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Abstract

University Hospital Center Zagreb, Zagreb, Croatia

The primary objective of this in vitro study was to evaluate the efficiency of removal of cariogenic bacteria and carious dentin by
ablation using two lasers: fluorescence-feedback controlled (FFC) Er:YAG laser and different pulses of Er:YAG laser based on
variable square pulse technology (VSPt). The secondary objective was to measure the temperature during laser ablation
of carious tissue. Seventy-two extracted human molars were used in this study. Sixty teeth with carious dentin were randomly
divided into four experimental groups according to the treatment for caries removal: group 1: 400 ps (FFC group); group 2: super
short pulse (SSP group, 50 us pulse); group 3: medium short pulse (MSP group, 100 pus pulse); group 4: short pulse (SP group,
300 ps pulse) and one positive control group with no treatment. Twelve teeth without carious lesion were used as a negative
control group. After caries removal, swabs were taken with cotton pellets and real-time PCR analysis was performed. During
caries ablation, a thermal infrared camera was used to measure the temperature changes. In all experimental groups, speci-
mens were free of bacterial contamination after the treatment. In the SSP, MSP and SP groups, temperatures measured during
caries ablation were significantly higher compared to temperatures in the FFC group (P <0.001). In this in vitro study, laser
treatment for removal of carious dentin and cariogenic bacteria was an efficient treatment modality without causing excessive

temperatures that might adversely affect pulp vitality.
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Introduction

The aim of caries excavation is to remove dentin
contaminated by bacteria without removal of sound tooth
structure, and maintain the vitality of the pulp (1). Caries
lesions have two distinct substrates with different chemical
composition and morphological structures: caries-infected
and caries-affected dentin (2,3). The inner ‘infected dentin’
is a superficial and soft necrotic zone rich in bacteria, incapa-
ble of remineralization, with degenerated collagen fibrils
that have lost their cross-links (4-6). If viable bacteria
present in the infected dentin remain after caries removal,
they may potentially release antigens into the pulp and
cause a chronic inflammation reaction (7). Interestingly,
well-sealed margins of the cavity seem to be more crucial
for the long-term success of the restoration and pulp
vitality than the presence of bacteria in the cavity since
clinical follow-ups of bonded restorations placed over soft
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carious dentin showed that further progression of carious
lesion can be arrested (8). However, caries-infected dentin
showed extremely low cohesive strength as a result of
low mineral content and changes in organic matrix (9),
and consequently lower microtensile bond strength
compared to sound and caries-affected dentin (10,11).
Although thicker hybrid layers are obtained in caries-
infected dentin, many dentin tubules remain completely
free from tag formation (12—-14). Due to this poor inter-
action during adhesive procedures, it is generally accepted
that this layer needs to be removed prior to the place-
ment of the restoration. Nevertheless, caries-affected
dentin also produces lower bond strengths compared to
normal dentin (15-18) due to lower mechanical proper-
ties and changes in chemical and morphological proper-
ties, and therefore this layer, which is free of bacteria or
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contains clinically insignificant number of bacteria, may
be retained (4).

Different methods are described for caries removal,
including rotary burs, hand instrument action, air abrasion,
ultrasonic techniques, enzymes treatment, chemomechani-
cal techniques and laser treatment (19). A laser commonly
used for ablation of hard dental tissue is the Er:-YAG
laser. The erbium wavelengths coincide with the absorp-
tion peak of water and hydroxyapatite causing removal
of hard dental tissue by microexplosions (20). Carious
tissue contains even more water compared to healthy
hard dental tissues and therefore the high absorption of
the Er:YAG laser provides a selective and conservative
caries removal without extending the preparation into the
sound tooth structure. Introduction of the Er:-YAG laser
with variable square pulse technology (VSPt) enabled
the use of very short, square-shaped pulses of adjustable
duration. The pulse profile is controlled and ensures that
the power within the pulse is approximately constant with
all pulse energy being used up for ablation (21). However,
according to the histological evaluation in a study by Medioni
et al. (22), Er:YAG laser removed both infected and
affected dentin. Another possibility to improve selec-
tive caries removal is the application of fluorescence
feedback-controlled (FFC) Er:YAG laser, a combination of
a diagnostic device and Er:YAG laser. With this system,
the removal of dental hard tissues is controlled by the
fluorescence signal from the tooth surface, induced by
the red-infrared indium gallium arsenide diode laser (23).
The excitation wavelength induces a fluorescence signal
that has been assigned to protoporphyrin, a bacterial
breakdown product (24). A sensor for the detection of
fluorescence radiation of the dentinal tissue indicates
whether any infected carious dentin is still present in
the cavity, depending on the threshold level set when
operating with FFC Er:YAG laser. The advantages of
laser also include bactericidal properties from the high
temperature (photothermal effect) during laser irradia-
tion. The photothermal effect may be responsible for kill-
ing residual bacteria in cavities during caries ablation.
However, the heat produced during laser ablation can cause
thermal damage to irradiated substrates or the pulp in
case of a temperature increase of more than 5.5°C, as
shown in the in vivo study on monkeys by Zach and
Cohen (25). Therefore, it is of outmost importance that
these alternative techniques for caries removal are harm-
less for tooth pulp, in terms of thermal damage.

