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Large linear magnetoresistance in the Dirac semimetal TIBiSSe
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The mixed-chalcogenide compound T1BiSSe realizes a three-dimensional (3D) Dirac semimetal state. In clean,
low-carrier-density single crystals of this material, we found Shubnikov—de Haas oscillations to signify its 3D
Dirac nature. Moreover, we observed very large linear magnetoresistance (MR) approaching 10 000% in 14 T at
1.8 K, which diminishes rapidly above 30 K. Our analysis of the magnetotransport data points to the possibility
that the linear MR is fundamentally governed by the Hall field; although such a situation has been predicted for
highly inhomogeneous systems, inhomogeneity does not seem to play an important role in TIBiSSe. Hence, the
mechanism of large linear MR is an intriguing open question in a clean 3D Dirac system.
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The discoveries of graphene [1] and three-dimensional
(3D) topological insulators [2—4] have greatly advanced the
research on two-dimensional (2D) massless Dirac fermions. In
comparison, 3D massless Dirac fermions, whose Hamiltonian
involves all three Pauli matrices, have attracted much less
attention. This is due partly to the shortage of concrete
materials to give access to the massless Dirac physics in
3D, although massive 3D Dirac fermions in Bi are long
known to present interesting physics [5-7]. However, this
situation has changed recently, and materials to realize 3D
massless Dirac fermions are currently attracting significant
attention because of the interest in new types of topological
materials called Weyl semimetals [8,9]. In recent literature,
materials realizing spin-degenerate 3D massless Dirac cones
are called “3D Dirac semimetals,” while those realizing a pair
of spin-nondegenerate 3D massless Dirac cones are called
“Weyl semimetals”; the latter is derived from the former by
breaking time-reversal symmetry or space-inversion symmetry
(or both) to split the spin-degenerate Dirac cone into two
spin-nondegenerate ones [9].

Recently, the 3D Dirac semimetal phase has been shown to
exist in Na3Bi [10-12] and Cd;As, [13-15], where the Dirac
nodes are protected by crystal symmetry [16,17]. Also, such
a phase is known to exist at the topological phase transition
point of TIBi(S;_,Se,), [18-21], Pb;_,Sn,Se [22], Bi;_,Sb,
[23], etc., where the bulk band gap necessarily closes. In those
materials, the Weyl semimetal phase would be realized by
magnetic doping, breaking the crystal-inversion symmetry,
or applying an external magnetic field [20,21,24,25]. Besides
being potential parent materials of Weyl semimetals, the Dirac
semimetals offer a new playground to explore the physics of
massless Dirac fermions in larger spatial degrees of freedom
than the 2D case, which may change the characteristic transport
properties in a nontrivial way.

In this Rapid Communication, we report our magnetotrans-
port studies of TIBiSSe, where the 3D Dirac semimetal phase is
realized as a result of the topological phase transition between
the topological insulator (TT) TIBiSe; and an ordinary insulator
TIBiS, [18,19]. In TIBiSSe, as the Fermi level is tuned close
to the Dirac point, the magnetoresistance (MR) grows very
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rapidly, and its magnetic-field dependence is found to become
linear in high magnetic fields. Surprisingly, in samples with
a Fermi energy Er of about 20 meV, we observed very large
linear MR approaching 10 000% at 14 T. Our analysis of the
magnetotransport data strongly suggests that the linear MR
is somehow governed by the Hall field, but its origin is not
explicable with existing theories for linear MR, pointing to
different physics in 3D Dirac fermions than in the 2D case.

The topological phase transition in TIBi(S;_,Se,), was
discovered [18,19] soon after TIBiSe, was found to be
a TI [26-28]. According to the angle-resolved photoemis-
sion spectroscopy (ARPES) data, the bulk band gap in
TIBi(S|_Se,), closes at x = 0.50 [29], across which the
band inversion and a change in the Z, topology takes place.
This means that the zero-gap semimetallic state is realized
in TIBiSSe, in which S and Se occupy the chalcogen site in a
mixed way. In fact, a recent ARPES study gave direct evidence
that TIBiSSe is a 3D Dirac semimetal [14]; a fluctuation of
0.005 in the composition x would allow a small gap of ~3 meV
at the Dirac point [29], but this is much smaller than the Eg
of our sample.

Single crystals of TIBi(S;_,Sey ), grown from stoichiomet-
ric melts are always n type with a typical carrier density
of 10%° cm™3 [26]. Motivated by a recent report [30], we
have grown crystals of TIBiSSe with a Tl-rich starting
composition [31], and succeeded in reducing the bulk carrier
density down to the 10'7 cm™ level. The high crystallinity of
our single crystals is confirmed by x-ray diffraction (XRD)
analysis [Fig. 1(a)] and Laue analysis. Although the crystals
are grown from off-stoichiometric melts, inductively coupled
plasma atomic-emission spectroscopy (ICP-AES) analysis
confirmed that the compositions of the grown crystals are close
to stoichiometry, and electron-probe microanalysis (EPMA)
data assured that there is no segregation of constituent
elements, as discussed in the Supplemental Material [31].
Experimental details of our transport measurements are also
described in Ref. [31].

