XI INTERNATIONAL CONFERENCE
FOR YOUNG RESEARCHERS

TECHNICAL SCIENCES.
INDUSTRIAL MANAGEMENT

14 – 17.03.2018 BOROVETS, BULGARIA

INTEERNATIONAL EDITORIAL BOARD
Editor in chief: Prof. Dr Econ. Cyril Angelov (Bulgaria)
Members:
 Prof. Laura Bakalli (Romania)
 Prof. Irena Macherinskine (Lithuania)
 Prof. Lyubomir Dimitrov (Bulgaria)
 Prof. Anatoly Magidenko (Latvia)
 Prof. Ivan Kuric (Slovakia)
 Prof. Pancho Tomov (Bulgaria)
 Prof. Yvonne Novak-Marchinchin (Slovakia)
 Prof. Konstantins Didenko (Latvia)
 Prof. Dr. Loretta Parashkevova (Bulgaria)
 Prof. Ivan Dimitrov (Bulgaria)
 Prof. Matilda Alexandrova (Bulgaria)
 Prof. Nikolay Hinov (Bulgaria)
 Prof. Rima Tamosiunine (Lithuania)
 Prof. Sergei Voytko (Ukraine)
 Assoc. Prof. Dr. Emil Trifonov (Bulgaria)

ISSN 2535-0196 (Print), ISSN 2535-020X (Online)
CONTENTS

TECHNICAL SCIENCES

IMPROVING BENDING LOAD CAPACITY OF SPUR GEARS WITH INCREASING ROOT RADIUS

ERGONOMIC EVALUATION OF BASIS MANUAL ASSEMBLY OPERATIONS WITH INTEGRATION OF SIMULATION TOOLS

POSITION CONTROL ALGORITHM FOR ANTAGONISTICALLY DRIVEN PNEUMATIC MUSCLE ACTUATORS
M.Sc. Protner J., Prof. Dr. Herakovič N., Dr. Pipan M. ... 12

IMPROVING THE PERFORMANCE OF AN INADEQUATELY TUNED PID CONTROLLER BY INTRODUCING A POLYNOMIAL MODEL BASED INCREMENT IN PID CONTROL VALUE
Dushko Stavrov, Gorjan Nadzinski, Goran Stojanovski, Stojche Deskovski ... 16

MULTISTAGE GEAR PROJECT OF THE ELECTRICAL CAR SGR2016 FOR THE SILESIAN GREENPOWER ORGANIZATION

ANALYSIS OF A MECHANISM FOR SHEET CUTTING
M. Matuz, Prof. L. Cveticanin PhD. .. 25

POSSIBLE ENGINEERING SOLUTIONS FOR THE COMPLETION, RECONSTRUCTION AND MODERNIZATION OF THE IRRIGATION INFRASTRUCTURE
Eng. Vasileva M. PhD.St, Assos. Prof. Eng. Banishka N PhD .. 29

AIR COOLED DIRECT INJECTION DIESEL ENGINE MAIN OPERATING PARAMETERS ANALYSIS DURING THE CHANGE IN ROTATIONAL SPEED
PhD. Mrzljak Vedran, PhD Student Eng. Poljak Igor, Student Žarković Božica .. 33

РЕАЛИЗАЦИЯ НА АНТИВИРУСЕН СКЕНЕР
Beleva-Dimitrova P. Phd student, Stepanov M. ... 37

CROSS-DISCIPLINARY TASKS AS A MEANS OF FORMING THE TECHNICAL COMPETENCE OF FUTURE TEACHERS OF INFORMATICS
Кандидат педагогических наук, доцент Ткачук Г. .. 40

WORK SAFETY AND ERGONOMICS AT THE WORKPLACE AN EXCAVATOR OPERATOR
dr inż. Michał Pałęga, dr hab inż. Dariusz Rydz, prof. PCz. ... 44

NUMERICAL SIMULATION ON THE VIBRATION OF A TEST BED WITH ENGINE WITH DUAL MASS FLYWHEEL
Assist. Prof. Eng. Pavlov N. PhD .. 49

INDUSTRIAL MANAGEMENT

RISK ASSESSMENT FOR THE PRODUCTION PROCESS
PhD Dorota Wojtyto ... 52

ADMINISTRATIVE PROCESS MODELING: WBS AND PROJECT MANAGEMENT APPROACHES REVIEW
M.Sc. Trashlieva V., M.Sc. Radeva T. PhD. ... 56

TRANSACTION COSTS AS A FACTOR OF INFLUENCE ON THE SHADOW ECONOMY
Post Gr Student, Biloborodko V.I. .. 60

