
Evolving priority rules for resource constrained project
scheduling problem with genetic programming

Mateja D̄umića,∗, Dominik Šǐsejkovićb, Rebeka Čorića, Domagoj Jakobovićc

aDepartment of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia
bInstitute for Communication Technologies and Embedded Systems,

RWTH Aachen University, Germany
cFaculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Abstract

The main task of scheduling is the allocation of limited resources to activities
over time periods to optimize one or several criteria. The scheduling algorithms
are devised mainly by the experts in the appropriate fields and evaluated over
synthetic benchmarks or real-life problem instances. Since many variants of the
same scheduling problem may appear in practice, and there are many schedul-
ing algorithms to choose from, the task of designing or selecting an appropriate
scheduling algorithm is far from trivial. Recently, hyper-heuristic approaches
have been proven useful in many scheduling domains, where machine learning
is applied to develop a customized scheduling method. This paper is concerned
with the resource constrained project scheduling problem (RCPSP) and the de-
velopment of scheduling heuristics based on Genetic programming (GP). The
results show that this approach is a viable option when there is a need for a cus-
tomized scheduling method in a dynamic environment, allowing the automated
development of a suitable scheduling heuristic.

Keywords: genetic programming, resource constrained scheduling,
hyper-heuristics
2010 MSC: 00-01, 99-00

1. Introduction

Scheduling is a process that deals with the allocation of resources to tasks
over given time periods. It is used on everyday basis in many manufacturing
and services industries. The task of scheduling is to optimize one or more
objectives. Often, the process includes some limitations like the capacity of5

vehicles, working time of employees, limited funds etc.

∗Corresponding author
Email addresses: mdjumic@mathos.hr (Mateja D̄umić),

sisejkovic@ice.rwth-aachen.de (Dominik Šǐsejković), rcoric@mathos.hr (Rebeka Čorić),
domagoj.jakobovic@fer.hr (Domagoj Jakobović)

Preprint submitted to Journal of LATEX Templates October 6, 2018

The focus of this work is on one of the scheduling problems with limitations
- the resource constrained project scheduling problem (RCPSP). RCPSP is a
problem with two kinds of constraints - precedence and resource. One job can
require other activities to be completed before it starts with processing. All jobs10

need resources in various amounts, and resources are limited. The goal of solving
RCPSP is to schedule all jobs in a given project in way that all constraints are
met, and one or more criteria are optimized.

Many real life problems can be formulated as RCPSP, and due to the fact
that RCPSP is very hard to solve, many solving methods were developed. The15

decision of which solving method to use must be made depending on the problem
characteristics. Usually, solving methods can be divided into two groups - exact
methods and heuristics. Exact methods are impractical on problems which
have a large number of jobs to schedule, so the heuristic methods are mostly
used. Some heuristic methods show better results on specific problem instances,20

but no heuristics that are good for all problems exist (proven by the No free
lunch theorem [1]). Because of that there are some authors that try to combine
different heuristic approaches. A common example of this approach are genetic
algorithms combined with local search methods.

Since heuristic methods give good results only when applied to problems25

containing specific characteristics, thereby being application specific, there is a
need to rise to a higher level of solving - searching the space of solving methods,
and not searching the solution space. This is why hyper-heuristics are being
developed. Genetic programming (GP) is one of algorithms that can be used as
a hyper-heuristic which produces new heuristics. This paper demonstrates the30

use of GP as a hyper-heuristic to evolve appropriate scheduling heuristics for
the RCPSP.

The paper is organized as follows: in section 2 a definition of RCPSP is
given, while in section 3 a brief overview of methods for solving RCPSP is
given. Section 4 describes how GP can be used in evolving new scheduling35

heuristics in form of priority rules. The results are presented in section 5, and
short conclusion and future research directions are given in section 6.

2. RCPSP

In general, the resource constrained project scheduling problem considers
activities and resources. Activities have known durations and resource demands,40

while resources are of limited availability. Additionally, activities are linked by
precedence relations. The problem consists of finding a feasible schedule with
minimal total duration by assigning start times to each activity such that the
precedence and resource constraints are satisfied.

All activities constituting the project are defined by the set A = {A0, . . . , An+1}.45

By convention the activities A0 and An+1 represent the start and the end of a
schedule. These activities are usually referred to as dummy activities. Duration
of activity Ai is pi, and duration of both dummy activities is 0. An activity
can not be interrupted once it is started. This property is referred to as not
allowing preemption.50

2

The precedence relation is given by the set E which defines pairs such that
(Ai, Aj) ∈ E means that activity Ai precedes activity Aj . Additionally, we
assume that A0 precedes all other activities and that An+1 succeeds all other
activities.

Generally, resources can be categorized as renewable, non-renewable and55

doubly-constrained [2]. In this article we shall work exclusively with renewable
resources which are available at any given time with full replenishment capacity.
Each activity has demands on resources and in order for an activity to execute,
all demands have to be satisfied.

In the most of cases, goal of the problem is to minimize makespan, i.e. total60

project duration time, but objective function can be anything else like profit
maximization, the uniform use of resource etc.

To make problem easier to solve for each activity in the problem instance
a variety of properties can be calculated to define the time-frame in which a
specific activity can be scheduled. Let the set of all activities that can be
scheduled at a given time t be defined as E(t) - the set of eligible activities at
time t. Then we can define E(t) as follows:

E(t) = {Aj : Aj ∈ A,ESj + 1 ≤ t ≤ LFj}, (1)

where ESj stays for the earliest start time of activity Aj , and LFj for the latest
finish time of activity Aj . i.e. each activity Aj can be scheduled and executed
in the given time frame between its earlier start and latest finish time, where65

we assume integer time values. More about how to calculate this time-frame for
each activity can be found in [3] with remark that the aforementioned calcu-
lation procedures assume unlimited resources and rely only on the precedence
relations.

The concrete difficulty of a RCPSP instance depends upon many different70

parameters of which the following are mentioned as most important in litera-
ture [4]: network complexity (NC) and the effect of resources: resource factor
(RF) and resource strength (RS). Experiments conducted by Kolisch et al. [5]
show that a negative but very weak correlation exists between the network com-
plexity and the project execution time, while a great magnitude of a positive75

correlation between the resource factor and execution time exists as for a neg-
ative correlation between the resource strength and the execution time.