According to the literature available to the authors,
there is no study comparing removal of cariogenic bacteria
and carious dentin by measuring the temperature changes
during caries ablation with different pulses of VSPt-based
Er:YAG compared to FFC Er:-YAG laser. Therefore, the
primary objective of this in vitro study was to evaluate
efficiency of removal of cariogenic bacteria and carious
dentin by ablation with FFC Er:YAG laser and with dif-
ferent pulses of Er:-YAG laser based on VSPt. The secondary
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objective was to measure the temperature during laser
ablation of carious tissue.

Material and Methods

Study design

Seventy-two extracted human molar teeth were included
in the study: 60 teeth with cavitated caries lesions extend-
ing into dentin, and 12 teeth without caries lesion. All molars
were extracted for periodontal reasons at the Department
of Oral Surgery, School of Dental Medicine, University
of Zagreb. This experimental study was approved by
the regional Ethical Review Board, University of Zagreb
(106/09). Written informed consent was obtained from
all participants to use their extracted teeth for scientific
purposes. Inclusion criteria were teeth presenting cavi-
tated caries lesions on the occlusal surface by visual exami-
nation and caries depth between the enamel-dentin junction
and middle two-thirds of dentin examined on radiograph.
Exclusion criteria were the presence of restorations or
cavitations on other tooth surfaces. The tooth specimens
were thoroughly cleaned of all residual debris using brushes
and curettes and stored in saline for 2 weeks; saline was
changed daily. All 60 teeth with carious lesions were
randomly divided into four experimental groups (n=12)
and one positive control group (n=12), while teeth without
caries lesions were used as a negative control group
(n=12). In the first experimental group, FFC Er:YAG laser
(Key Ill, KaVo, Germany) was used. For the remaining
three experimental groups, a second generation Fidelis
Plus Il Er:YAG laser (Fotona, Slovenia) with super short
pulse (SSP, 50 us), medium short pulse (MSP, 100 pus),
and short pulse (SP, 300 ps), were used. For both lasers
used all parameters were chosen according to the manu-
facturer’s instructions. During caries ablation, temperature
changes were measured with an infrared thermal camera
while real-time PCR analysis was used to determine the
presence of cariogenic bacteria.

Ablation procedures

All specimens were fixed with clamps during the caries
removal treatment.

Group 1 (FFC group). FFC Er:YAG laser was used
with pulse energy of 350 mJ for the enamel cavity prep-
aration and 250 mJ for the dentin treatment. The pulse
duration was 400 ps with a repetition rate 10 Hz. The
energy density for the enamel was 54.7 and 39.1 J - (cm?)™-
pulse for dentin™. The contact handpiece (No. 2063, KaVo)
with a spot size of 0.9 mm in diameter was used and
the threshold level was set at 7 (10). The laser stopped
emitting the laser beam when the fluorescence radiation of
the dentinal tissue was beyond the previously set thresh-
old level of 7 and this was considered the endpoint of the
caries ablation. During laser treatment, hard dental tissues
were kept wet with continuous water irrigation at the rate
of 3 mL/min.
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Figure 1. Average temperature (°C) and standard deviations for FFC, SP, MSP, and SSP groups. The temperatures were significantly
higher in the SSP, MSP, and SP groups compared to temperatures in the FFC group (P <0.001). Temperature in the MSP group was
significantly lower compared to SP (P <0.001), and SSP (P=0.002) groups. FFC: fluorescence feedback controlled; SP: short pulse;
MSP: medium short pulse; SSP: super short pulse. Different letters indicate a statistically significant difference.