FOOD SECURITY OF STATE: POSSIBILITIES OF IMPORT SUBSTITUTION
Post Gr Student, Zverkov O.E., Post Gr Student Pop N.V. .. 64
AIR COOLED DIRECT INJECTION DIESEL ENGINE MAIN OPERATING PARAMETERS ANALYSIS DURING THE CHANGE IN ROTATIONAL SPEED

PhD. Mrzljak Vedran1, PhD Student Eng. Poljak Igor2, Student Žarković Božica3
Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka1, Rožići 4/3, 51221 Kostrena2, Croatia
E-mail: vedran.mrzljak@riteh.hr, igor.poljak2@gmail.com, bozica.zarkovic@gmail.com

Abstract: Four-stroke air cooled, direct injection diesel engine Torpedo BT4L912 during rotational speed variation was investigated in this paper. By using the measurement results obtained at engine brake was calculated several main operating parameters in each engine rotational speed. Rotational speed was varied from 1000 rpm to 2300 rpm. Calculated engine operating parameters are engine torque, effective power, engine brake mean effective pressure, specific effective fuel consumption and volume fuel consumption per engine process. The highest obtained engine torque amounts 338.8 Nm and the highest engine effective power amounts 71.76 kW. Specific effective fuel consumption has the lowest value of 197.42 g/kWh at engine rotational speed of 1800 rpm. Regarding several calculated engine operating parameters, optimal operating point of the analyzed engine is at 1800 rpm.

Keywords: DIESEL ENGINE, DIRECT INJECTION, ENGINE BRAKING, ENGINE OPERATING PARAMETERS

1. Introduction

Experimental measurements are the basis for internal combustion engine operating parameters analysis, [1] and [2]. Parallel to internal combustion engine measurements, numerical simulations have been developed to ensure easier, faster and much cheaper investigations of engine operating parameters, regardless if it was investigated gasoline or diesel engines [3].

If in the focus was diesel engines, as in this paper, it should be noted that today was known several types of diesel engine numerical models: 0D (zero dimensional) models [4], multizone models [5], quasi dimensional models [6] and [7], while the last and most detailed ones are CFD (Computational Fluid Dynamics) models [8]. In order to determine the accuracy and precision of each numerical model, they must necessarily be validated in several different measurement points of the tested engine. Because of that fact, experimental engine measurements are inevitable.

To reduce diesel engine emissions and improve engine operating parameters, researchers are intensively involved in implementing combustion of different alternative fuels in existing diesel engines. A complete review of green fuels as alternative fuels for diesel engines is presented in [9] while the review of performance, combustion and emission characteristics of bio-diesel fuelled diesel engines presented authors in [10].

In this paper was presented change in the main operating parameters of four-stroke air cooled, direct injection diesel engine Torpedo BT4L912 during rotational speed variation. Based on the measurement results obtained at engine brake was calculated several main operating parameters and presented for a various engine rotational speed. Those operating parameters were engine torque, engine effective power, engine brake mean effective pressure, specific effective fuel consumption and volume fuel consumption per engine process. The change of last two operating parameters was calculated by using data for fuel density and fuel tank volume, along with the time for the fuel consumption from the fuel tank. For the wide range of engine rotational speeds was obtained recommended operating area of the analyzed engine.

2. Air cooled, four-stroke, direct injection diesel engine specifications

The investigated engine was four-stroke air cooled, direct injection diesel engine Torpedo BT4L912. The main engine characteristics along with necessary brake and fuel specifications are presented in Table 1.

Table 1. Engine and brake specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cylinders</td>
<td>4</td>
</tr>
<tr>
<td>Cylinder diameter</td>
<td>102 mm</td>
</tr>
<tr>
<td>Cylinder stroke</td>
<td>120 mm</td>
</tr>
<tr>
<td>The total operating volume</td>
<td>3922 cm³</td>
</tr>
<tr>
<td>Cylinder cooling</td>
<td>With air</td>
</tr>
<tr>
<td>Brake arm length</td>
<td>0.714 m</td>
</tr>
<tr>
<td>Fuel tank volume</td>
<td>100 cm³</td>
</tr>
<tr>
<td>Fuel density</td>
<td>830 kg/m³</td>
</tr>
<tr>
<td>Fuel lower heating value</td>
<td>42700 kJ/kg</td>
</tr>
</tbody>
</table>

3. Engine measurement results and measuring equipment

Engine measurement was performed on the engine test bench in the company Torpedo, Rijeka, Croatia. Used measuring equipment in the majority is owned by the same company, Fig. 1.

