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Abstract

Practical applications of semiclassical measures are tightly connected with a so
called oscillatory property, prevailing leakage of information related to high frequencies.
In this paper we propose a complementary, concentratory property which prevents loss
of information related to low frequencies. We demonstrate that semiclassical measures
attain the best performance level if both the properties are satisfied simultaneously,
and address a question if this is possible to achieve for an arbitrary bounded L2 se-
quence, providing a negative answer. Comparison of H-measures with semiclassical ones
is presented, showing precedence of the latter for problems exhibiting just a single fre-
quency scale. Finally, we present some (strong) compactness results based on the above
properties.
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1. Introduction

In the studies of partial differential equations one often needs to deal with sequences converg-
ing weakly, but not strongly in L2

loc(R
d). Some possible causes of such situations are governed

by oscillations. For example, sequence un(x) := e2πi
k

εn
·x, where k ∈ Zd \ {0} and εn → 0+, is

the simplest example of oscillations known under the name plane wave, and it converges weakly
to zero in L2

loc(R
d), but it does not converge strongly.

Among various methods and tools suitable for exploring such sequences, microlocal defect
functionals proved to be quite successful, e.g. H-measures [5, 12], semiclassical measures [6, 10],
H-distributions [3], etc.

The first microlocal defect functional was introduced independently by Luc Tartar [12] and
Patrick Gérard [5] around 1990, and is called H-measure or microlocal defect measure. It is the
Radon measure on cospherical bundle Ω×Sd−1 over open subset Ω ⊆ Rd and the definition in the
case of local spaces can be provided by the following theorem (cf. [5, Theorem 1] or [12, Theorem
1.1]):

Theorem 1. (existence of H-measures) For a weakly converging sequence un −⇀ 0 in
L2
loc(Ω;C

r), there exists a subsequence (un′) and an r × r hermitian non-negative matrix Radon
measure µH on Ω× Sd−1 such that for any ϕ1, ϕ2 ∈ Cc(Ω) and ψ ∈ C(Sd−1) one has:

lim
n′

∫

Rd

(
ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)

)
ψ

(
ξ

|ξ|

)
dξ = 〈µH , (ϕ1ϕ̄2)⊠ ψ〉

=

∫

Ω×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄H(x, ξ) .

The above measure µH is called the H-measure associated to the (sub)sequence (un′).

When the whole sequence admits the H-measure (i.e. the definition is valid without passing
to a subsequence), we say that the sequence is pure.

Notation. Let us explain the notation used in the previous theorem, which shall be kept
throughout the paper.

By Sd−1 we denote the (d− 1)-dimensional unit sphere (used here only in the Fourier space),
while open Ω ⊆ Rd stands for the physical space.

By ⊗ we denote the tensor product of vectors on Cr, defined by (a⊗ b)v = (v · b)a, where ·
stands for the (complex) scalar product (a · b :=

∑r
i=1 aib̄i), resulting in [a⊗ b]ij = aib̄j , while ⊠

denotes the tensor product of functions in different variables. By 〈·, ·〉 we denote any sesquilinear
dual product, which we take to be antilinear in the first variable, and linear in the second.

The Fourier transform we define as û(ξ) :=
∫
Rd e

−2πiξ·xu(x) dx, and its inverse as (u)∨(ξ) :=∫
Rd e

2πiξ·xu(x) dx. In order to have the Fourier transform well-defined on Ω we identify functions

defined on Ω with their extensions by zero to the whole Rd.
By K(x, r) and K[x, r] we denote open and closed balls around x of radius r.
Throughout the paper, when there is no fear of ambiguity, we pass to a subsequence without

relabelling it.

H-measures quantify the deflection from strong L2
loc precompactness in the sense that a trivial

H-measure implies the strong convergence in L2
loc(R

d;Cr) of the corresponding sequence, and vice
versa. This property is a basis of standard compactness results obtained by means of H-measures
(eg. [11, Theorem 2], [9, Theorem 7]).

However, they turn not to be the right object if we want to distinguish sequences with
different characteristic lengths (e.g. different frequencies). Indeed, the H-measure associated to

un(x) := e2πi
k

εn
·x (which is pure) is λ ⊠ δ k

|k|
, where λ is the Lebesgue measure on the physical

space Rd (i.e. in x), while δ k

|k|
is the Dirac mass in the unit vector ξ = k

|k| . Thus, for any choice

of εn → 0+ we have the same H-measure.
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The new object suitable for problems with characteristic lengths was introduced by Gérard [6]
under the name semiclassical measure, while later an alternative construction using the Wigner
transform was presented by Pierre-Louis Lions and Thierry Paul [10], denoting the object as
Wigner measure. Here we present the existence result in a simpler, but equivalent form to the
original Gérard’s definition [6], without introducing the notion of (semiclassical) pseudodifferential
operators (cf. [13, Chapter 32]).

Theorem 2. (existence of semiclassical measures) If (un) is a bounded sequence in
L2
loc(Ω;C

r), and (ωn) a sequence of positive numbers such that ωn → 0+, then there exists a

subsequence (un′) and an r× r hermitian non-negative matrix Radon measure µ
(ωn′ )
sc on Ω×Rd

such that for any ϕ1, ϕ2 ∈ C∞
c (Ω) and ψ ∈ S(Rd) one has:

lim
n′

∫

Rd

(
ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)

)
ψ(ωn′ξ) dξ = 〈µ(ωn′ )

sc , (ϕ1ϕ̄2)⊠ ψ〉

=

∫

Ω×Rd

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄
(ωn′ )
sc (x, ξ) .

The above measure µ
(ωn′ )
sc is called the semiclassical measure with (semiclassical) scale (ωn′)

associated to the (sub)sequence (un′).

When there is no fear of ambiguity, we assume that we have already passed to a subsequence

determining a semiclassical measure, and reduce the notation to µsc = µ
(ωn)
sc .

When the whole sequence admits a semiclassical measure with scale (ωn) (i.e. the definition
is valid without passing to a subsequence), we say that the sequence is (ωn)-pure.

If un −⇀ u in L2
loc(Ω;C

r) then

(1) µ(ωn)
sc = (u⊗ u)λ⊠ δ0 + ν(ωn)

sc ,

where ν
(ωn)
sc is the semiclassical measure, with the same scale as µ

(ωn)
sc , associated to the sequence

(un − u).
In the above theorem we have used a notion of the boundedness in L2

loc(Ω;C
r) which is meant

with respect to its standard Fréchet locally convex topology. Hence, a subset of L2
loc(Ω;C

r) is
bounded if and only if it is bounded in the sense of seminorms which generate the corresponding
locally convex topology (which is a stronger notion then metric boundedness).

An oscillating sequence of functions un(x) := e2πi
k

εn
·x is (ωn)-pure for any ωn → 0+ such

that limn
εn
ωn

exists in [0,∞], but the associated semiclassical measure depends on the choice of a
scale:

µ(ωn)
sc = λ⊠





0 , limn
εn
ωn

= 0
δ k

c
, limn

εn
ωn

= c ∈ 〈0,∞〉
δ0 , limn

εn
ωn

= ∞
.

Here we can see that in some situations by semiclassical measures one can really recover both the
direction (i.e. k) and the frequency (i.e. 1

εn
) of oscillations, what is not the case with H-measures.

However, in the case where (ωn) is not of the same order of convergence as (εn) the loss of
information takes place. Indeed, in the case limn

εn
ωn

= 0 the loss of energy at infinity occurs,
and that phenomenon is described by the (ωn)-oscillatory property which we present in the next
section. On the other hand, the mixture of various pieces of information at the origin takes place
in the case limn

εn
ωn

= ∞.
From this scholarly example we notice that, unlike H-measures, strong convergence of a

(sub)sequence under consideration does not necessarily follow from a trivial semiclassical measure,
and in general one requires additional information in order to obtain compactness results.