Groups 2 (SSP group), 3 (MSP group) and 4 (SP group).
Cavities were prepared with a second generation Fidelis
Plus Il Er:YAG laser (Fotona) with super short pulse (SSP,
50 ps), medium short pulse (MSP, 100 ps), and short pulse
(SP, 300 ps; Figure 1). The Er:'YAG laser energy was
delivered by a non-contact RO2-C handpiece with a spot
size of 0.9 mm in diameter, under continuous water spray
(3 mL/min) at a focus distance of 7 mm from the target. The
pulse energy was 350 mJ for enamel and 250 mJ for dentin,
with a pulse frequency of 10 Hz. The energy density for
enamel was 54.7 and 39.1 J- (cm?)™" - pulse for dentin™. The
caries removal was performed under visual control by testing
the hardness of the remaining tissue with a dental probe.
The caries ablation procedure was considered complete
after the dental probe induced a sharp sound and did not
penetrate the dentin.

Infrared thermography

During caries ablation at room temperature, tempera-
ture changes were measured with an infrared thermal
camera. In the FFC group, a Thermosensorik GmbH camera
was used (Thermosensorik GmbH, Geramny), and in SSP,
MSP, and SP groups the ThermaCAM p45 (Flir Systems
Inc., USA) was used for temperature measurement. Thermo-
vision cameras were fixed and placed directly above the
specimens at a distance of 20 cm.

Real time PCR analysis

After caries ablation, samples were taken with a sterile
cotton pellet from each experimental group and both
positive and negative control groups. Cotton pellets were
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Table 1. Gram-positive and gram-negative cariogenic bacteria
investigated in this study.

Gram-positive bacteria Gram-negative bacteria

Streptococcus mutans
Streptococcus sanguis
Lactobacillus acidophilus
Actinomyces israelli
Peptostreptococcus micros

Prevotella melaninogenica
Fusobacterium nucleatum
Porphyromonas endodontalis
Porphyromonas gingivalis

placed into Eppendorf tubes (Eppendorf, Germany), in 1 mL
of phosphate buffer solution (PBS), and the contents of
each tube were shaken to detach the samples of dentin
from the cotton pellet. Real-time PCR analysis was used
to investigate the presence of the gram-positive and gram-
negative cariogenic bacteria in cavities after caries ablation
(Table 1).

For the bacterial DNA isolation, as the first step
in bacterial identification, the QlAamp DNA Stool Mini
Kit (Qiagen GmbH, Germany) was used according to the
manufacturer’s instruction. Real-time PCR analysis was
performed by using Primerdesign™ Ltd. (Great Britain)
genesis standards kits for Lactobacillus acidophilus,
Streptococcus sanguinis, Porphyromonas gingivalis,
S. mutans, Actinomyces israelli, Prevotella melanino-
genica, Fusobacterium nucleatum, Peptostreptococcus
micros, P. endodontalis, and P. gingivalis. The reaction
mixture contained 20 pL: 10 pL of Precision™ Master-
mixa (Primerdesign™ Ltd.), 1 uL of mixture of a primer
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Table 2. Quantity of examined cariogenic bacteria DNA in negative control samples.

SM SS LA Al FN PeM PE PG
31.12 30.12 28.12 21.00 27.20 2410 28.60 18.00 38.10
32.15 30.05 31.20 29.10 31.00 31.50 34.20 30.20 45.20
25.05 32.18 25.40 22.73 21.89 27.43 33.26 27.34 25.15
38.67 33.20 17.60 26.70 2.18 28.16 30.20 28.67 30.35
27.95 27.80 27.80 23.70 27.50 24.20 27.70 17.80 29.13
28.69 28.69 23.69 23.00 21.60 29.50 26.09 21.70 27.71
30.69 28.50 26.50 20.50 22.50 38.20 25.50 22.86 21.50
30.19 31.20 33.20 21.68 30.00 25.18 34.50 32.14 23.40
38.04 34.04 34.04 32.07 34.80 37.08 25.15 33.08 38.14
27.08 29.18 29.18 27.20 21.10 27.61 37.08 30.20 2219
30.16 30.16 30.16 31.18 18.15 3217 28.65 30.15 34.16
30.78 29.75 28.60 38.10 17.60 28.90 22.76 18.64 22.60

Data are reported as Ct values. Ct-cycle threshold: the lower the Ct value, the more DNA detected by a primer pair is present. SM:
Streptococcus mutans; SS: Streptococcus sanguis; LA: Lactobacillus acidophilus; Al: Actinomyces israelli; PM: Prevotella melanino-
genica; FN: Fusobacterium nucleatum; PeM: Peptostreptococcus micros; PE: Porphyromonas endodontalis; PG: Porphyromonas gingivalis.

and a probe (Primerdesign™ Ltd.), 4 uL of water and
5 uL of diluted DNA according to standard procedures.
The PCR cycling conditions were performed as described
in the amplification protocol of the PrimerDesign kit and
cycling was performed in a LC480 (Roche Diagnostics,
Austria). During PCR amplification, forward and reverse
primers were hybridized to each bacterial DNA. A fluoro-
genic probe was included in the same reaction mix-
ture, which consisted of a DNA probe labelled with a
5’-dye and a 3’-quencher. During PCR amplification, the
probe was cleaved and the reporter dye and quencher
were separated. The resulting increase in fluorescence
was detected on a range of real-time PCR platform
(LC480 (Roche Diagnostics). Positive control inside the
specific kit was performed simultaneously during each
PCR reaction, and RNAse/DNAse free water was used
as negative control. The resulting data were averaged
between the duplicates and then the proportions of each
species were calculated against the universal assay
primer/probe set (UniB) values of all species within each
sample.