3. Previous work

RCPSP was introduced in 1963. by Kelley. Even though it is a more than 50
years old problem, it is still interesting and new solving methods are still being80

developed. According to the computational complexity theory, the RCPSP is
one of the most intractable combinatorial optimization problems and belongs
to the class of NP-hard problems [6]. RCPSP solving methods can generally be
divided into exact and heuristic approaches [4].

Exact solving approaches search the complete space of feasible solutions and85

therefore guarantee optimality [7]. But the search space is often of impractical

3

size which makes such approaches almost useless for a very large number of
problem instances [8]. However, in literature there are few examples of exact
algorithms that produce good results on small problem instances like mathe-
matical planning [9] and numerical methods like dynamical programming [10].90

Exact algorithms can be divided into the following four main categories: Inte-
ger Programming ([3, 11]), Implicit Enumeration ([12, 13]), Branch-and-bound
([14, 15]), Dynamic Programming ([16]).

As exact methods are generally not applicable for larger problem instances,
many different heuristic approaches have been developed. Heuristics differ from95

exact methods by searching only a part of the solution space which offers possible
better performance in a given time frame but not optimality. Nevertheless, in
most cases generating a feasible and good enough solution is far more important
than optimality. Therefore heuristic approaches are a popular and useful option
for solving the RCPSP.100

Known scheduling heuristics for solving the resource constrained project
scheduling problems can further be classified into two categories: priority rule-
based methods (or constructive heuristics) and metaheuristic-based approaches
(or improvement heuristics) [17].

The first class of methods always starts with no scheduled activity. Con-105

struction of a complete schedule is controlled by combination of schedule gener-
ation scheme ([18]) and priority rules ([17]). The general idea is that the SGS
builds a schedule from scratch taking resource and precedence constraints into
account. During the building process, the SGS upgrades partial schedules until
all activities are scheduled and a complete feasible schedule is generated. Which110

activity SGS is going to schedule next depends on priority rule. In the liter-
ature, two different schedule generation schemes are available: the serial SGS
and the parallel SGS. Both schemes generate feasible schedules but differ in the
way activities and time is handled throughout the procedures. More about SGS
can be found in [18].115

The second class of methods is applied to initial complete solutions with
the goal of achieving improvement in terms of a selected criterion. The main
representatives of this category are genetic algorithms [19, 20], tabu search,
simulated annealing [21], ant colony optimization [22] and others.

One of the heuristic methods, that is not mentioned yet, is Genetic pro-120

gramming (GP). In the last 15 years GP was used in scheduling and achieved
good results. GP has been used for wide variety of environments like single ma-
chine scheduling [23, 24], multiple machine scheduling [25], job shop scheduling
[26, 27, 28], unrelated machine environment [29]. In scheduling GP is mostly
used for evolving dispatching rules (priority functions) and recently Branke et al.125

[30] brought the survey of GP approaches used in scheduling. Also in literature
we can find comparison of different rule representation [27, 31], and compari-
sion with human-produced results [32]. GP is also interesting because it offers
a bridge between the mentioned two heuristics classes: GP is a metaheuristic-
based approach capable of evolving priority rules used in incremental schedule130

generation. Rather than searching the space of schedules, the GP may be used
to search for an appropriate priority rule to generate schedules. This approach,

4

also known as hyper-heuristic [33, 34], may be efficient in cases where different
conditions and user-defined criteria make it nontrivial to choose an adequate
priority rule from existing ones. It is important to notice that GP is mostly135

used in dynamic environment, because once evolved rule can be used for differ-
ent problem instances, and give result in short time that is not case with other
above mentioned heuristics.

Despite of good results in scheduling, to our best knowledge, only one ar-
ticle [35] where GP is used for RCPSP exists in literature. In this article GP140

was shown as good approach for designing rules which are fast and can be used
in dynamical environment which is important because lot of real-life situations
demand quick reaction and quick decision. Our approach is different from ap-
proach in this article in way of producing more exhaustive terminal and function
set which results with improvement of fitness. Also, we made comparison with145

best known priority rules in literature, not with other metaheuristic methods,
because priority rules are mostly intended for usage in dynamic rules and their
advantage is not in small deviation from best known result, but in fast and good
enough result, so comparison with other schedule improvement metaheuristics
would not be fair.150

4. Priority Resource Constrained Scheduling With Genetic Program-
ming

Functionally, Genetic Programming (GP) is an evolutionary algorithm in-
spired by biological evolution which aims to find computer programs that per-
form a user-defined computational task. It is therefore a machine learning tech-155

nique that searches the solution space of programs instead of actual solutions to
problem instances. GP is able to evolve higher-level solutions (programs) that
can be applied to generate solutions to a variety of problem instances.

In our approach, GP is used to generate appropriate priority functions that
govern the selection of activities to be scheduled at the given moment in time.160

This allows the customization of the scheduling algorithm, because different
tailor made priority functions can be evolved for any concievable scheduling
criteria. Unlike the priority rule, the schedule generation scheme is defined
manually; note that different priority functions may be used within a single
SGS.165

As GP is a machine learning technique, it is necessary to provide a learning
set upon which GP can evolve priority functions that can be used in combination
with a schedule generation scheme to form a list of activities and provide a
feasible complete schedule of good quality. The priority function is used to
calculate activities’ priorities which are used to prioritize certain activities in170

the selection process of a given SGS.
The main goal is to evolve appropriate priority functions on a selected learn-

ing set and successfully apply them to any new project instance, even outside
the learning set. Even though the process of evolving a quality priority function
takes longer time than actually finding a solution to a given project instance,175

5

the resulting priority function can afterwards be used for generating schedules
for any instance in a matter of milliseconds.

In order to create a flexible and customizable development-experimental
environment a hyper-heuristic model was devised and implemented to evolve
appropriate scheduling heuristics for the RCPSP using genetic programming.180

To ease the usage of available GP implementations, the concrete implemented
model is coupled with ECF (Evolutionary Computation Framework) [36] and
written using the C++ programming language.

4.1. RCPSP Terminal and Function Set

In order for GP to be expressive and have the tools to evolve intelligent185

solutions, it is necessary to define an appropriate and domain-specific terminal
and function set. The defined function set comprises of basic arithmetic and
logic operators as well as some custom ones as shown in Table 1. It is up to GP
to use these operators to build more complex and meaningful operations.