A problem of the recovery and loss of information by microlocal defect tools has been ad-
dressed in [2], while here we want to provide more detailed insight into the problem. To this effect
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in the next section we introduce the new notion denominated as (ωn)-concentratory property, be-
ing in some sense a counterpart to the already existing (ωn)-oscillatory property and preventing
the loss of information at the origin of the frequency domain. In the third section we demonstrate
that semiclassical measures attain the best performance level if both the properties are satisfied
simultaneously for some scale, which we define as a characteristic scale of a sequence, and we
address the existence problem of such a scale for an arbitrary bounded sequence. Section 4 con-
tains some (strong) compactness results based on the above properties, followed by concluding
remarks closing the paper.

2. (ωn)-concentratory sequences

We recall (cf. [4, Def. 3.3] and [7, Def. 1.6]) the definition of the (ωn)-oscillatory property.

Definition 1. Let (un) be a sequence in L2
loc(Ω;C

r) for an open Ω ⊆ Rd, and (ωn) be a sequence
of positive numbers converging to zero. We say that (un) is (ωn)-oscillatory if

(2) (∀ϕ ∈ C∞
c (Ω)) lim

R→∞
lim sup

n

∫

|ξ|> R
ωn

|ϕ̂un(ξ)|2 dξ = 0 .

An interpretation of this condition is that the frequencies of the observed sequence do not
converge to infinity faster then 1

ωn
.

Note that the last property resembles the one assumed by the Kolmogorov-Riesz compactness
theorem [8, Cor. 7], which can be obtained from (2) by inserting ωn = 1. Of course, the latter
assumption is a stronger one, providing strong convergence of the sequence (un), while here in
general we consider weakly convergent sequences.

The notion of the (ωn)-oscillatory property is tightly related to semiclassical measures, so
it has appeared already in the very first articles on semiclassical measures. At the beginning it
was stated without a localisation by test functions (cf. [6, Section 3] and [10, Theorem III.1(3)]),
while in more recent papers one can find the same definition as given here (cf. [4, Def. 3.3] and [7,
Def. 1.6]). It has an important role in most of successful applications of semiclassical measures,
since it is necessary in order to obtain a relation between defect and semiclassical measures. More
precisely the following result holds (cf. [4, Lemma 3.4(i)] and [7, Prop. 1.7(i)]).

Lemma 1. Let (un) be bounded in L2
loc(Ω;C

r) and (ωn)-pure, and let un⊗un converge weakly ∗
to a measure ν in M(Ω;Mr(C)). The sequence (un) is (ωn)-oscillatory if and only if for any
ϕ ∈ C∞

c (Ω) it holds:

〈ν, ϕ〉 =
〈
µ(ωn)
sc , ϕ⊠ 1

〉
.

The last relation ensures that no portion of macroscopic energy of the original sequence
is lost by its semiclassical measure. Specially, assuming the (ωn)-oscillatory property, a trivial
semiclassical measure implies strong convergence un −→ 0.

Since test functions in the definition of semiclassical measures are taken from S(Rd
ξ), the only

place where some energy can be lost is at infinity in the dual space. Thus the (ωn)-oscillatory
property ensures that the semiclassical measure with scale (ωn) captures all energy of the original
sequence. In particular, it implies the sequence does not exhibit oscillations on a frequency faster
than 1

ωn
.

At this level we find suitable to describe different relations between sequences of positive
numbers converging to zero by using standard asymptotic behaviour notions. For zero sequences
(ωn) and (ω̃n) we say that:
• (ωn) is faster then (ω̃n) if ωn = o(ω̃n), i.e. limn

ωn

ω̃n
= 0;

• (ωn) is not slower then (ω̃n) if ωn = O(ω̃n), i.e. lim supn
ωn

ω̃n
<∞;
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• (ωn) is of the same order as (ω̃n) if ωn = Θ(ω̃n), i.e. ωn = O(ω̃n) and ω̃n = O(ωn);
• (ωn) is slower then (ω̃n) if (ω̃n) is faster then (ωn);
• (ωn) is not faster then (ω̃n) if (ω̃n) is not slower then (ωn).
The same terminology we also apply for sequences converging to infinity, just commuting

positions of ωn and ω̃n in the properties defining each notion. Moreover, for simplicity, the
sequences of positive numbers converging to zero we refer to as (semiclassical) scales.

As demonstrated in the example of an oscillating sequence in the introduction, the other
place where the information on the original sequence is partially lost is the origin of the dual
space, where slow oscillations are mixed together, and one cannot recover neither their direction
nor exact frequencies. In order to prevent such a scenario, one needs to apply a scale that will
prevent concentration effects at the origin of the dual space. Intuitively, this would mean that
the information of the sequence propagates on the scale not slower then 1

ωn
, which leads us to

the following definition.

Definition 2. We say that sequence (un) in L2
loc(Ω;C

r) is (ωn)-concentratory if

(3) (∀ϕ ∈ C∞
c (Ω)) lim

R→∞
lim sup

n

∫

|ξ|6 1
Rωn

|ϕ̂un(ξ)|2 dξ = 0 .

This notion, which has not yet been studied according to our best knowledge, can be seen
as a counterpart of the (ωn)-oscillatory property, both of them prevailing extreme propagations,
which are either too slow or too fast.

When being applied to semiclassical measures, the introduced notion indeed prevents con-
centration effects at the origin of the dual space, as demonstrated by the next result.

Theorem 3. If (un) is bounded in L2
loc(Ω;C

r) and (ωn)-pure, then trµ
(ωn)
sc (Ω × {0}) = 0 if

and only if (un) is (ωn)-concentratory.

Dem. Let us first notice that the statement is meaningful since trµsc is a non-negative functional,
hence by the Riesz representation theorem we can treat it as a (classical) measure on the Borel
σ-algebra. Therefore, for any φ ∈ Cc(Ω×Rd) we have

〈trµsc, φ〉 =
∫

Rd

φ(x, ξ) dtrµsc ,

implying that trµsc(Ω× {0}) = 0 is equivalent to

(∀ϕ ∈ Cc(Ω))

∫

Ω×Rd

|ϕ(x)|2χ{0}(ξ) dtrµsc(x, ξ) = 0 ,

where χ{0} is equal to 1 at the origin and 0 otherwise.

By ζ ∈ C∞
c (Rd) we denote a smooth cutoff function identically equal to 1 on K[0, 1] such

that 0 6 ζ 6 1, while supp ζ ⊆ K(0, 2). Further, we define ζm := ζ(m ·).
By the Lebesgue dominated convergence theorem, non-negativity of diagonal elements of

matrix µsc, and the definition of semiclassical measures, for any i ∈ 1..d we have

0 =

∫

Ω×Rd

|ϕ(x)|2χ{0}(ξ) dµ
ii
sc(x, ξ) = lim

m

∫

Ω×Rd

|ϕ(x)|2ζm(ξ) dµiisc(x, ξ)

= lim
m

lim
n

∫

Rd

|ϕ̂uin(ξ)|2ζm(ωnξ) dξ

> lim sup
m

lim sup
n

∫

|ωnξ|6 1
m

|ϕ̂uin(ξ)|2 dξ > 0 ,
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where in the last step we have used the fact that ζm is equal to 1 on K[0, 1
m ]. Therefore,

(∀ i ∈ 1..d) lim
m

lim sup
n

∫

|ξ|6 1
mωn

|ϕ̂uin(ξ)|2 dξ = 0 ,

and hence (uin) is (ωn)-concentratory, implying that the whole sequence is (ωn)-concentratory.
The opposite implication follows by the estimate

(∀ i ∈ 1..d)

∫

Rd

|ϕ̂uin(ξ)|2ζm(ωnξ) dξ 6

∫

|ξ|6 2
mωn

|ϕ̂uin(ξ)|2 dξ ,

and the equivalence established at the beginning of the proof.
Q.E.D.

