24.7	30.2	34.4	28.0	27.6	25.0	23.0	31.1	29.9	25.5		
	Bijeljina						Bihac							
July	29.4	28.3	28.8	33.4	32.7	33.0	27.1	26.9	25.4	32.8	33.1	28.6		
August	28.3	28.9	26.1	31.4	34.4	29.6	27.4	27.3	24.0	32.5	33.2	27.1		
					The	2015 gro	owing se	ason						
	Osijek							Varazdin						
July	31.4	32.2	30.0	37.2	36.4	36.5	29.9	31.0	27.0	34.6	35.6	35.1		
August	32.4	31.0	28.7	34.9	36.8	35.2	30.9	28.7	27.2	33.3	35.5	32.5		
	Bijeljina							Bihac						
July	32.1	33.5	32.2	37.8	37.6	37.6	31.9	34.3	29.5	37.3	37.9	37.2		
August	33.9	32.9	29.1	36.7	37.8	36.3	31.8	28.5	27.7	35.0	35.6	35.0		

Majdancic et al. (2016) performed 15-year data of maize harvested area and yield in Federation B&H (FB&H) with emphasis on Tuzla Canton. In the 15-year period 2000-2014 maize for grain was grown in FB&H on the area of average 48 208 ha and average grain yield was 3.99 t/ha with considerable variation among years from 2.18 to 4.92 t ha⁻¹. In three "the poor" years (2000, 2003 and 2012) yield was less than 3.0 t/ha (average 2.66 t ha⁻¹), while in three "the good" years (2006, 2008 and 2009) it was above 4.5 t ha⁻¹ (average 4.74 t ha⁻¹). Precipitation quantity in the April -September period of "the poor" years in Tuzla was 320 mm (3-year average) or 39% of the long-term mean (LTM) 1961-1990, while in "the good" years it was 492 mm. Mean air-temperature at the same period of the favorable years was 17.5 °C or for 1.0 °C lower than in the unfavorable years.

Alleviation of unfavorable effects of "poor" years for maize yields is possible by irrigation and by adequate soil management practice, as ploughing and addition of majority NPK fertilizers in autumn instead in spring, weed control, growing more drought tolerant hybrids etc. (Kovacevic and Rastija, 2014).

Bancy (2000) reported that in order to counter the adverse effects of climate change in maize production, it might be necessary to use early maturing cultivars and practice early planting. However, under eastern and middle European conditions, appearance of late frost could be limiting factor for wide application of this practice. By late spring frost in night 26th April

2016 (minimal air-temperatures from -2 0 C to -6.0 0 C in northern Croatia) considerably damaged vineyard and orchards and too early sowing of spring crops (CAAS, 2016). For this reason, our recommendation is that majority sowing area of maize could be practiced in the second half of April because early sowing, for example two or three weeks earlier, is accompanied with potential damage caused by late frost. However, combination absence of frost and the earlier sowing is mainly very favorable for maize growth.

Conclusion

Weather conditions are considerable factor of maize yield in Croatia and B&H. Lower precipitation and higher temperatures are mainly in connection with lower yields. Alleviation of unfavorable effect of drought for maize yields is possible by irrigation and by correspondingly soil management, for example fertilization, weed control, earlier sowing etc.

References

- Allen, L.H., Pan D. Jr., Boote K.J., Pickering N.B., Jones J.W. (2003): Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean. Agron. J., 95: 1071-1081.
- Bancy, M.M., 2000. The influence of climate change on maize production in semi-humid and semi-arid areas of Kenya. J. Arid. Environ., 46: 333-334.
- CAAS (2016): (http://www.savjetodavna.hr/vijesti/53/4717) Croatian Agricultural Adviser Service Zagreb.
- CBS (2016): Crop production, 2015, Croatian Bureau of Statistics Zagreb, First release No 1.1.14.; 12 May 2016.
- Chi-Chung, C., Mc Carl B. A., Schimmelpfennig D. (2004): Yield variability as influenced by climate: A statistical investigation. Climatic Change, 66: 239-261.
- FAO (2007): Climate Change: Climate Change Impacts, Adaptation and Vulnerability. IPCC WG II fourth Assessment Report. (http://www.ipcc.ch/SPM6avr07.pdf).
- FAO (2016): http://faostat.fao.org
- Iljkic D., Kovacevic V., Markovic M., Basic M., Majdancic M. (2014): Variation of maize yield in Croatia and Bosnia and Herzegovina among years with aspect of climatic changes. Turkish Journal of Agricultural and Natural Sciences, Special Issue 1: 789-792.
- IPCC (Intergovernmental Panel on Climate Change Working Group 2) (2001): Climate Change 2001: Impacts, Adaptation and Vulnerability IPCC Working Group 2.
- Jolankai M, Birkas M. (2013): Precipitation impacts on yield quantity and quality of wheat crop. In: Proceedings, of the 48th Croatian & 8th International Symposium on Agriculture 17.-22. February 2013 Dubrovnik (Maric S. and Loncaric Z. Editors), Faculty of Agriculture, University J.J. Strosmayer in Osijek, p. 489-493.
- Kovacevic V., Kovacevic D., Pepo P., Markovic M. (2013): Climate change in Croatia, Serbia, Hungary and Bosnia and Herzegovina: comparison the 20210 and 2012 maize growing seasons. Poljoprivreda / Agriculture, Vol. 19, No. 2; pp. 16-22.
- Kovacevic V., Rastija M. (2014): The Cereals (university textbook). University J. J. Strossmayer in Osijek, Faculty of Agriculture in Osijek.
- Kovacevic V., Rastija M., Josipovic M. (2012): Precipitation and temperature regimes and yield of maize in Croatia. In: Proceedings, Third Intern. Scientific Symposium "Agrosym Jahorina 2012". 15.-17. Nov. 2012. Jahorina, B&H (D. Kovacevic and V. Milic Editors), University of East Sarajevo, Faculty of Agriculture, p. 81-86.
- Majdancic M., Basic M., Salkic B., Kovacevic V., Jovic J. (2016): Weather characteristics and yields of maize in Federation of Bosnia and Herzegovina with emphasis on Tuzla Canton.

In: Proceedings, 26th Intern. Scientific-Expert Conf. of Agriculture and Food Industry (Editors: Pakeza Drkenda, Belma Ducic), Sarajevo Sept. 27-30, 2015 – in press.
Lobell D., Field C. (2007): Global scale climate-crop yield relationships and the impacts of recent warming (http://digitalcommons.unl.edu/publichealthresources/152)
Shaw, R., H. (1988): Climate requirement. In: Corn and Corn Improvement, Agronomy Monograph No 18, ASA-CSSA-SSSA, Madison, Wisconsin, USA, p.609-638.
SY (2005, 2010, 2013): Statistical Yearbook of Croatia, Croatian Bureau of Statistics, Zagreb.