Table 1: GP Function Set

Function name Definition
+, -, * addition, subtraction and multiplication

/ Protected division: DIV (a, b) =

{
1, |b| < 0.000000001
a
b , otherwise.

MAX MAX(a) =

{
a, a > 0

0, otherwise.

POS POS(a) =

{
a, a > 0

−a, otherwise.

NEG NEG(a) = −a

IF IF (a, b, c) =

{
b, a > 0

c, otherwise.

Choosing an appropriate terminal set is a far more comprehensive task, espe-190

cially in terms of RCPSP. In general, domain-specific terminals can be divided
into two categories: static and dynamic terminals. Each of these categories can
further be divided into project-specific and activity-specific terminals. Project-
specific terminals include terminals which are specific for a project instance and
depend only on the general project properties and not on specific activities.195

Activity-specific terminals are terminals which reflect properties specific to a
concrete activity.

Static terminals do not change during execution, which means it is possible
to calculate their values only once before the scheduling begins. The complete
set of static terminals is presented in table 2.200

6

Table 2: Static Terminal Set

Category Terminal Description

Project-specific

RF resource factor
RS resource strength
TNA total number of activities (not including dummies)
TD total project duration (horizon)

Activity-specific

D activity duration
RR number of required resources
RRT RR times quantity required for each resource
ARU average resource usage
DPC number of direct predecessors
DSC number of direct successors
TPC total number of predecessors
TSC total number of successors
SPC number of stages (levels) in predecessors’ tree
SSC number of stages (levels) in successors’ tree
GRPW* greatest rank positional weight all
ES earliest activity start
EF earliest activity finish
LS latest activity start
LF latest activity finish

7

Table 3: Dynamic Terminal Set

Category Terminal Description

Project-specific

NUA number of unprocessed activities
NAA number of active activities
NPA number of processed activities
SUD sum of durations of unprocessed activities
SAD sum of durations of active activities
SPD sum of durations of processed activities

Activity-specific
NSP number of scheduled predecessors
SL slack: max(EF −D − time,0)

Dynamic terminals are more flexible and their value can change according
to the current state of activities and resources. Therefore, if dynamic terminals
are used, it is necessary to recalculate priorities of certain activities during
execution. The set of used dynamic terminals is given in table 3.

4.2. Custom SGS205

While the priority functions are evolved with GP, the SGS in this work is
defined manually, based on existing RCPSP schemes. In this work three custom
SGS versions are devised and implemented. Two versions are based on the
parallel SGS while the third is an implementation of the serial SGS. Complexity
of SGS does not change by this customization and for both, serial and parallel210

SGS, is O(n2 · |R|), where |R| stands for number of resources [37].
The first implementation features a parallel SGS with inserted idleness. This

version selects the highest priority activity and schedules other activities only
if they do not delay the start of the selected activity. This is true only if the
highest-priority activity can be scheduled at a given time as the eligible set only215

takes the precedence constraint into account while the resource constraint is
resolved dynamically during the scheduling process. The property that allows
a certain activity to be delayed and scheduled at a later point is called inserted
idleness. This approach is presented as Algorithm 1 .

8

Algorithm 1 Custom Parallel SGS with inserted idleness

Input: prFunc - priority function, A - set of activities, p - vector of activities’
duration, B - vector of resources’ availabilities, D - activity demands on
resource, G - precedence relation

if prFunc has no dynamic terminals then
calculate priorities for A

end if
while some activity from A is not proccessed do

find set of eligible activities E
if prFunc has no dynamic terminals then

calculate priorities for A
end if
Sort E by priority
find next possible scheduling time tnext for first activity in E
for i to |E| do
Ai = E[i]
if i > 0 Ai create delay then

continue
end if
if resource are available for Ai then

Schedule Ai
end if

end for
Skip to next time

end while

Output: S - vector of starting time for each activity

The second version of a parallel SGS is very similar but does not include220

idleness. Therefore, activities are scheduled (when possible) by priority without
special focus on the activity with the highest priority. This version is shown as
Algorithm 2.

9

Algorithm 2 Custom Parallel SGS with no inserted idleness

Input: prFunc - priority function, A - set of activities, p - vector of activities’
duration, B - vector of resources’ availabilities, D - activity demands on
resource, G - precedence relation

if prFunc has no dynamic terminals then
calculate priorities for A

end if
while some activity from A is not proccessed do

find set of eligible activities E
if prFunc has no dynamic terminals then

calculate priorities for A
end if
Sort E by priority
find next possible scheduling time tnext for first activity in E
for i to |E| do
Ai = E[i]
if resource are available for Ai then

Schedule Ai
end if

end for
Skip to next time

end while

Output: S - vector of starting time for each activity

The parallel SGS versions are of particular importance as they are built
upon a time-incrementation approach which is easily applicable in dynamic225

conditions.
Another approach concerns the serial SGS. Here no special customizations

of the usual serial SGS are made, with the only difference that the implemented
serial SGS supports dynamic activity calculation. Here it is important to note
that the implementation performance of the parallel SGS in our experiments230

outperforms the serial SGS by far. This is due to the need of the serial SGS to
check resource and precedence constraints for each time moment of an activity’s
duration, which is a very demanding operation.

Also, since the serial SGS is based on activity-incrementation it is therefore
not suitable for use in dynamic conditions, at least not in its primal form.235

4.3. The Learning and Test Set

As a machine learning technique, GP needs a selected learning set to learn
and evolve results of expected quality. In this work existing problem sets were

10

Table 4: Data set values range.

Property name Values
Number of activities {30, 60, 90, 120}
Network complexity {1.5, 1.8, 2.1}
Resource factor {0.25, 0.5, 0.75, 1.0}
Resource strength {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0}

used from the project scheduling problem library (PSPLIB1) [38] which contains
various types of synthetic resource constrained project scheduling problems as240

well as optimal and heuristic solutions.
The existing project instances are of different properties differing in the

number of activities, network complexity, resource factors, resource strengths
and project horizon. The range and various values of the used instances is
presented in Table 4.245

Here the first step is to decide upon a large enough learning set that will
cover a variety of instances with different properties. While the total number
of available project instances is slightly greater than 2000, a learning set of 56
representative instances has been established that covers variants of property
values in Table 4.250

The second step includes establishing a large enough test set containing
instances the algorithm has not seen before during the learning phase. As
the test set all available instances without the selected learning set are used,
comprising a test set of 1984 instances.