In [10, Remark III.9] there is given a characterisation of the (ωn)-oscillatory property stating
that a sequence (un) possesses this property if for any test function ϕ ∈ C∞

c (Ω) there exist

α ∈ Nd
0 \ {0} and C > 0 such that ω

|α|
n ‖∂α(ϕun)‖L2(Ω;Cr) 6 C. Here we present an extension of

this sufficient condition which will also cover the just introduced (ωn)-concentratory property.

Lemma 2. A sequence (un) in L2
loc(Ω;C

r) is (ωn)-oscillatory (concentratory) if for any test
function ϕ ∈ C∞

c (Ω) there exist s > 0 (s < 0) and C > 0 such that ωs
n‖ϕun‖Hs(Rd;Cr) 6 C.

Dem. Let ϕ ∈ C∞
c (Ω) be an arbitrary test function. Moreover, let us first study the case s > 0

and the (ωn)-oscillatory property. By the assumption we have
∫

|ξ|> R
ωn

|ϕ̂un(ξ)|2 dξ =R−2s

∫

|ξ|> R
ωn

R2s|ϕ̂un(ξ)|2 dξ 6 R−2s

∫

|ξ|> R
ωn

|ωnξ|2s|ϕ̂un(ξ)|2 dξ

6R−2sω2s
n

∫

Rd

(1 + |ξ|2)s|ϕ̂un(ξ)|2 dξ 6
C2

R2s
.

Since the estimate above is independent of n, and tends to zero as R → ∞, we have that (un) is
(ωn)-oscillatory.

Furthermore, for s < 0 similarly as above we have the following estimate

(4)

∫

|ξ|6 1
Rωn

|ϕ̂un(ξ)|2 dξ =(ω2
n +R−2)−s

∫

|ξ|6 1
Rωn

(ω2
n +R−2)s|ϕ̂un(ξ)|2 dξ

6(ω2
n +R−2)−s

∫

|ξ|6 1
Rωn

(ω2
n + |ωnξ|2)s|ϕ̂un(ξ)|2 dξ

6C2(ω2
n +R−2)−s ,

which implies that (un) is (ωn)-concentratory.
Q.E.D.

Now let us go back to the introductory example of an oscillating sequence and check whether
it possesses (ωn)-oscillatory and/or concentratory property.

Example 1. (oscillation) For εn → 0+ and k ∈ Zd \ {0} let us define un(x) := e2πi
k

εn
·x. It is

well known that this sequence converges weakly to zero in L2
loc(R

d), but not strongly.

For an arbitrary ϕ ∈ C∞
c (Ω), using ϕ̂un(ξ) = ϕ̂

(
ξ − k

εn

)
and the transformation of variable

η = ξ − k

εn
, for s ∈ R we have

(5) ω2s
n ‖ϕun‖2Hs(Rd) =

∫

Rd

|ϕ̂(η)|2
(
ω2
n +

∣∣∣ωnη +
ωn

εn
k
∣∣∣
2
)s

dη .

Marko Erceg & Martin Lazar 5



Submitted to Asymptotic Analysis Characteristic scales of bounded L2 sequences

Therefore, for s = 1 and (ωn) not slower then (εn) we obtain (for n large enough)

ωn‖ϕun‖H1(Rd) 6 C‖ϕ‖H1(Rd) <∞ ,

thus by the previous lemma we have that (un) is (ωn)-oscillatory for (ωn) not slower then (εn).
In the next step we take s = −d and assume that (ωn) is not faster then (εn). Moreover, we

separate the integral in (5) into two parts, taken over the closed ball K[0, |k|
2εn

] and its complement.
For the first part we have

∫

K[0,
|k|
2εn

]

|ϕ̂(η)|2
(
ω2
n + |ωnη + ωn

εn
k|2
)d dη 6

( 1

C|k|
)2d

‖ϕ‖2L2(Rd) <∞ ,

where we have used that |ωnη + ωn

εn
k| > C|k| on K[0, |k|

2εn
] for some constant C > 0.

For the complement we shall use that ϕ̂ ∈ S(Rd), implying that |η|d|ϕ̂(η)| is a bounded
function. Therefore, we have

∫

cK[0,
|k|
2εn

]

|ϕ̂(η)|2
(
ω2
n + |ωnη + ωn

εn
k|2
)d dη =

∫

cK[0,
|k|
2εn

]

|η|2d|ϕ̂(η)|2

|η|2d
(
ω2
n + |ωnη + ωn

εn
k|2
)d dη

6Cϕ

∫

cK[0,
|k|
2εn

]

dη

( |k|2 )
2d(ωn

εn
)2d
(
1 + |η + k

εn
|2
)d

6C̃ϕ

∫

Rd

dξ

(1 + |ξ|2)d <∞ ,

resulting that ω−d
n ‖ϕun‖H−d(Rd) is bounded. Hence, by the previous lemma we have that (un) is

(ωn)-concentratory for (ωn) not faster then (εn).
The above analysis implies that the oscillating sequence (un) possesses both the (ωn)-oscilla-

tory and the (ωn)-concentratory property if (ωn) is of the same order as (εn). Since the previous
lemma provides only sufficient conditions, in order to conclude that there is no other scale implying
both the properties simultaneously, we still need to use Theorem 4 below under the fact that (un)
is not strongly convergent.

As concentration provides the second standard prototype of a sequences converging weakly
but not strongly, we consider concentrating sequences as the next example. Like in the previous
one, we study for which scale (ωn) such a sequence is (ωn)-oscillatory and/or (ωn)-concentratory,
but unlike the approach based on Lemma 2 here we shall use a direct one, based on the very
definitions.

Example 2. (concentration) For given v ∈ L2(Rd), εn → 0+, and x0 ∈ Rd we define

un(x) := ε−d/2
n v(

x− x0

εn
) .

It is easy to see that (un) is bounded in L2(Rd) and that converges weakly to zero. Hence, let us
examine for which scale (ωn) this sequence is (ωn)-oscillatory and/or (ωn)-concentratory.

For ϕ ∈ C∞
c (Rd) by the Lebesgue dominated convergence theorem we have ϕun−ϕ(x0)un −→

0 in L2(Rd). Indeed, under the change of variables given by y = x−x0
εn

we have

∫

Rd

|ϕ(x)− ϕ(x0)|2|un(x)|2 dx =

∫

Rd

|ϕ(εny + x0)− ϕ(x0)|2|v(y)|2 dy ,

and the application of the Lebesgue dominated convergence theorem is justified as ϕ(εny+x0)−
ϕ(x0) −→ 0 pointwise, and ‖ϕ‖2

L∞(Rd)
|v(·)|2 is integrable.
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This implies that for the (ωn)-oscillatory property it is sufficient to study

∫

|ξ|> R
ωn

|ûn(ξ)|2 dξ = εdn

∫

|ξ|> R
ωn

|v̂(εnξ)|2 dξ =

∫

|η|>R εn
ωn

|v̂(η)|2 dη ,

where in the first equality we have used ûn(ξ) = ε
d/2
n e−2πiξ·x0 v̂(εnξ). Therefore, by the last

integral it is clear that (un) is (ωn)-oscillatory for and only for scales (ωn) which are not slower
then (εn). Analogously, (un) is (ωn)-concentratory if and only if (ωn) is not faster then (εn).