The temperature dependencies of the in-plane resistivity
pxx(T) of three representative TIBiSSe samples with sig-
nificantly different carrier densities are shown in Fig. 1(b);
note that the vertical axis is in a logarithmic scale, and the
residual resistivity ratio of the lowest-carrier-density sample
(S3) is as large as 73. We have actually measured many
more samples than are shown in Fig. 1(b), and Fig. 1(c)
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FIG. 1. (Color online) (a) Powder XRD pattern of a typical
TIBiSSe crystal; the inset shows its crystal structure. (b) p.(T)
behavior of three samples with different carrier densities. (c), (d)
Plots of low-temperature mobility and the magnitude of MR vs n.
The MR values shown here are for 9 T at 1.8 K.

shows that the low-temperature transport mobility 1, (assessed
from p,, at 1.8 K and the carrier density n) increases
systematically with decreasing n; for example, u, increases
by 110 times between samples S1 (n = 8.8 x 10" cm™3) and
S3 (n = 3.8 x 10'7 cm™). This is in contrast to the case of 2D
Dirac systems such as graphene [32] and 3D TIs [33], where
W shows an enhancement only when the Fermi level is tuned
very close to the Dirac point.

Perhaps more surprising is the very rapid increase in MR
with decreasing n; for example, the MR at 9 T [Fig. 1(d)]
changes by almost 2000 times between S1 and S3. Here, MR
is defined by [0y (B) — pxx(0 T)]/pxx(0 T). To gain insights
into the large MR, Fig. 2(a) shows how the MR behavior in
sample S3 changes when the magnetic field is tilted from the
perpendicular to parallel directions. The angular dependence
is more directly shown in Fig. 2(b), where the magnitude of
the MR in 14 T is plotted as a function of the angle 6, which
is defined in the inset of Fig. 2(a). The dipolelike pattern seen
in Fig. 2(b) is well described by the cos 6 function (red solid
line), meaning that the MR is almost entirely governed by the
perpendicular component of the magnetic field, even though
the present system is 3D. The magnetic-field dependence of
pxx at low field is plotted in Fig. 2(c) for & = 0° and 92°, both
of which present the ordinary B? behavior below ~0.1 T; this
suggests that the origin of the linear MR is different from the
famous linear MR in Ag,, ;Se and Ag,, sTe [34], where the
linearity is observed from as low as 1 mT. Note that, due to
the high mobility of sample S3, the condition w.t, = u,B = 1
(t; is the transport scattering time and w, = eB/m, is the
cyclotron frequency with m, the cyclotron mass) is achieved
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FIG. 2. (Color online) MR in sample S3 at 1.8 K. (a) p..(B)
behavior for various magnetic-field angles from transverse (6 = 0°,
B field in the [111] direction) to the near-longitudinal (6 = 92°)
configurations; the inset depicts the definition of 6. (b) Dipolelike 6
dependence of the magnitude of MR at 14 T, which follows the cos 6
dependence (red solid line). Due to the restriction of the rotation
stage, the range of 6 does not span the whole 360°. (c) Low-field MR
showing ordinary B> behavior; the red solid lines show the fits to the
B? function.

in only 0.2 T, and hence the standard theory for MR for a closed
Fermi surface [35] would predict a saturation at B >> 0.2 T;
nevertheless, as one can see in Fig. 2(a), this sample presents
nonsaturating linear MR above ~6 T.

The temperature dependence of this linear MR signifies its
unique nature in comparison to other systems showing large
linear MR [34,36—40]. Figures 3(a)-3(c) show p,, vs B at
various temperatures, where one can see that the characteristic
field above which the linear MR is observed remains around
6 T up to 150 K, but at higher temperatures the linear MR
disappears. More importantly, the size of MR changes little
between 1.8 and 30 K, but at higher temperatures it dimin-
ishes rapidly. This temperature dependence is summarized in
Fig. 3(d), where the dependence of n on temperature is plotted
together; one can see that n changes only by a small amount,
and hence the rapid decline in MR has little to do with the
thermal activation of carriers. On the other hand, as shown in
Fig. 3(e), the size of MR depends linearly on u,, implying that
the reason for the rapid decline in MR is the phonon scattering
which restricts u, at high temperatures.

It is prudent to mention that, even though the MR is
unusual in many respects, it obeys the Kohler’s rule [35]
(see Ref. [31] for details), meaning that p,, depends on the
magnetic field only through the form Bt, (which is the case in
the semiclassical relaxation-time approximation). In passing,
the MR data at 200 and 300 K can be described by the
conventional form aBz/(l + bB?) [41].