4.4. Optimization Criterion255

A crucial step in using evolutionary computation techniques is modelling
the fitness function. There are many different criteria that can be analysed in
the RCPSP as TWT (total weighted tardiness), ETw (weighted earliness and
tardiness), total weighted completion time and others. The initial experiments
focus on the project makespan.260

As project instances differ in the number of activities (30 to 120) and their
hardness (in terms of finding good solutions) it is advisable to define a fitness
function that is normalized accordingly, meaning that it gives the same range
of values for any project instance.

In this approach, we include the number of activities across different in-
stances, so the following fitness function is used:

fi =
Ci

pavgi · √ni
, (2)

1http://www.om-db.wi.tum.de/psplib/

11

where fi is the fitness value of the ith problem instance, Ci the achieved makespan,265

pavgi the average activity duration and ni the number of activities for project
instance i. One could argue about the selected division with

√
ni as being a

subjective measure, but a handful of tests for a variety of project instances and
measures proved this decision valid, since normalized values are achieved for the
whole range of used instances.270

As GP learns on base of a learning set containing more than one project
instance, the final fitness value is determined on behalf of the achieved values
of all projects as follows:

fk =

∑N
i fi
N

=

∑N
i

Ci

pavg
i ·√ni

N
, (3)

where fk is the fitness value for one individual solution for all projects in a
given set with N instances. As can be seen from the selected equation, in each
evaluation step only the value Ci is subject to change while all other values are
constants. Therefore, the goal to find the minimal fk reflects in favouring ever
smaller values of Ci.275

4.5. Variable Optimization Criteria

Another beneficial aspect of the GP approach for solving the RCPSP is the
ability to easily target any optimization criterion by simply changing the fitness
function.

Even though the makespan criterion is mainly targeted in this work, here we280

present three other possible optimization criteria which can be simply inserted
into the existing framework: the total weighted completion time (4), the uniform
use of resource (5) and the net present value (6). In (5) RFi(t) stands for
number of units of resource i used in time period t, and cFi in (6) is cash-
flow for activity i. Test results for this criteria will also be given in this work.285

This optimization criterion variability contributes to the benefits of the genetic
programming approach.

1

n

n∑
i=1

wiCi, (4)

1

r

r∑
i=1

T∑
t=1

(RFi(t)−RFi,avg)
2
,

RFi,avg =
1

N

T∑
t=1

RFi(t), i = 1, . . . , r.

(5)

1

n

n∑
i=1

cFi e
−αCi . (6)

12

5. Experimental Results

5.1. Initialization

As in other EC techniques, the GP working environment is also coupled290

to the necessity of finding good parameters for the underlying algorithms and
domain-specific evaluator where every decision should be supported by an ex-
tensive round of experiments.

Initial Parameters. Before any experiments can be conducted it is necessary
to define an initial set of parameters to start with. In terms of GP, a set of295

used terminals and functions must be decided upon and the basic algorithmic
parameters must be set. Initially, all available functions are used for the function
set, while a subset of activity-specific and project-specific terminals are used to
form the initial terminal set (see table 5).

Table 5: Initial function and terminal set.
Functions +, -, *, /, MAX, POS, NEG, IF
Terminals GRPW*, DSC, RS, RR, ARU, TPC, NSP

Additionally, the basic evolution parameters have to be set. Here a Steady300

State Tournament algorithm is used with the parameters given in table 6. In
this algorithm, three individuals are selected randomly in each iteration and
the worse one is eliminated. The remaining two are used as parents to produce
a new individual to replace the eliminated one. The new individual is then
mutated with given mutation rate. This configuration is used for the first round305

of experiments in dataset selection and convergence analysis.

Table 6: Initial EC parameters.

Tournament size 3
Tree max depth 7
Mutation probability 0.3
Population size 500
SGS type PSGS (inserted idleness)

Convergence Analysis. The first step in the GP experimental flow is to deter-
mine the appropriate number of evaluations needed for GP to converge. This is
necessary to set the maximal number of evaluations to be used in all following
experiments. Ideally, this number should be as low as possible to save time and310

resources. Convergence analysis is done by running a set of N experiments for
which the terminal condition is set to be an excessive number of evaluations.
After plotting the generated values, one can easily determine the appropriate
number of evaluations to be used in further experiments. In this work for the
selected learning set of 56 instances two rounds of experiments have been con-315

ducted, one for each type of parallel SGS (with and without inserted idleness).

13

Each round consists of 30 separate runs with the terminal evaluation number
set to 106.

The convergence results for both algorithms, showing minimum, maximum,
average and median population value, are given in figures 1 and 2 using 100320

time points.

Figure 1: Convergence for the parallel SGS with inserted idleness.

Figure 2: Convergence for the parallel SGS with no inserted idleness.

As can be seen in the figures, the greatest fitness value change happens in
the first 2 · 105 to 3 · 105 evaluations. Therefore, the maximum evaluations
termination number is set to 2.5 · 105 evaluations. This value is further used in
the process of feature selection.325

14

Feature Analysis. The goal of this procedure is to filter functions and terminals
which are most important and beneficial for the evolution and to eliminate
those which do not present any useful information source. The selection of
terminals starts with an empty set of terminals (disregarding the initial set that
was used for parameter tuning). The process then iteratively chooses from the330

unused terminals and puts the selected one in the set of terminals. Afterwards,
a complete evolution is executed using the current terminal set. If the achieved
fitness is greater after adding the selected operator, the operator is left in the
set, otherwise it is removed. The procedure is repeated as long as there is an
operator that can improve fitness. After this process, terminals TNA, RRT,335

DPC, DSC, TPC, TSC, SPC, SSC, GRPW*, EF and NSP have been selected.
Notice that the majority of the selected terminals are static activity-specific
terminals, while the only dynamic terminal is NSP.

Parameter Optimization. The final set of selected parameters for GP is shown
in table 7.340

Table 7: Final selected algorithm parameters.

Population size 1000
Mutation probability 0.3
Tree max depth 7

5.2. Test Results - Makespan

After initialization each algorithm was run 50 times. The result of each run
is one priority rule. One example of a priority rule is given in Figure 3.