Brake force was read directly on the brake Schenck U1-30. The engine rotational speed was measured by inductive encoder on the brake shaft. Volumetric fuel consumption was measured by using a photocell.

Cylinder pressure was measured with a data acquisition device (analogue-digital system). An analogue signal was amplified through the amplifier and converts to digital signal, which can be further processed. The data acquisition device has a microprocessor MC 68020 (32 Bit and 16.7 MHz) along with co-processor MC 68881 (16.7 MHz). In this device are included two analogue-digital converters (resolution of 12 Bit) with maximum of 2·4·10⁶ measurements in second (five measurements for one engine crank angle). Cylinder pressure was measured in the first engine cylinder with quartz sensor Kistler - Type 7061 which measurement range is from 0 to 200 bars.

![Fig. 1. Diesel engine Torpedo BT4L912 connected to brake during the measurements](image-url)
Engine measurement was carried out in a way that after engine start, maximum rotational speed has been achieved without any load. After that the braking force gradually increased and the engine rotational speed decreased. For the engine analysis provided in this paper, necessary measured operating parameters are presented in Table 2 and those are: engine rotational speed, brake force and time for the fuel consumption from the fuel tank.

Table 2. Torpedo BT4L912 obtained measurement results

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Engine rotational speed (rpm)</th>
<th>Brake force (N)</th>
<th>Time for the fuel consumption from the fuel tank (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2300</td>
<td>406.98</td>
<td>17.9</td>
</tr>
<tr>
<td>2</td>
<td>2200</td>
<td>436.40</td>
<td>17.8</td>
</tr>
<tr>
<td>3</td>
<td>2000</td>
<td>453.07</td>
<td>19.1</td>
</tr>
<tr>
<td>4</td>
<td>1800</td>
<td>474.64</td>
<td>23.7</td>
</tr>
<tr>
<td>5</td>
<td>1600</td>
<td>460.91</td>
<td>23.2</td>
</tr>
<tr>
<td>6</td>
<td>1500</td>
<td>460.91</td>
<td>24.5</td>
</tr>
<tr>
<td>7</td>
<td>1400</td>
<td>457.97</td>
<td>25.9</td>
</tr>
<tr>
<td>8</td>
<td>1200</td>
<td>437.38</td>
<td>29.6</td>
</tr>
<tr>
<td>9</td>
<td>1000</td>
<td>388.34</td>
<td>35.7</td>
</tr>
</tbody>
</table>

4. Equations for calculating engine main operating parameters according to measured results

At each engine rotational speed torque was calculated according to the equation:

\[M = F \cdot R \] (1)

where \(M \) (Nm) is torque, \(F \) (N) is brake reaction force and \(R \) (m) is the brake arm’s length on which the reaction force is measured - Table 1.

Engine effective power delivered to power consumers was calculated by using an equation:

\[P_{ef} = \frac{M \cdot 2 \cdot \pi \cdot n}{60 \cdot 1000} \] (2)

where \(P_{ef} \) (kW) is engine effective power and \(n \) (rpm) is engine rotational speed.

Engine brake mean effective pressure was calculated according to the equation:

\[p_{ef} = \frac{P_{ef}}{n_a \cdot V_{tot,op}} \cdot 6 \cdot 10^5 \] (3)

where \(p_{ef} \) (bar) is an engine brake mean effective pressure and \(V_{tot,op} \) (cm³) is the total engine operating volume - Table 1. Engine active rotational speed \(n_a \) (rpm) which takes into account only the engine processes with fuel injections is equal to:

\[n_a = \frac{2 \cdot n}{\tau} \] (4)

where \(\tau \) is engine stroke (analyzed engine is a four-stroke engine).

Specific effective fuel consumption was calculated by using an equation:

\[b_{ef} = \frac{V_n \cdot \rho_f \cdot t_{ft}}{P_{t}} \cdot 3.6 \] (5)

where \(b_{ef} \) (g/kWh) is specific effective fuel consumption, \(V_n \) (cm³) is a fuel tank volume - Table 1, \(\rho_f \) (kg/m³) is fuel density - Table 1 and \(t_{ft} \) (s) is time for the fuel consumption from the fuel tank - Table 2.

Volume fuel consumption per engine process was obtained by using an equation:

\[V_{pp} = \frac{V_n \cdot \rho_f \cdot t_{ft}}{n_s \cdot z \cdot \tau} \cdot 6 \cdot 10^4 \] (6)

where \(V_{pp} \) (mm³/proc.) is volume fuel consumption per engine process and \(z \) is the number of engine cylinders - Table 1.