From the last two examples it is obvious that both notions, (ωn)-oscillatory and (ωn)-
concentratory, turn out to be a bit confusing, as an oscillating sequence may posses both prop-
erties, same as a concentrating one. However, as the notion of (ωn)-oscillatory sequences is
already well established, we adjust to the existing framework, and denominate the new notion as
(ωn)-concentratory.

We finish this section by two lemmas providing some basic properties of the considered
notions. The first result follows directly from the very Definitions 1 and 2.

Lemma 3. If un ∈ L2
loc(Ω;C

r) is (ωn)-oscillatory (concentratory) then it is also (ω̃n)-oscillatory
(concentratory) for any scale (ω̃n) which is not slower (not faster) then (ωn).

Next result implies linearity of (ωn)-oscillatory and concentratory properties.

Lemma 4. Let (un) and (vn) be both (ωn)-oscillatory (concentratory). Then the sum (un + vn)
is also (ωn)-oscillatory (concentratory).

Dem. The claim trivially follows by the triangular inequality. Indeed, as both (un) and (vn) are
(ωn)-oscillatory, by the estimate

∫

|ξ|6 R
ωn

|ϕ̂un + ϕ̂vn|2 dξ 6

(√∫

|ξ|6 R
ωn

|ϕ̂un|2 dξ +

√∫

|ξ|6 R
ωn

|ϕ̂vn|2 dξ
)2

,

we have that (un + vn) is (ωn)-oscillatory.

Analogously for the (ωn)-concentratory property.

Q.E.D.

3. Characteristic scale of a sequence

Since the introduction of semiclassical measures a natural question arose on their relation
to H-measures — whether one object can be reconstructed from the other one, an issue which
launched interesting academic discussions (cf. [13, Chapter 32], [10, Remark III.11]). Here we
provide a well known result on the relation between the above objects (cf. [4, Lemma 3.4(ii)]),
restated in terms of an introduced notion by means of Theorem 3.

Corollary 1. Let (un) be a bounded sequence in L2
loc(Ω;C

r) such that it is (ωn)-pure, (ωn)-

oscillatory and (ωn)-concentratory for some ωn → 0+, and let µsc = µ
(ωn)
sc be the corresponding

semiclassical measure with the scale (ωn).

Then un −⇀ 0 in L2
loc(Ω;C

r), it is pure, and for any choice of test functions ϕ ∈ C∞
c (Ω) and

ψ ∈ C∞(Sd−1) we have

〈µH , ϕ⊠ ψ〉 = 〈µsc, ϕ⊠ (ψ ◦ π)〉 ,

where µH is the H-measure associated to (un).
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In previous papers this result required semiclassical measure not to be supported in the

origin of the dual space, i.e. that trµ
(ωn)
sc (Ω× {0}) = 0 — an assumption, as shown by Theorem

3, which is equivalent to the introduced (ωn)-concentratory property. Unlike the first one, the
latter property is stated in terms of a sequence only, and does not require knowledge of a measure,
just like the (ωn)-oscillatory property.

The last corollary, as well as Lemma 1 and Theorem 3, demonstrates that the best choice of
a semiclassical measure is obtained by taking its scale (ωn) such that the sequence under consid-
eration is both (ωn)-oscillatory and (ωn)-concentratory, as such selection will prevent leaking of
energy at infinity, as well as mixing of information at the origin of the dual space.

For this reason we define such a scale as a characteristic scale of a sequence (un). Next
theorem shows that the notion is well defined, and that a sequence cannot have two characteristic
scales of different orders, unless it converges strongly to zero.

Theorem 4. Let un ∈ L2
loc(Ω;C

r) be (ωn)-oscillatory and (ωn)-concentratory for ωn → 0+. The
following is equivalent:
a) There exists ω̃n → 0+ slower then (ωn) for which (un) is (ω̃n)-oscillatory.
b) There exists ω̃n → 0+ faster then (ωn) for which (un) is (ω̃n)-concentratory.
c) un −→ 0 in L2

loc(Ω;C
r).

Dem. The condition (c) trivially implies (a) and (b) by the following inequalities:

∫

|ξ|> R
ωn

|ϕ̂un(ξ)|2 dξ 6 ‖ϕun‖2L2(Ω;Cr) and

∫

|ξ|6 1
Rωn

|ϕ̂un(ξ)|2 dξ 6 ‖ϕun‖2L2(Ω;Cr) ,

where ϕ ∈ C∞
c (Ω) is arbitrary.

Let us prove that (a) implies (c). For an arbitrary ε > 0 and ϕ ∈ C∞
c (Ω) there exist R > 0

such that

lim sup
n

∫

|ξ|> R
ω̃n

|ϕ̂un(ξ)|2 dξ <
ε

2
and lim sup

n

∫

|ξ|6 1
Rωn

|ϕ̂un(ξ)|2 dξ <
ε

2
.

Further on, let n0 ∈ N be such that for any n > n0 we have ωn

ω̃n
< 1

R2 . Hence, for any n > n0 we
get ∫

|ξ|> R
ω̃n

|ϕ̂un(ξ)|2 dξ =

∫

|ξ|> R
ωn

ωn
ω̃n

|ϕ̂un(ξ)|2 dξ >

∫

|ξ|> 1
Rωn

|ϕ̂un(ξ)|2 dξ ,

implying

lim sup
n

∫

|ξ|> 1
Rωn

|ϕ̂un(ξ)|2 dξ 6 lim sup
n

∫

|ξ|> R
ω̃n

|ϕ̂un(ξ)|2 dξ <
ε

2
.

Finally, we have

lim sup
n

‖ϕun‖2L2(Ω;Cr) 6 lim sup
n

∫

|ξ|6 1
Rωn

|ϕ̂un(ξ)|2 dξ + lim sup
n

∫

|ξ|> 1
Rωn

|ϕ̂un(ξ)|2 dξ < ε ,

so the claim follows by the arbitrariness of ε and ϕ.
The proof that (b) implies (c) goes in the same manner.

Q.E.D.

A natural question arising at this point is whether an arbitrary bounded L2 sequence possess
its characteristic scale, whose positive answer would provide the existence of a corresponding semi-
classical measure capable to capture all the microlocal information. However, the next example
demonstrates this is not the case.
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Example 3. For εn → 0+ and k, s ∈ Zd \ {0} let us define sequences un(x) := e2πi
k

εn
·x and

vn(x) := e
2πi s

ε2n
·x
. Let us show that the sum (un+vn) does not have a characteristic scale, i.e. that

we cannot find ωn → 0+ such that (un + vn) is both (ωn)-oscillatory and (ωn)-concentratory.
According to Example 1 we have that a characteristic scale of (un) is (εn), while for (vn) we

can take (ε2n). Moreover, by Lemma 3 (un) is also (ε
2
n)-oscillatory, while (vn) is (εn)-concentratory,

implying that, by Lemma 4, (un + vn) is (ε
2
n)-oscillatory and (εn)-concentratory.

Let us assume that (un + vn) has a characteristic scale (ωn). As (un + vn) does not converge
strongly, by Theorem 4 there should exist constants m,M > 0 such that for n large enough we
have mε2n 6 ωn 6Mεn.