RRT + POS

(
MAX

(
EF

SSC

)
−

NSP

SPC

)
−

NEG (SSC) +
MAX

(
EF

TSC

)
POS (DPC) · TSC · DPC

·TSC

Figure 3: Example of priority rule evolved with GP

The best evolved rules on the learning set are then used to generate schedules
for the unseen test set of problem instances, on which the final criteria are345

recorded. The results achieved by all three versions of SGS can be seen in Table 8
and in the box plot representation given in Figure 4. From the presented results
it can be seen that PSGS1 achieves better results than the other two algorithms.

5.3. Comparison With Existing Heuristics

In order to examine the quality of the generated solutions, it is necessary350

to compare them to the best known heuristics which in this case are human-
made priority rules. The reason for comparing GP solutions only with priority
rules and not with other meta heuristics is that GP is developing a priority rule
which is afterwards used in dynamic conditions, while other meta heuristics deal

15

Table 8: Fitness value achieved by GP.

Algorithm Min Avg Max StDev
PSGS 2.08186 2.092656 2.11355 0.005545
PSGS1 2.05499 2.063861 2.08976 0.007034
SSGS 2.07644 2.083652 2.10301 0.005432

Figure 4: Box plotes for results achieved by GP.

16

only with static conditions. For this reason, a few well known scheduling rules355

are selected and applied to the aforementioned test set. The description of all
benchmark heuristics can be found in Table 11.

For easier comparison, all results are presented in two tables, where the
results in Table 9 show heuristic and GP achievements for the learning set, while
the Table 10 presents achievements for the test set. Here the best available GP360

solution for each SGS version on the test set is used to calculate the given values.

Table 9: Heuristic and GP results for the learning set.

Heuristics PSGS PSGS1 SSGS
GRPW* 2.2394 2.2098 2.2184
LST 2.2403 2.2043 2.2212
LFT 2.2324 2.1920 2.2236
GRPW 2.3780 2.3632 2.4339
SPT 2.4764 2.3720 2.5958
MSL 2.3680 2.3297 2.3664
MIS 2.3050 2.2560 2.3505
MTS 2.2382 2.2086 2.2483
GP 2.1947 2.1465 2.1818

Table 10: Heuristic and GP results for the test set.

Heuristics
PSGS PSGS1 SSGS

Fitness value Domination Fitness value Domination Fitness value Domination
GRPW* 2.0968* 54.13% 2.0711* 56.20% 2.0915* 59.88%
LST 2.0867 19.46% 2.0634 21.57% 2.0803 18.65%
LFT 2.0927 19.61% 2.0635 21.32% 2.0947* 18.75%
GRPW 2.2085* 29.39% 2.1854* 31.70% 2.2570* 26.76%
SPT 2.2879* 26.31% 2.2209* 27.62% 2.4083* 24.40%
MSL 2.1694* 19.71% 2.1387* 21.77% 2.2035* 18.65%
MIS 2.1752* 30.14% 2.1399* 33.87% 2.2116* 28.23%
MTS 2.1144* 43.95% 2.0815* 49.45% 2.1154* 46.82%
GP 2.0819 67.24% 2.055 70.06% 2.0764 76.51%

The comparison clearly shows that the best solutions evolved by GP achieve
better results for all SGS versions than priority rules from literature. For those
priority rules that are statistically worse (p-value less than 0.01) than priority
rules evolved by GP a * sign is put next to the fitness value. The rules ob-365

tained by all versions of SGS have significantly better results than rules GRPW,
GRWP*, SPT, MLS, MIS and MTS, while for SSGS GP result is also signifi-
cantly better than the result obtained by LFT. Table 10 introduces a column
named Domination which shows the percentage of problem instances in which
a given method obtained the best result (which more than one heuristic may370

obtain).

17

Table 11: Priority rules definition.

Priority rule Description Sort type Priority value
GRPW* Greatest rank positional weight all max dj +

∑
i∈F∗

j
di

LST Latest starting time min LSj
LFT Latest finish time min LFj
GRPW Greatest rank positional weight max dj +

∑
i∈Fj

di
SPT Shortest processing time min dj
MSL Minimum slack time min LSj − ESj
MIS Most immediate successors max |Fj |
MTS Most total successors max

∣∣F ∗j ∣∣
Additionally it is interesting to see the difference between the achieved results

for all project instances in the test set and the best known results in terms of
makespans. This comparison is given in figure 5 where the results are achieved
by the parallel SGS with no inserted idleness as this SGS proved to generate375

best results.

Figure 5: Best known and achieved results differences (PSGS1).

In the given figure, the blue line marked with squares represents the projects’
horizon values, the orange line marked with rotated squares represents best-
known solutions, the grey line marked with triangles represents the results
achieved with the GP solution and finally, the yellow line marked with circles380

represents the absolute difference between best-known and achieved results.
One can notice that the overall difference between best known and achieved

results differentiates only in small amounts, proving that the GP solutions give
high-quality results for any instance in the test set. Also it is worth mentioning
that the gap between achieved makespans and the maximum total project du-385

rations (horizons) is relatively large for all project instances without exception.

18

This indicates that genetic programming is capable of evolving solutions which
will tend to generate high-quality schedules for a variety of different project
instances.

5.4. Comparison with GA390

Although it is already mentioned that it is only fair to compare GP with
existing human-made priority rules (which is given in previous subsection) for
the sake of completeness we also give a brief comparison of our results and
the results obtained by using genetic algorithm (GA). For the GA, tests were
conducted on test set comprising of 20 randomly chosen problems from PSPLIB395

problem set. Test instances had 30, 60, 90 and 120 activities. Table 12 shows
optimal makespan, makespan obtained with GA (the best found solution over
all runs) and makespans obtained by using all three versions of SGS for every
test case. The last row of the table shows fitness value of the entire subset of
problems that was selected for comparison. Genetic algorithm implementation400

is the same as in [39]. We used permutation representation and as a stopping
criterion we used maximum number of generations which was set to 80.