5. Change in engine calculated main operating parameters with discussion

For each measurement point, at each engine rotational speed, engine torque was calculated by using equation (1). At the maximum engine rotational speed of 2300 rpm, engine torque amounts 290.5 Nm, Fig. 2. With the decrease in the engine rotational speed from maximum value, engine torque firstly continuously increases. The highest value of engine torque was obtained at 1800 rpm and amounts 338.8 Nm. During further decrease in the engine rotational speed from 1800 rpm, engine torque continuously decreases and at the lowest rotational speed of 1000 rpm engine torque has the lowest value of 277.2 Nm. As analyzed engine is air cooled type, available torque range from 277.2 Nm to 338.8 Nm for observed rotational speeds is satisfactory.

![Fig. 2. Engine torque change in relation to engine rotational speed](image)

Engine effective power which is delivered by the outlet coupling to the power consumers was calculated for each measured engine rotational speed according to equation (2). At the lowest engine rotational speed of 1000 rpm, engine effective power is the lowest and amounts 29.03 kW, Fig. 3. With the increase in the engine rotational speed from the lowest one, engine effective power continuously increases up to 2200 rpm. At 2200 rpm, effective power has the highest value which amounts 71.76 kW. In the range from 2200 rpm to 2300 rpm, engine effective power decreases and at the highest rotational speed (2300 rpm) effective power is equal to 69.97 kW.

If compared the change of analyzed engine torque, Fig. 2, with change of engine brake mean effective pressure, Fig. 4, it can be seen that both parameters have identical trends. Brake mean effective pressure was calculated by using equations (3) and (4). At the lowest engine rotational speed of 1000 rpm is observed the lowest brake mean effective pressure which amounts 8.88 bars.
With the increase in the engine rotational speed from the lowest one, brake mean effective pressure continuously increases and reaches the maximum value of 10.85 bars at the 1800 rpm. From the engine rotational speed of 1800 rpm up to 2300 rpm, brake mean effective pressure continuously decreases and on the highest engine rotational speed of 2300 rpm it amounts 9.31 bars.

Fig. 3. Engine effective power change for various observed engine rotational speeds

Fig. 4. Change in brake mean effective pressure for various engine rotational speeds

Specific effective fuel consumption was calculated by using measured values for each observed engine rotational speed, according to equation (5). Trend of specific effective fuel consumption of the analyzed engine is similar to diesel engines investigated by the other authors, [11] and [12]. With the increase in the engine rotational speed, specific effective fuel consumption firstly decreases to the lowest value, after which follows its increase. In Fig. 5 is not presented trendline for specific effective fuel consumption change, calculated values for each engine rotational speed were connected with a line in order not to approximate the real data.

At the lowest engine rotational speed (1000 rpm) specific effective fuel consumption is the highest and amounts 288.33 g/kWh. With the increase in the engine rotational speed from the lowest one, specific effective fuel consumption decreases until 1800 rpm. At 1800 rpm specific effective fuel consumption has the lowest value which amounts 197.42 g/kWh. From 1800 rpm up to the highest engine rotational speed of 2300 rpm, specific effective fuel consumption continuously increases and on 2300 rpm it has a value equal to 238.58 g/kWh.

Fig. 5. Specific effective fuel consumption change for various engine rotational speeds

Fig. 6. Volume fuel consumption per engine process change for various observed engine rotational speeds

6. Conclusion

In this paper were analyzed changes in the main operating parameters of four-stroke air cooled, direct injection diesel engine Torpedo BT4L912 during rotational speed variation. Several main operating parameters for each measured engine rotational speed was calculated in order to obtain complete insight into the engine operating characteristics.

The highest obtained engine torque amounts 338.8 Nm and the highest engine effective power amounts 71.76 kW. Highest torque and highest effective power were not obtained at the same engine rotational speed. Engine brake mean effective pressure has the same trend as engine torque. The highest value of engine brake mean effective pressure amounts 10.85 bars.

The lowest specific effective fuel consumption was obtained at 1800 rpm and amounts 197.42 g/kWh. At the same engine rotational speed was also obtained the lowest volume fuel consumption per engine process which amounts 70.32 mm³/proc.

The final conclusion, which can be derived from the presented calculated results, is that the optimal operating point of the analyzed engine Torpedo BT4L912 is operating point at 1800 rpm. In that operating point engine has the highest torque and the lowest specific effective fuel consumption. Also, in that operating point analyzed engine has the lowest volume fuel consumption per process.

7. Acknowledgments

This work was supported by the University of Rijeka (contract no. 13.09.1.1.05) and Croatian Science Foundation-project 8722.

8. References