Statistical analysis

Data was statistically analyzed with one-way ANOVA
and Scheffe’s post hoc test with the level of significance
set to 5%. The analysis was performed using Statistica 7.0
(StatSoft, USA).

Results

Cariogenic bacteria were found in all specimens of the
positive control group (Table 2) and not in specimens
of the negative control group. In all laser experimental
groups, specimens were free of the bacterial contamina-
tion after ablation procedure.
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Average temperatures for each group and the range
of average temperatures for every specimen in experi-
mental groups during caries ablation are shown in Figure 1.
The temperatures were significantly higher in the SSP
(41.2+£9.3°C), MSP (32.0£1.9°C), and SP (49.5+15.7°C)
groups compared to the temperatures in the FFC group
(4.5+2.4°C; P<0.001). The temperature during caries
ablation in the MSP group was significantly lower com-
pared to SP (P <0.001) and SSP (P=0.003) groups. There
was no significant difference in temperatures between SP
and SSP groups (P=0.129).

Discussion

The main purpose of this experimental study was to
evaluate efficiency of removing cariogenic bacteria during
ablation of carious tissue with two different lasers: FFC Er:
YAG laser and VSPt based Er:YAG. In addition, the aim
was also to measure the temperature changes during
laser ablation of carious tissue. Qualitative and quantita-
tive assessment of cariogenic bacteria of each sample
was performed using RT PCR technique. Results showed
that cavities in all experimental groups were free of
bacterial contamination after laser-assisted caries abla-
tion. Similar results were found only for FFC Er:YAG laser
in studies that examined the amount of cariogenic bacteria
after removal of carious tissue. These studies used dif-
ferent methods of evaluation of residual bacteria such
as cultivation of dentin samples on culture medium for
S. mutans and L. species (26) or histological staining
for gram-positive and gram-negative bacteria (27). The
mechanism of removing bacteria from the tooth cavity
using laser technology is mechanical and photothermal.
High temperatures cause changes in the cell wall and
membrane of bacteria, along with denaturation of proteins
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and damage to nucleic acid, resulting in the death of
bacteria (28). Furthermore, the photothermal effect is also
induced after absorption of the laser beam by water, which
causes microexplosions and breakup of the bacteria (29).
Yamaguchi et al. (30) found that lipopolysaccharides in
the cell membrane of gram-negative bacteria have a
peak value of absorption of 2.92 um, which is close to
the wavelength of the Er:YAG laser. This specific laser
removes 83.1% of lipopolysaccharides with a pulse energy
of 100 mJ and frequency of 1 Hz. In this study, the pulse
energy was 250 md, and the frequency 10 Hz, meaning
that the bactericidal impact on the investigated gram-
negative bacteria could be even more pronounced. It was
also found that amines and amine groups that are present
in bacteria also absorb the wavelength of the Er:YAG laser
and this has a detrimental effect on bacteria due to the
photochemical effect (31). Contrary to that, Valerio et al. (32)
in their clinical study showed that affected dentin in
the pulpal wall had similar amounts of S. mutans and
Lactobacillus sp. comparing caries removal by Er:YAG
laser and bur. In their study, microbiological analysis
was performed by counting tested bacteria (32). However,
inoculating cariogenic bacteria on culture medium in
the laboratory might yield false positive results, because
other bacteria, besides the tested ones, can grow on the
same culture medium (33). The RT-PCR method, which
was used in this study, is a more accurate method to
detect clinically relevant cariogenic bacteria because it
has a higher sensitivity and specificity in the detection of
bacterial nucleic acids (34).

Temperature measurements showed the lowest values
for the FFC Er:-YAG group, probably due to a feedback
control of the laser, which appeared to operate like a
cut-off switch when infected dentin was eliminated (35)
and stopped the laser from emitting energy intermittently.
In this investigation, the threshold level was set at 7
according to the results of Krause et al. (26). They indi-
cated that a fluorescence threshold level of 7 or 8 units
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