The table shows that GA almost always finds optimal solution, while GP
fails to do that in more instances. But, if we want to use GA for solving some
problem, we have to know all the activities and their properties in advance and405

with regard to those properties try to find optimal solutions for every problem
separately. We need to select representation for an individual, make initial pop-
ulation and run several generations in order to get the solution, which is much
more time consuming than simply applying priority rule on a given problem.
Furthermore, the GA cannot be easily applied in dynamic conditions where one410

may need to take into account variable activity properties while the project is
being executed. It can also be noticed that solutions obtained by using GP do
not deviate too much from optimal solutions and so they are good enough for
application in practice when it is important to get a good enough solution very
quickly.415

19

Table 12: Comparison of makespan achieved by GA and GP

InstanceNo OptimalSolution GA solution SSGS PSGS PSGS1
1 39 39 42 41 41
2 54 54 54 54 54
3 42 42 49 43 43
4 36 36 36 36 36
5 46 46 49 50 47
6 69 69 70 75 73
7 71 71 71 72 72
8 103 105 118 119 114
9 77 77 77 77 77
10 71 72 80 76 80
11 92 92 92 92 92
12 111 116 131 133 121
13 85 85 85 85 85
14 126 126 126 126 126
15 160 165 189 186 179
16 95 96 111 107 104
17 72 72 72 77 75
18 102 105 116 116 113
19 104 104 104 107 109
20 101 103 107 109 106

Fitness 1.80107 1.82259 1.95761 1.94865 1.91704

5.5. Test Results for Other Criteria

The optimization criterion variability allows us to easily apply the GP for
different optimization criteria. The tests for the additional three optimization
criteria were performed: the total weighted completion time (4), the uniform
use of resource (5) and the net present value (6). The terminal AW (activity420

weight) was added into the terminal set since weight information is relevant
in the first criteria. This terminal is used for the cash-flow of an activity in
the net present value. Results for each of these criteria are presented in two
tables, where the results in the first table show heuristic and GP achievements
for the learning set, while the second table presents achievements for the test425

set. Same as for makespan, the best available GP solution for each SGS version
is used to calculate the given values. Table 13 and table 14 show results for
the total weighted completion time criteria. Results for the uniform use of
resource are shown in table 15 and table 16 and results for the net present
value are in table 17 and table 18. The comparison clearly shows that the430

best solutions evolved by GP for this criteria also achieve better results than
most of the existing priority values for all SGS versions. The total weighted
completion time criterion results for the test set show that the best solutions
found by GP are better than solutions found by existing priority functions for
all SGS versions, while only in serial SGS version GRPW* and MTS priority435

20

rules for the uniform use of resource criterion, and LST, LFT and MSL for the
net present value criterion achieve slightly better results.

Table 13: Heuristic and GP results for the learning set for the total weighted completion time
criteria.

Heuristics PSGS PSGS1 SSGS
GRPW* 24.516 24.045 24.579
LST 27.736 26.746 29.647
LFT 27.605 26.850 29.441
GRPW 25.869 25.502 26.448
SPT 26.598 26.290 26.692
MSL 27.733 26.834 29.644
MIS 24.587 24.013 25.205
MTS 24.231 23.756 24.453
GP 24.275 23.022 24.186

Table 14: Heuristic and GP results for the test set for the total weighted completion time
criteria.

Heuristics PSGS PSGS1 SSGS
GRPW* 23.134 22.679 23.390
LST 25.469 24.839 27.393
LFT 25.509 24.902 27.312
GRPW 24.237 23.850 24.784
SPT 24.746 24.483 24.844
MSL 25.375 24.707 27.365
MIS 23.401 22.949 23.874
MTS 22.985 22.526 23.225
GP 22.926 22.281 23.205

Table 15: Heuristic and GP results for the learning set for the uniform use of resource criteria.

Heuristics PSGS PSGS1 SSGS
GRPW* 36076.43 35292.02 36001.97
LST 41096.56 39552.54 44254.19
LFT 40900.45 39553.89 43879.78
GRPW 38038.51 37490.00 38920.54
SPT 39519.25 38639.39 39203.33
MSL 41000.07 39572.69 44233.48
MIS 35858.62 35122.37 36759.06
MTS 35547.60 34825.03 35883.51
GP 35595.93 33452.76 36399.44

21

Table 16: Heuristic and GP results for the test set for the uniform use of resource criteria.
Heuristics PSGS PSGS1 SSGS
GRPW* 36996.12 36175.40 37462.71
LST 41327.42 40194.47 44929.59
LFT 41414.87 40265.41 44750.33
GRPW 39109.88 38424.47 40075.94
SPT 40113.85 39587.27 40141.50
MSL 41149.22 39921.09 44875.22
MIS 37393.15 36609.35 38274.28
MTS 36711.46 35872.61 37136.56
GP 36575.43 35309.24 37524.581

Table 17: Heuristic and GP results for the learning set for the net present value criteria.

Heuristics PSGS PSGS1 SSGS
GRPW* 64.839 65.266 64.755
LST 62.079 62.896 60.346
LFT 62.078 62.800 60.579
GRPW 63.456 63.916 62.921
SPT 62.811 63.119 62.710
MSL 62.070 62.831 60.331
MIS 64.760 65.332 64.211
MTS 65.119 65.547 64.955
GP 61.675 61.941 61.523

Table 18: Heuristic and GP results for the test set for the net present value criteria.

Heuristics PSGS PSGS1 SSGS
GRPW* 66.410 66.805 66.172
LST 64.584 65.096 62.939
LFT 64.529 65.016 62.999
GRPW 65.414 65.763 64.907
SPT 64.940 65.189 64.852
MSL 64.639 65.176 62.955
MIS 66.216 66.592 65.776
MTS 66.545 66.939 66.329
GP 64.472 64.842 63.842

6. Conclusions and Further Work

This paper demonstrates the application of genetic programming as a hyper-
heuristic to generate suitable scheduling heuristics for the resource constrained440

scheduling problem. The results are promising, as the GP based priority rules

22

are able to provide the best or second to best results among all the included
human-made scheduling heuristics. This is especially evident in cases where
custom optimization criteria is used, in which case the existing heuristics exhibit
varying efficiency. On the other hand, the presented approach obtains heuristics445

that perform consistently among the best for different scheduling requirements.
As future research it is planned to use GP in solving the multi-mode RCPSP.

In this work we consider only renewable resources; however, GP can also be
applied to devise heuristics for other types of resources. Additionally, ensemble
methods will be used in order to try to improve the quality of the obtained450

solution.

References

[1] D. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 4 (1997) 6782.

[2] R. S lowinski, Multiobjective network scheduling with efficient use of re-455

newable and nonrenewable resources, European Journal of Operational Re-
search 7 (3) (1981) 265–273.

[3] R. Klein, Scheduling of resource-constrained projects, Springer-Science+
Business Media LLC, New York, 2000.