For such (ωn), again by Lemma 3, (un) is (ωn)-oscillatory and (vn) is (ωn)-concentratory.
Applying Lemma 4 to simple identities un = (un + vn) + (−vn) and vn = (un + vn) + (−un),
we obtain that (un) is (ωn)-concentratory and (vn) is (ωn)-oscillatory. However, by Example 1
we have that it is necessary that (ωn) is not faster then (εn) and that it is not slower then (ε2n),
which leads to an obvious contradiction.

For semiclassical measures associated to the sequence (un+vn) from the above example it can
be shown that by choosing different characteristic scales, they can capture at most one frequency
scale, εn or ε2n, but not both of them simultaneously (cf. [2, Example 2]).

Even a more interesting example provides the next sequence that incorporates an infinite
number of frequency scales, for which associated semiclassical measures turn out as incapable to
capture even a single one, regardless of a chosen scale.

Example 4. Let a sequence (un) be defined by the relation

(6) un(x) :=
1√
n

n∑

j=1

e2πin
jk·x ,

for k ∈ Zd \ {0}.
We split analysis of this sequence into several parts.

I. The sequence converges weakly to zero in L2
loc(R

d), but not strongly.
As un are periodic functions, the boundedness follows easily by the computation:

∫

[0,1]d
|un(ξ)|2 dx =

1

n

n∑

j,l=1

∫

[0,1]d
e2πi(n

j−nl)k·x dx =
1

n

n∑

j=1

1 = 1 .

Moreover, from the above it is clear that (un) does not converge strongly to zero.
By integration by parts for ϕ ∈ C∞

c (Rd) and s ∈ Z \ {0} we have

|〈e2πis·x, ϕ〉| 6 Cϕ

|s| ,

where Cϕ =

√
d‖∇ϕ‖

L1(Rd)

2π . Therefore,

|〈un, ϕ〉| 6
1√
n

n∑

j=1

|〈e2πinjk·x, ϕ〉| 6 Cϕ√
n

n∑

j=1

1

|njk| 6
Cϕ

|k|√n

n∑

j=1

1

n
=

Cϕ

|k|√n

tends to zero as n → ∞. Thus, by the density of C∞
c (Rd) in L2

c(R
d) and the boundedness of

(un), we have un −⇀ 0 in L2
loc(R

d).
Therefore, this sequence is suitable for applications of both semiclassical and H-measures,

and below we present a derivation of these objects.
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II. Approximation of the terms
∫
Rd |ϕ̂un(ξ)|2ψ(ωnξ) dξ and

∫
Rd |ϕ̂un(ξ)|2ψ

(
ξ
|ξ|

)
dξ.

Let ϕ ∈ C∞
c (Rd), ϕ 6= 0, and ψ ∈ S(Rd). For ωn → 0+ we have

∫

Rd

|ϕ̂un(ξ)|2ψ(ωnξ) dξ =
1

n

n∑

j,l=1

∫

Rd

ϕ̂(ξ − njk)¯̂ϕ(ξ − nlk)ψ(ωnξ) dξ

=
1

n

n∑

j,l=1

∫

Rd

ϕ̂(η)¯̂ϕ
(
η + (nj − nl)k

)
ψ(ωnη + ωnn

jk) dη ,

where in the second equality we have used the change of variables η = ξ − njk.
Let us first prove that terms for j 6= l tends to zero as n tends to infinity. For j 6= l and

|η| 6 n|k|
2 we have |η + (nj − nl)k| > n|k| − |η| > n|k|

2 , which together with the integrability of

|η|4|ϕ̂(η)|2 (as ϕ̂ ∈ S(Rd)), by the Hölder inequality implies

1

n

∑

j 6=l

∫

K[0,
n|k|
2

]

|ϕ̂(η)|
|η + (nj − nl)k|2

∣∣∣|η + (nj − nl)k|2ϕ̂
(
η + (nj − nl)k

)∣∣∣|ψ(ωnη + ωnn
jk)| dη

6
C

n3

∑

j 6=l

1 6
C

n
,

where C depends only on ϕ, ψ and k. It is left to estimate the above terms when the integration

is over the complement of K[0, n|k|2 ], for which we analogously get

1

n

∑

j 6=l

∫

cK[0,
n|k|
2

]

1

|η|2
∣∣∣|η|2ϕ̂(η)

∣∣∣
∣∣∣ϕ̂
(
η + (nj − nl)k

)∣∣∣|ψ(ωnη + ωnn
jk)| dη

6
C

n3

∑

j 6=l

1 6
C

n
.

Therefore, it is sufficient to study the limit of

1

n

n∑

j=1

∫

Rd

|ϕ̂(η)|2ψ(ωnη + ωnn
jk) dη .

Moreover, we can further simplify the above expression by considering only the integration over
a compact set. Indeed, for M > 0 we have

1

n

n∑

j=1

∫

cK[0,M ]
|ϕ̂(η)|2|ψ(ωnη + ωnn

jk)| dη =
1

n

n∑

j=1

∫

cK[0,M ]

1

|η|2
∣∣∣|η|ϕ̂(η)

∣∣∣
2
|ψ(ωnη + ωnn

jk)| dη

6
C

M2
,

where we have again used that ϕ̂ ∈ S(Rd), which implies that | · |ϕ̂(·) is square integrable.
Finally, in order to compute associated semiclassical measures it is left to study

(7)
1

n

n∑

j=1

∫

K[0,M ]
|ϕ̂(η)|2ψ(ωnη + ωnn

jk) dη ,

for some M > 0.
Similarly, we can show that for ϕ ∈ C∞

c (Ω) and ψ ∈ C(Sd−1) the limit of

∫

Rd

|ϕ̂un(ξ)|2ψ
( ξ

|ξ|
)
dξ
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is arbitrarily close (by choosing M > 0 large enough) to the limit of

(8)
1

n

n∑

j=1

∫

K[0,M ]
|ϕ̂(η)|2ψ

( η + njk

|η + njk|
)
dη .

III. Derivation of semiclassical measures.
Let us first assume the case where there exists j0 ∈ N such that (ωn) is slower than ( 1

nj0
),

i.e. that limn n
j0ωn = ∞. Fix ε > 0 and take R > 0 such that for |ξ| > R we have |ψ(ξ)| 6

ε
‖ϕ‖2

L2(Rd)

. Moreover, for n large enough we have nj0ωn >
R+M
|k| and ωn < 1. Thus for j > j0 and

|η| 6M it holds
|ωnη + ωnn

jk| > ωnn
j |k| − ωn|η| > R+M −M = R ,

implying |ψ(ωnη + ωnn
jk)| 6 ε

‖ϕ‖2
L2(Rd)

. Therefore,

lim
n

∣∣∣ 1
n

n∑

j=1

∫

K[0,M ]
|ϕ̂(η)|2ψ(ωnη + ωnn

jk) dη
∣∣∣ 6 lim sup

n

1

n

j0−1∑

j=1

∫

K[0,M ]
|ϕ̂(η)|2|ψ(ωnη + ωnjk)| dη

+ lim sup
n

1

n

n∑

j=j0

∫

K[0,M ]
|ϕ̂(η)|2|ψ(ωnη + ωnjk)| dη

6 lim
n

j0 − 1

n
‖ψ‖L∞(Rd)‖ϕ‖2L2(Rd) + lim

n

n− j0 + 1

n
ε = ε ,

resulting in the trivial semiclassical measure, µsc = 0.
It is left to examine the case in which (ωn) is faster then any (n−j) scale, i.e. for any j ∈ N

we have limn n
jωn = 0. For ε > 0 we choose R, r > 0 such that for |ξ| > R we have |ψ(ξ)| 6

ε
2‖ϕ‖2

L2(Rd)

, while for |ξ| < r we have |ψ(ξ)− ψ(0)| 6 ε
2‖ϕ‖2

L2(Rd)

.