The low-carrier-density samples are clean enough to present
Shubnikov—de Haas (SdH) oscillations, which are the source
of the wiggles in the MR data at high B. The clear observation
of SdH oscillations signifies not only a high mobility but
also a high homogeneity of local carrier densities, since a
variation in the local carrier density would result in a spread
of SdH frequencies to smear the oscillations. In the case of
TIBiSSe, a larger number of oscillation cycles are discernible
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FIG. 3. (Color online) MR in sample S3 for 6 = 0°. (a)—(c)
pxx(B) behavior at various temperatures; note the different vertical
scales between the panels. The inset in (a) shows the p,.(B) behavior
at 1.8 K; the arrows mark the change in slope. The straight lines
in (a) and (b) are fits to the linear part, while the solid lines in
(c) are fits of the low-field part to the classical aB?/(1 + bB?) law.
(d) Temperature dependences of the magnitude of MR at 9 T (left
axis) and the carrier density calculated from Ry at each T (right
axis). (e) Plot of the magnitude of MR at 9 T vs the transport mobility
W, which changes with T'.

in p,x(B) than in p,,(B), so we mainly used the former for the
following analysis. Figure 4(a) shows SdH oscillations in p,,
for varying magnetic-field angles 6 after removing the linear
background. The Fourier transform gives only one frequency,
whose dependence on 6 is shown in Fig. 4(b); these data reveal
a very small spherical (isotropic) Fermi surface (FS).

The averaged frequency F = 12 T gives the FS radius
k3P =1.9 x 10° cm™! and the carrier density nsgy = 2.4 x
10'7 cm™3 [42]. From the temperature dependence of the os-
cillation amplitude at & = 0° [Fig. 4(b) inset], we obtain m, =
0.14m, (m, is the free electron mass) by using the Lifshitz-
Kosevich (LK) theory [43]. This allows us to determine the
Dingle temperature Tp, which is plotted in Fig. 4(c) as a
function of 6. Its average value, Tp = 4.1 K, gives the quantum
scattering time 7, = h/(2rkpTp) = 3 x 1013 5. This is to be
compared with the transport scattering time 7, = 3.7 x 107125
assessed from u,; the difference, which in this case is about
ten times, is usually associated with the difference in the rates
between forward and backward scatterings [44]; apparently,
small-angle (forward) scatterings are predominant in TIBiSSe,
which happens when scattering is mainly due to weak disorder.
Other parameters of interest are obtained as follows: the
quantum mobility u, = et,/m. ~ 3500 cm?/V s, Fermi ve-
locity vy = hkr/m. = 1.6 x 10° m/s, and the Fermi energy
(measured from the Dirac point) Er = hvpkr = 20 meV.

Important information derived from SdH oscillations is the
Berry phase [4,45,46]. We made the Landau-level (LL) index
plot based on the positions of minima and maxima in oy, [47]
as a function of 1/B [Fig. 4(d) inset]. In a system with 3D
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FIG. 4. (Color online) SdH oscillations in sample S3. (a) SdH
oscillations in py, vs 1/B at 1.8 K for various magnetic-field
directions. The equidistant maxima are indicated by vertical lines,
with the exception of the first Landau level which shows spin
splitting, giving a g factor of 6 [31]. (b) & dependence of the
oscillation frequency; the inset shows the temperature dependence
of the oscillation amplitude for 8 = 0°, together with the fitting to
the Lifshitz-Kosevich theory which gives m./m, = 0.14. (c) 0 de-
pendence of the Dingle temperature. (d) Landau-level index plot for
oscillations in oy, measured at 1.8 K and 6 = 0°; the inset shows
the oscillations in Ao, which are obtained by subtracting a smooth
background from o,,. Following the principle in Refs. [4,47] and
assuming electron carriers, we assign the indexes N + i and N + %
to the maxima and minima in Ao, respectively. The solid line is a
linear fitting to the data, giving the intercept on the N axis of 0.34.

FS, the intercept of the index plot on the N axis is expected
to be 0 &= 1/8 for Schrodinger fermions, while it should be
1/2 £ 1/8 for Dirac fermions (the sign before 1/8 should be +
for holes and — for electrons) [45,46]. In our case, the intercept
is 0.34 [Fig. 4(d)], which is close to 1/2 — 1/8 = 0.375 and
hence is consistent with 3D Dirac electrons.