[4] K. S. Hindi, H. Yang, K. Fleszar, An evolutionary algorithm for resource-460

constrained project scheduling, Evolutionary Computation, IEEE Transac-
tions on 6 (5) (2002) 512–518.

[5] R. Kolisch, A. Sprecher, A. Drexl, Characterization and generation of a
general class of resource-constrained project scheduling problems, Manage-
ment science 41 (10) (1995) 1693–1703.465

[6] J. Blazewicz, J. K. Lenstra, A. R. Kan, Scheduling subject to resource
constraints: classification and complexity, Discrete Applied Mathematics
5 (1) (1983) 11–24.

[7] M. Abdolshah, A review of resource-constrained project scheduling prob-
lems (rcpsp) approaches and solutions, International Transaction Journal470

of Engineering, Management, Applied Sciences and Technologies.

[8] P. Brucker, A. Schoo, O. Thiele, A branch and bound algorithm for the
resource constrained project scheduling problem, European Journal of Op-
eration Research 17 (1998) 143–158.

[9] R. F. Deckro, E. P. Winkofsky, J. E. Hebert, R. Gagnon, A decomposi-475

tion approach to multi-project scheduling, European Journal of Operation
Research 51 (1991) 110–118.

[10] O. Icmeli, W. O. Rom, Solving the resource-constrained project scheduling
problem with optimization subroutine library, Computers and Operation
Research 23 (1996) 801–817.480

23

[11] A. A. B. Pritsker, L. Watters, P. Wolfe, Multiproject scheduling with lim-
ited resources: A zero-one programming approach, Management Science 16
(1969) 93–108.

[12] J. Patterson, F. Talbot, R. Slowinski, J. Weglarz, Computational experi-
ence with a backtracking algorithm for solving a general class of precedence485

and resource-constrained project scheduling problems, European Journal of
Operational Research 49 (1990) 68–79.

[13] L. Schrage, Solving resource-constrained network problems by implicit enu-
meration - nonpreemptive case, Operations Research 18 (1970) 263–278.

[14] E. Demeulemeester, W. Herroelen, A branch-and-bound procedure for490

the multiple resource-constrained project scheduling problem, Management
Science 38 (1992) 1083–1818.

[15] J. P. Stinson, E. W. Davis, B. M. Khumawala, Multiple resource-
constrained scheduling using branch and bound, AIIE Transactions 10
(1978) 252–259.495

[16] S. Elmaghraby, Resource allocation via dynamic programming in activity
networks, European Journal of Operational Research 64 (1993) 199–215.

[17] R. Klein, Bidirectional planning: improving priority rule-based heuristics
for scheduling resource-constrained projects, European Journal of Opera-
tional Research 127 (3) (2000) 619–638.500

[18] R. Kolisch, Serial and parallel resource-constrained project scheduling
methods revisited: Theory and computation, European Journal of Op-
erational Research 90 (2) (1996) 320–333.

[19] S. Kadam, N. Kadam, Solving resource-constrained project scheduling
problem by genetic algorithms, Business and Information Management505

(ICBIM) (2014) 159–164.

[20] H. Ouerfelli, A. Dammak, The genetic algorithm with two point crossover
to solve the resource-constrained project scheduling problems, Modeling,
Simulation and Applied Optimization (ICMSAO) (2013) 1–4.

[21] V. Valls, F. Ballestn, Population-based approach to the resource-510

constrained project scheduling problem, Annals of Operations Research
131 (2004) 305–324.

[22] D. Merkle, M. Middendorf, H. Schmeck., Ant colony optimization for
resource-constrained project scheduling, IEEE Transactions on Evolution-
ary Computation 6 (2002) 333346.515

[23] T. P. Adams, Creation of simple, deadline, and priority scheduling algo-
rithms using genetic programming, Genetic Algorithms and Genetic Pro-
gramming at Stanford 2002 (2002).

24

[24] C. Dimopoulos, A. Zalzala, Investigating the use of genetic pro-
gramming for a classic one-machine scheduling problem, Advances520

in Engineering Software 32 (6) (2001) 489 – 498. doi:https:

//doi.org/10.1016/S0965-9978(00)00109-5.
URL http://www.sciencedirect.com/science/article/pii/

S0965997800001095

[25] D. Jakobović, L. Budin, Dynamic Scheduling with Genetic Programming,525

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 73–84. doi:10.

1007/11729976_7.
URL https://doi.org/10.1007/11729976_7

[26] D. Jakobovic, K. Marasovic, Evolving priority scheduling heuristics with
genetic programming, Applied Soft Computing 12 (9) (2012) 2781 – 2789.530

doi:https://doi.org/10.1016/j.asoc.2012.03.065.
URL http://www.sciencedirect.com/science/article/pii/

S1568494612001780

[27] S. Nguyen, M. Zhang, M. Johnston, K. C. Tan, A computational study of
representations in genetic programming to evolve dispatching rules for the535

job shop scheduling problem, IEEE Transactions on Evolutionary Compu-
tation 17 (5) (2013) 621–639. doi:10.1109/TEVC.2012.2227326.

[28] R. Hunt, M. Johnston, M. Zhang, Evolving ”less-myopic” scheduling rules
for dynamic job shop scheduling with genetic programming, in: Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary Computation,540

GECCO ’14, ACM, New York, NY, USA, 2014, pp. 927–934. doi:10.

1145/2576768.2598224.
URL http://doi.acm.org/10.1145/2576768.2598224

[29] M. Durasevic, D. Jakobovic, K. Knezevic, Adaptive scheduling
on unrelated machines with genetic programming, Applied Soft545

Computing 48 (Supplement C) (2016) 419 – 430. doi:https:

//doi.org/10.1016/j.asoc.2016.07.025.
URL http://www.sciencedirect.com/science/article/pii/

S1568494616303519

[30] J. Branke, S. Nguyen, C. W. Pickardt, M. Zhang, Automated design of550

production scheduling heuristics: A review, IEEE Transactions on Evo-
lutionary Computation 20 (1) (2016) 110–124. doi:10.1109/TEVC.2015.

2429314.