Take n large enough such that nωn <
r

2|k| , and define jn := max{j ∈ 1..n : njωn <
r

2|k|}. As

for every j ∈ N we have njωn −→ 0, it follows that jn → ∞. Since for n large enough we have
ωn <

r
2M , for j 6 jn it follows |ωnη+ωnn

jk| < r, implying |ψ(ωnη+ωnn
jk)−ψ(0)| 6 ε

2‖ϕ‖2
L2(Rd)

.

On the other hand, if jn < n, then njn+2ωn > r
2|k|n, and for j > jn+2 we have |ωnη+ωnn

jk| > R,

hence |ψ(ωnη + ωnn
jk)| 6 ε

2‖ϕ‖2
L2(Rd)

.

Therefore,

lim
n

∣∣∣ 1
n

n∑

j=1

∫

K[0,M ]
|ϕ̂(η)|2ψ(ωnη + ωnn

jk) dη − jn
n
ψ(0)‖ϕ‖2L2(Rd)

∣∣∣

6 lim sup
n

1

n

jn∑

j=1

∫

K[0,M ]
|ϕ̂(η)|2|ψ(ωnη + ωnn

jk)− ψ(0)| dη

+ lim sup
n

1

n

∫

K[0,M ]
|ϕ̂(η)|2|ψ(ωnη + ωnn

jn+1k)| dη

+ lim sup
n

1

n

n∑

j=jn+2

∫

K[0,M ]
|ϕ̂(η)|2|ψ(ωnη + ωnn

jk)| dη

6 lim sup
n

jn
n

ε

2
+ lim

n

1

n
‖ψ‖L∞(Rd)‖ϕ‖2L2(Rd) + lim sup

n

n− jn − 1

n

ε

2
6 ε ,

where the third term after the first inequality is equal to zero if jn > n − 1. Hence, it is
sufficient to study jn

n ψ(0)‖ϕ‖2L2(Rd)
. As ( jnn ) is bounded (by 1), we can pass to a subsequence

(not relabeled) converging to Cψ(0)‖ϕ‖2
L2(Rd)

, where C := limn
jn
n ∈ [0, 1], obtaining semiclassical
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measure µsc = Cλ⊠ δ0. Moreover, if limn
jn
n > 0 we can tell that (ωn) is not slower than (n−C̃n),

for any 0 < C̃ < C, while it is slower of any (n−C̃n), C̃ > 0, if limn
jn
n = 0.

At the end, we can summarise that all semiclassical measures associated to the sequence
(6) are of the form Cψ(0)‖ϕ‖2

L2(Rd)
, where C ∈ [0, 1]. Thus, in any case we cannot recover the

direction of oscillations from semiclassical measures.

IV. Derivation of the H-measure.
Let us take ϕ as above and ψ ∈ C(Sd−1) arbitrarily. As for |η| 6M and n > 2M

|k| we have

∣∣∣ η + njk

|η + njk| −
k

|k|
∣∣∣ 6
∣∣∣ η + njk

|η + njk| −
njk

|η + njk|
∣∣∣+
∣∣∣ njk

|η + njk| −
njk

|njk|
∣∣∣

62
|η|

nj |k| − |η|

62
M

n|k| −M
6

4M

n|k| ,

by the uniform continuity of ψ it follows

lim
n

∣∣∣ 1
n

n∑

j=1

∫

K[0,M ]
|ϕ̂(η)|2ψ

( η + njk

|η + njk|
)
dη − ψ

( k

|k|
)
‖ϕ‖2L2(Rd)

∣∣∣

6 ‖ϕ‖2L2(Rd) limn
max

η∈K[0,M ]
max
j∈N

∣∣∣ψ
( η + njk

|η + njk|
)
− ψ

( k

|k|
)∣∣∣ = 0 ,

implying that (un) is pure and the associated H-measure is given by λ⊠δ k

|k|
. Since the H-measure

contains information about the direction of oscillations k, which was not the case with semiclassical
measures, this is an example in which we cannot, by any means, recover the H-measure starting
from corresponding semiclassical measures.

Remark. The same conclusions derived above for semiclassical measures remain valid if
directions of oscillations in (6) do not coincide, while an associated H-measure in that case has

its support within Rd × K, where K is a closure in the unit sphere of the set { kj

|kj | , j ∈ N},
comprising all propagation directions.

Corollary 1 and the above examples demonstrate that semiclassical measures are a preferable
tool for study of a sequences which possess characteristic scale. In that case they capture essential
microlocal properties (amplitude, frequency and direction of propagations), and H-measures can
be reconstructed from them by averaging information along the rays in the frequency domain.

However, if a sequence under consideration does not allow for a characteristic scale, or if it
is unknown, H-measures turn out as a better tool capturing all the information but frequencies.

Having demonstrated that characteristic scale providing simultaneously (ωn)-oscillatory and
concentratory property in general does not exist for an arbitrary bounded sequence, one may
wonder whether it is possible to achieve any of the mentioned properties by a suitable choice of
a semiclassical scale. The positive result is obtained by Theorem 5 below, for which we need the
following two lemmas.

Lemma 5. For any countable family of scales there exists a scale faster (slower) then all scales
in the corresponding family.

Dem. Let us denote by
{(
ω
(1)
n

)
,
(
ω
(2)
n

)
, . . .

}
corresponding countable family of scales.

Let us first show that there exists scale (ω̃n) which is not slower then any scale in the family.

One such sequence we can get by the diagonal argument, i.e. by defining ω̃n := mink6n ω
(k)
n .

Indeed, for any k ∈ N and all n > k we have ω̃n 6 ω
(k)
n , implying ω̃n → 0+ and lim supn

ω̃n

ω
(k)
n

<∞.

Finally, by ωn := ω̃2
n we get a scale faster then any in the family.
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To construct a slower scale we need to be slightly more careful in the diagonal argument in
order not to slow a constructed sequence too much, losing the convergence to zero. Indeed, an

analogue approach would be by taking ωn := maxk6n ω
(k)
n , but it is not difficult to find a family

for which we would not have ωn → 0+.
Therefore, we continue in the different manner by constructing in an inductive manner an

auxiliary sequence of positive integers (bm) for which we define ωn := 1
m+1 , for bm 6 n < bm+1.

Let us define b0 := 1. For any m ∈ N, by taking into account the zero convergence of the scales,

there exists jm ∈ N such that for all k 6 m and all n > jm we have ω
(k)
n 6 1

(m+1)2
. Then

we define bm := max{jm, bm−1 + 1}. It is obvious that (bm) is strictly increasing sequence, and
bm > m + 1 → ∞. As we have announced before, we define ωn := 1

m+1 for bm 6 n < bm+1,
which is well defined since (bm) is strictly increasing and unbounded. It is left to show that (ωn)
converges to zero and that it is slower then any scale in the family.

As for any n > bm we have ωn 6 1
m+1 , it is immediate that ωn → 0+. On the other hand,

since for m large enough bm 6 n < bm+1 implies

ωn

ω
(k)
n

>
(m+ 1)2

m+ 1
= m+ 1 ,

it is easy to see that (ωn) is slower then any (ω
(k)
n ).

Q.E.D.

The existence of a slower scale is a consequence of a more general result from the set theory
and the Hausdorff gaps, while in the previous lemma we presented only one possible construction.

The last result paves the path to the following lemma which provides the (ωn)-oscillatory (or
concentratory) property by assuming relation (2) (or (3)) holds just for a countable number of
test functions, each of them associated with a different scale.