We now discuss the possible mechanism of the ob-
served large linear MR. There are several theoretical models
which predict linear MR for low-carrier-density systems.
Abrikosov [48,49] proposed a quantum interpretation of the
phenomena by assuming the system to be in the ultraquantum
limit. In our sample S3, the linear MR in the transverse
orientation (6 = 0°) sets in at ~6 T, which corresponds to
the situation when the Fermi level is in the second LL; such a
situation was previously argued to be sufficiently close to the
ultraquantum limit to observe the quantum linear MR [36-38],
and hence at first sight the Abrikosov’s model seems applica-
ble. However, an important prediction of the model is that the
linear MR should be stable against temperature as long as the
thermal broadening of the LLs is smaller than their separation,
which is given by the cyclotron energy fiw,.; in the present
case, hw, in 14 T is 133 K, whereas a strong decrease in the
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MR occurs above ~30 K [Fig. 3(d)], which speaks against the
validity of the Abrikosov’s model.

Thus we turn to other models which can predict linear
nonsaturating MR in a system with small 3D FS. A classical
one is by Herring [50], who developed a perturbation theory
for a system with weak inhomogeneity in the carrier density
and showed that the fluctuations in the Hall field will lead
to linear MR. Parish and Littlewood (PL) [51,52] proposed a
model which is valid also in the strong inhomogeneity limit
and showed that the inhomogeneity will cause distortions
in the current paths, which in turn causes the Hall field to
contribute to the MR. In this regard, the 6 dependence of the
MR [Fig. 2(b)], which suggests that only the perpendicular
component of the magnetic field is responsible for the MR,
seems to support the scenario that the linear MR originates
from the Hall field. Moreover, the data for in-plane magnetic
field rotation (described in the Supplemental Material [31]) are
also consistent with this scenario. In addition, it is suggestive
that a change in slope of p,(B) that occurs at around 5 T seems
to be correlated with a similar change in slope of py.(B) at the
same field [Fig. 3(a)].

An important clue comes from the Hall angle 8. According
to the semiclassical theory for a single-band metal, the relation
tan 0y = Pyx/Pxx = Oxy/0xx = @cT; should hold. However, if
we calculate these values for sample S3 in 14 T, tanfy =
Pyx/Pxx = 0.5, whereas w.7; = u,; B = 65. Therefore, there
is a two orders-of-magnitude difference between what is
purported to be the same parameter. This is significant, and
it strongly supports the scenario that MR is actually governed
by the Hall field rather than the scattering.

In the PL and Herring’s model, the existence of inho-
mogeneity is essential. However, in our samples, good crys-
tallinity and the absence of compositional segregations were
confirmed by x-ray and EPMA analyses, respectively [31].
Also, the average donor distance lipp = ngdlf =15 nm and
the Debye screening length Ipepye = 3 nm [53] are both short;
thus, the low temperature mean free path £ = vpt; = 600 nm
does not support the impurities to be the source of strong
inhomogeneity. While the linear relation between MR and p,
[Fig. 3(e)] is along the lines with the prediction of the PL
model, the decline of the mobility in this case is due to phonon
scattering and is not related to inhomogeneity. Therefore, while
the Hall field appears to be the fundamental source of the linear
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MR, the actual mechanism to bring about such a situation is
an open question. It is fair to note that the magnetoresistance
behavior in narrow- or zero-gap semiconductors are generally
not well understood, but the phenomenology in the present

case is a unique one. )
Finally, we mention that in a recent work on another

3D Dirac system, Cd3As,, gigantic MR was found in high-
mobility samples (with 1, > 107 cm?/V s) [54]. This effect
stems from a mysterious protection from backscattering [55]
that is strong only along k,, as reflected in the large resistivity
anisotropy pyy/pxx 2 30. In multidomain samples with p, >~
10* cm?/V s, large linear MR was observed, but it starts from
a very low field and it persists to 300 K, both of which suggest
that it is in line with the PL model. Importantly, even in
the high-mobility Cd3As, samples, 7, (which reflects lattice
disorder) is ten times shorter than in TIBiSSe, suggesting
that Cd;As; is inherently dirtier due to lattice disorder [54].
Hence, the transport in CdsAs; is apparently complicated by
material-specific issues. In contrast, TIBiSSe does not present
mysterious protection from backscattering, its lattice is much
cleaner, and it has only one Dirac node, all of which suggest
that TIBiSSe is a simpler system to study the generic properties
of 3D Dirac fermions.

In summary, we found that in the 3D Dirac semimetal
TIBiSSe, a reduction in carrier density n leads to a rapid
increase in the transport mobility i, and transverse magnetore-
sistance (MR). In samples with n >~ 10" cm™3, u, becomes
5 x 10* cm?/V s and linear MR whose magnitude reaches
almost 10 000% in 14 T was observed at 1.8 K. This linear MR
is governed by the perpendicular component of the magnetic
field, and the large discrepancy between tan 6y and w, t; points
to the scenario that the Hall field is the fundamental source of
the linear MR. Nevertheless, inhomogeneity does not seem
to play an important role here, and the exact mechanism to
produce the large liner MR is yet to be elucidated.
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