[31] J. Branke, T. Hildebrandt, B. Scholz-Reiter, Hyper-heuristic evolution
of dispatching rules: A comparison of rule representations, Evolution-555

ary Computation 23 (2) (2015) 249–277, pMID: 24885679. arXiv:https:

//doi.org/10.1162/EVCO_a_00131, doi:10.1162/EVCO_a_00131.
URL https://doi.org/10.1162/EVCO_a_00131

25

http://www.sciencedirect.com/science/article/pii/S0965997800001095
http://www.sciencedirect.com/science/article/pii/S0965997800001095
http://www.sciencedirect.com/science/article/pii/S0965997800001095
http://dx.doi.org/https://doi.org/10.1016/S0965-9978(00)00109-5
http://dx.doi.org/https://doi.org/10.1016/S0965-9978(00)00109-5
http://dx.doi.org/https://doi.org/10.1016/S0965-9978(00)00109-5
http://www.sciencedirect.com/science/article/pii/S0965997800001095
http://www.sciencedirect.com/science/article/pii/S0965997800001095
http://www.sciencedirect.com/science/article/pii/S0965997800001095
https://doi.org/10.1007/11729976_7
http://dx.doi.org/10.1007/11729976_7
http://dx.doi.org/10.1007/11729976_7
http://dx.doi.org/10.1007/11729976_7
https://doi.org/10.1007/11729976_7
http://www.sciencedirect.com/science/article/pii/S1568494612001780
http://www.sciencedirect.com/science/article/pii/S1568494612001780
http://www.sciencedirect.com/science/article/pii/S1568494612001780
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2012.03.065
http://www.sciencedirect.com/science/article/pii/S1568494612001780
http://www.sciencedirect.com/science/article/pii/S1568494612001780
http://www.sciencedirect.com/science/article/pii/S1568494612001780
http://dx.doi.org/10.1109/TEVC.2012.2227326
http://doi.acm.org/10.1145/2576768.2598224
http://doi.acm.org/10.1145/2576768.2598224
http://doi.acm.org/10.1145/2576768.2598224
http://dx.doi.org/10.1145/2576768.2598224
http://dx.doi.org/10.1145/2576768.2598224
http://dx.doi.org/10.1145/2576768.2598224
http://doi.acm.org/10.1145/2576768.2598224
http://www.sciencedirect.com/science/article/pii/S1568494616303519
http://www.sciencedirect.com/science/article/pii/S1568494616303519
http://www.sciencedirect.com/science/article/pii/S1568494616303519
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2016.07.025
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2016.07.025
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2016.07.025
http://www.sciencedirect.com/science/article/pii/S1568494616303519
http://www.sciencedirect.com/science/article/pii/S1568494616303519
http://www.sciencedirect.com/science/article/pii/S1568494616303519
http://dx.doi.org/10.1109/TEVC.2015.2429314
http://dx.doi.org/10.1109/TEVC.2015.2429314
http://dx.doi.org/10.1109/TEVC.2015.2429314
https://doi.org/10.1162/EVCO_a_00131
https://doi.org/10.1162/EVCO_a_00131
https://doi.org/10.1162/EVCO_a_00131
http://arxiv.org/abs/https://doi.org/10.1162/EVCO_a_00131
http://arxiv.org/abs/https://doi.org/10.1162/EVCO_a_00131
http://arxiv.org/abs/https://doi.org/10.1162/EVCO_a_00131
http://dx.doi.org/10.1162/EVCO_a_00131
https://doi.org/10.1162/EVCO_a_00131

[32] J. R. Koza, Human-competitive results produced by genetic programming,
Genetic Programming and Evolvable Machines 11 (3) (2010) 251–284. doi:560

10.1007/s10710-010-9112-3.
URL https://doi.org/10.1007/s10710-010-9112-3

[33] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J. R. Wood-
ward, Exploring Hyper-heuristic Methodologies with Genetic Program-
ming, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 177–201.565

doi:10.1007/978-3-642-01799-5_6.
URL https://doi.org/10.1007/978-3-642-01799-5_6

[34] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. R. Woodward,
A Classification of Hyper-heuristic Approaches, Springer US, Boston, MA,
2010, pp. 449–468. doi:10.1007/978-1-4419-1665-5_15.570

URL https://doi.org/10.1007/978-1-4419-1665-5_15

[35] T. Frankola, M. Golub, D. Jakobovic, Evolutionary algorithms for the re-
source constrained scheduling problem, in: 30th International Conference
on Information Technology Interfaces, 2008.

[36] D. Jakobovic, et al., Evolutionary computation framework, http://ecf.575

zemris.fer.hr/ (Oct. 2015).

[37] R. Kolisch, Shifts, Types, and Generation Schemes for Project Schedules,
Springer International Publishing, Cham, 2015, pp. 3–16. doi:10.1007/

978-3-319-05443-8_1.
URL https://doi.org/10.1007/978-3-319-05443-8_1580

[38] R. Kolisch, C. Schwindt, A. Sprecher, Benchmark instances for project
scheduling problems, in: Project Scheduling, Springer, 1999, pp. 197–212.

[39] R. Coric, M. Dumic, D. Jakobovic, Complexity comparison of integer pro-
gramming and genetic algorithms for resource constrained scheduling prob-
lems, in: 40th International Convention on Information and Communica-585

tion Technology, Electronics and Microelectronics, 2017, pp. 1394–1400.

26

https://doi.org/10.1007/s10710-010-9112-3
http://dx.doi.org/10.1007/s10710-010-9112-3
http://dx.doi.org/10.1007/s10710-010-9112-3
http://dx.doi.org/10.1007/s10710-010-9112-3
https://doi.org/10.1007/s10710-010-9112-3
https://doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-3-642-01799-5_6
http://dx.doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-1-4419-1665-5_15
http://dx.doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-1-4419-1665-5_15
http://ecf.zemris.fer.hr/
http://ecf.zemris.fer.hr/
http://ecf.zemris.fer.hr/
https://doi.org/10.1007/978-3-319-05443-8_1
http://dx.doi.org/10.1007/978-3-319-05443-8_1
http://dx.doi.org/10.1007/978-3-319-05443-8_1
http://dx.doi.org/10.1007/978-3-319-05443-8_1
https://doi.org/10.1007/978-3-319-05443-8_1

	Introduction
	RCPSP
	Previous work
	Priority Resource Constrained Scheduling With Genetic Programming
	RCPSP Terminal and Function Set
	Custom SGS
	The Learning and Test Set
	Optimization Criterion
	Variable Optimization Criteria

	Experimental Results
	Initialization
	Test Results - Makespan
	Comparison With Existing Heuristics
	Comparison with GA
	Test Results for Other Criteria

	Conclusions and Further Work