Lemma 6. Let (un) be a bounded sequence in L2
loc(Ω;C

r). If for any test function ϕk from a
countable dense subset G ⊆ C∞

c (Ω) (in the corresponding topology of strict inductive limit) there

exists scale (ω
(k)
n ) such that

(9) lim
R→∞

lim sup
n

∫

An,R

|ϕ̂kun(ξ)|2 dξ = 0 ,

where An,R =
{
|ξ| > R/ω

(k)
n

} (
An,R =

{
|ξ| 6 1/Rω

(k)
n

})
, then there exists scale (ωn) such that

(un) is (ωn)-oscillatory (concentratory).

Dem. By the previous lemma there exists a scale (ωn) such that all functions in G satisfy the

statement condition (9) with ω
(k)
n replaced by ωn.

Therefore, it is left to prove that (9) is also valid (with ω
(k)
n replaced by ωn) for an arbitrary

test function from C∞
c (Ω). Let ϕ ∈ C∞

c (Ω). Then for any ε > 0 there exists an integer k ∈ N
and a compact K ⊆ Ω such that suppϕ, suppϕk ⊆ K, ‖ϕ− ϕk‖L∞(K) < ε. As in the estimate

lim sup
n

∫

An,R

|ϕ̂un|2 dξ 6 lim sup
n

∫

An,R

(
|ϕ̂un|2 − |ϕ̂kun|2

)
dξ + lim sup

n

∫

An,R

|ϕ̂kun|2 dξ ,

the second term in the right hand side is arbitrarily small for R > 0 large enough, it is sufficient
to estimate the first term, for which we have∣∣∣‖ϕ̂unχAn,R

‖2L2(Rd;Cr) − ‖ϕ̂kunχAn,R
‖2L2(Rd;Cr)

∣∣∣

=
(
‖ϕ̂unχAn,R

‖L2(Rd;Cr) + ‖ϕ̂kunχAn,R
‖L2(Rd;Cr)

)

∣∣∣‖ϕ̂unχAn,R
‖L2(Rd;Cr) − ‖ϕ̂kunχAn,R

‖L2(Rd;Cr)

∣∣∣
6(2‖ϕ‖L∞(K) + ε) sup

n
‖un‖2L2(K;Cr)ε .

By the arbitrariness of ε > 0 we conclude that (un) is indeed (ωn)-oscillatory (concentratory).
Q.E.D.
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Remark. In the previous lemma we could take G to be dense in the weaker topology of the
space Cc(Ω) since in the proof it is sufficient to approximate test functions only in the L∞ norm,
while derivatives play no role here.

Finally, for an arbitrary bounded sequence we are ready to prove that there exists a scale
with respect to which the sequence is oscillatory and also, under one more condition, a scale with
respect to which it is concentratory.

Theorem 5. Let (un) be an arbitrary bounded sequence in L2
loc(Ω;C

r).
a) Then there exists scale (ωn) for which the sequence is (ωn)-oscillatory.
b) There exists scale (ωn) for which the sequence is (ωn)-concentratory if and only if the sequence

converges weakly to zero in the same space.

Dem. By the previous lemma it is sufficient to take an arbitrary ϕ ∈ C∞
c (Ω) and to prove the

existence of a scale (ωn) such that

(10) lim
R→∞

lim sup
n

∫

An,R

|ϕ̂un(ξ)|2 dξ = 0 ,

where An,R =
{
|ξ| > R/ωn

}
for the oscillatory, while An,R =

{
|ξ| 6 1/Rωn

}
for the concentra-

tory property.
a) We shall deal first with the (ωn)-oscillatory property. As ϕ̂un ∈ L2(Rd;Cr), by the continu-

ity from above of measures, for any k, n ∈ N there exists Rn,k > 1 such that
∫
|ξ|>Rn,k

|ϕ̂un|2 dξ 6

1
k .

Then for any scale satisfying ωn <
1

Rn,n
we have

∫

|ξ|> 1
ωn

|ϕ̂un|2 dξ 6

∫

|ξ|>Rn,n

|ϕ̂un|2 dξ 6
1

n
,

implying (10).
b) In the case of the (ωn)-concentratory property we assume un −⇀ 0 in L2

loc(Ω;C
r), hence

by the Rellich compactness theorem we get that for any ϕ ∈ C∞
c (Ω) we have ϕun −→ 0 in

H−1(Rd;Cr). Therefore, by the proof of Lemma 2 (relation (4)) for ωn := ‖ϕun‖H−1(Rd;Cr) we
have

lim
R→∞

lim sup
n

∫

|ξ|6 1
Rωn

|ϕ̂un(ξ)|2 dξ = 0 ,

implying the existence of a scale with respect to which (un) is concentratory.
It is left to prove the converse. Let (ωn) be a scale such that a bounded sequence (un) is

(ωn)-concentratory. We need to show that it necessarily implies un −⇀ 0 in L2
loc(Ω;C

r).
Let R > 0 and M > 0 be arbitrary constants. Since ωn → 0+, there exists n0 ∈ N such that

for any n > n0 we have ωn 6 1
RM . Further on, by the boundedness of (un) there exists a weakly

converging subsequence (un′), i.e. un′ −⇀ u in L2
loc(Ω;C

r). Moreover, using Lebesgue dominated
convergence theorem, for any test function ϕ ∈ C∞

c (Ω) we have ϕ̂un′ −→ ϕ̂u in L2
loc(R

d;Cr).
By the estimate

lim sup
n′

∫

|ξ|6 1
Rω

n′

|ϕ̂un′(ξ)|2 dξ > lim sup
n′

∫

|ξ|6M

|ϕ̂un′(ξ)|2 dξ = ‖ϕ̂u‖2L2(K(0,M);Cr) ,

having in mind that (un′) is (ωn′)-concentratory and that R > 0 is arbitrary, we end up with
‖ϕ̂u‖L2(K(0,M);Cr) = 0. Now, by the arbitrariness of M > 0 and ϕ, using the Plancherel formula,
we have u ≡ 0.

Since any weakly convergent subsequence of (un) has the same limit, u = 0, we have that the
whole sequence converges weakly to zero.

Q.E.D.
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4. Compactness results

In this section we present some applications of the introduced (ωn)-concentratory property
and of the associated results obtained in preceding two sections.

The next theorem provides a strong convergence result in the spirit of the Kolmogorov-Riesz
compactness theorem (cf. [8, Theorem 5]).

Theorem 6. Let (un) be a bounded sequence in L2
loc(Ω;C

r).
a) Assume (un) converges weakly, without passing to a subsequence, to a (maybe unknown)

limit u ∈ L2
loc(Ω;C

r). Then the sequence converges strongly if and only if it is (ωn)-oscillatory
for any ωn → 0+.

b) The sequence (un) converges strongly to zero if and only if it is (ωn)-concentratory for any
ωn → 0+.

Dem. Let us prove the equivalence for the (ωn)-oscillatory property, while for the (ωn)-concen-
tratory property the arguments of the proof follow the same pattern.

If un −→ u in L2
loc(Ω;C

r), then by writing un = (un − u) + u and using Lemma 4 we have
that (un) is (ωn)-oscillatory for any ωn → 0+. Indeed, by the Lebesgue dominated convergence
theorem we have that a constant sequence is (ωn)-oscillatory for any ωn → 0+, while a sequence
converging strongly to zero is trivially (ωn)-oscillatory for any ωn → 0+.

On the other hand, if (un) is (ωn)-oscillatory for every ωn → 0+, then by the above argument
we have that vn := un − u is also (ωn)-oscillatory for every ωn → 0+. However, by the previous
theorem there exists a scale (ω̃n) such that (vn) is (ω̃n)-concentratory. Since (vn) is oscillatory
on every scale, and specially on a scale slower than (ω̃n), the claim follows by Theorem 4.

Q.E.D.

The assumption of the weak convergence in the a) part of the previous theorem is essential
to ensure the uniqueness of accumulation points. Indeed, for u, v ∈ L2

loc(Ω;C
r) the sequence of

functions

un :=

{
u , 2|n
v , 26 |n

is obviously (ωn)-oscillatory for any ωn → 0+, but it is not strongly (not even weakly) convergent.

It is well known that in order to get a strong precompactness result, apart of a trivial semi-
classical measure one needs in addition that the sequence under consideration is (ωn)-oscillatory
at the scale associated to the measure. By means of Theorem 5 we can restate this result in
the following form: if a semiclassical measure associated to a bounded sequence in L2

loc(Ω;C
r)

is trivial at any scale, then there exist a subsequence converging strongly to zero. Moreover, by
the decomposition of semiclassical measures (1) we can extend this statement to sequences with
an arbitrary weak limit. Namely, let un −⇀ u in L2

loc(Ω;C
r) and let associated semiclassical

measures of any scale are equal to (u⊗ u)λ⊠ δ0, then there exists a subsequence (un′) such that
un′ −→ u in L2

loc(Ω;C
r).

In most of the previous assertions the weak limit was known or it was assumed to be zero.
However, if the corresponding weak limit is not known a priori we can (partially) identify it
by means of semiclassical measures. More precisely, as a consequence of Theorem 5 we get the
following theorem.

Theorem 7. Let (un) be a bounded sequence in L2
loc(Ω;C

r).
a) If (un) is weakly converging in L2

loc(Ω;C
r) to a (maybe unknown) limit u, then for any

compact K ⊆ Ω we have

‖u‖2L2(K;Cr) = min
(ωn)

trµ(ωn)
sc (K × {0}) ,

where the minimum is taken over all scales ωn → 0+, while µ
(ωn)
sc is a semiclassical measure

with scale (ωn) associated to (un).
b) If for every ωn → 0+ the trace of associated semiclassical measures is equal to u2λ ⊠ δ0,

where u is a non-negative L2
loc(Ω) function, then |un| −→ u in L2

loc(Ω).
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Dem. a) By the decomposition (1) we have that for any ωn → 0+ the following equality holds:

trµ(ωn)
sc = |u|2λ⊠ δ0 + trν(ωn)

sc ,

where µ
(ωn)
sc and ν

(ωn)
sc are semiclassical measures associated to (un) and (un − u). Since trν

(ωn)
sc

is non-negative we have trµ
(ωn)
sc > |u|2λ⊠ δ0, thus for any compact K ⊆ Ω we get

trµ(ωn)
sc (K × {0}) > ‖u‖2L2(K;Cr) .

It is left to prove that the inequality above is achieved for some ωn → 0+, which is a simple
consequence of Theorem 5. Namely, by Theorem 5 there exists a scale (ωn) such that sequence
(un − u) is concentratory at that scale, hence by Theorem 3 for any compact K ⊆ Ω we have

trν
(ωn)
sc (K × {0}) = 0, thus obtaining an equality in the estimate above.
b) Since (un) is bounded we can pass to a weakly converging subsequence (un′), such that

un′ −⇀ u1 in L2
loc(Ω;C

r), and that subsequence has the same associated semiclassical measures.
By a) part of this theorem we have that |u1| = u, which, by the decomposition (1), implies that for
any ωn → 0+ semiclassical measures associated to (un′ − u1) are equal to zero. In particular, by
Theorem 5 we can choose (ωn) such that (un′ −u1) is (ωn)-oscillatory, thus we get that un′ −→ u1
in L2

loc(Ω;C
r), and then also |un′ | −→ u in L2

loc(Ω).
Since the last convergence holds for any weakly converging subsequence of (un), we can

conclude that the whole sequence (|un|) converges strongly to u.
Q.E.D.

As a special consequence of the a) part of the last theorem it follows that if trµ
(ωn)
sc (K×{0}) =

0 for some scale (ωn), than un −⇀ 0 in L2
loc(K;Cr).

5. Conclusion

In this paper we have introduced a notion of the (ωn)-concentratory property which can
be considered as a counterpart to the already existing (ωn)-oscillatory property. Both notions
are inevitably related to semiclassical measures, a microlocal tool depending on an associated
semiclassical scale. While the latter prevents semiclassical measures of loosing energy associated
to high frequencies, the first property prevail the loss of information related to low frequencies. If a
sequence allows both the properties to be satisfied by a same scale, we define it as its characteristic
scale.

A semiclassical measure provides the best performance if its scale coincides with the char-
acteristic scale of an associated sequence. In that case it can completely capture important
microlocal properties: amplitude, frequency and direction of propagations, while an H-measure
associated to the same sequence can be reconstructed from it by averaging information along
the rays in the frequency domain. Essentially, this is a well known result from before, but it
required assumptions on a semiclassical measure, while here, by means of the introduced (ωn)-
concentratory property, the result is stated solely in terms of a sequence under consideration. In
other words, we do not require a semiclassical measure to be constructed first in order to check
its performance. Instead, rather by analysing the very sequence, we can deduce a right scale for
which the semiclassical measure will attain the best performance level.

However, if a sequence under consideration incorporates two or more frequency scales, and
does not allow for a characteristic scale, semiclassical measures fail to recover important part of
the information, unlike H-measures which still capture all the information except frequencies. A
notable example is given by a sequence (6), incorporating an infinite number of frequency scales,
for which all the associated semiclassical measures, regardless of the chosen scale, are either zero
or contain their support within the origin of the frequency domain, such loosing information on
all frequencies and directions of propagation.
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Last section provides compactness results derived by the introduced notion. Theorem 6
provides a result similar to the Kolmogorov-Riesz compactness theorem. The latter one requires
relation (2) to hold just for a constant sequence ωn = 1, while the first one in the a) part considers
the same relation with a semiclassical scale, which is a weaker assumption, but it requires (2) to
hold for every such scale. However, two assumptions turn out to be equivalent as they are both
equivalent to strong precompactness of the considered sequence.

Theorem 6 also resembles to compactness results obtained by H-distributions [1], providing
strong convergence if and only if all H-distributions related to a sequence under consideration
are equal to zero. However, the compactness result obtained here does not require a microlocal
defect object, and is stated in terms of the sequence only.

The b) part of Theorem 6 relies on the (ωn)-concentratory property that has to be satisfied
for every semiclassical scale. The result can be applied for disproving strong convergence of a
sequence converging weakly to zero. In that case the strong convergence contradicts the negation
of the assumption of the Kolmogorov-Riesz theorem

(11) (∃ϕ ∈ C∞
c (Ω)) lim sup

R→∞
lim sup

n

∫

|ξ|>R

|ϕ̂un(ξ)|2 dξ > 0 ,

as well as the negation of the (ωn)-concentratory property, implying that there exists a semiclas-
sical scale (ωn) such that

(12) (∃ϕ ∈ C∞
c (Ω)) lim sup

R→∞
lim sup

n

∫

|ξ|6 1
Rωn

|ϕ̂un(ξ)|2 dξ > 0 .

Relation (11) considers integration over unbounded sets (obtained as complements of enlarging
nested family of finite balls), while (12) takes into account integrals over finite sets, whose radius
increases boundlessly. Which of the two inequalities is easier to prove depends on a particular
sequence and one has both the options at his disposal.

At the end we present how the introduced notion enable us to (partially) recover the unknown
limit (weak or strong) of the corresponding sequence via associated semiclassical measures.
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