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REVIEW

decades, with a 0.7% and 1.8% increase per year in men and 
women, respectively (5).

OSCC primarily affects women after menopause (6), 
smokers, people who consume alcohol and red meat on a 
daily basis, and people infected with human papillomavirus-
es (7, 8). There is a significantly higher incidence of OSCC in 
men than women (9, 10), which may be the result of greater 
consumption of tobacco and alcohol by men (11). Howev-
er, both alcohol and tobacco modify the levels of estrogen 
and testosterone within gender-specific frames (12), which 
yields possible additional xenohormonal mechanisms in-
volved in the etiology of OSCC. Oral cancer in women occurs 
almost exclusively after menopause, which suggests that a 
decrease in estrogen levels may play an important role in 
the initiation of oral cancer. In female patients with oral can-
cer, there is a significantly higher prevalence of OSCC com-
pared with control subjects among hysterectomized women 
and those whose menopause occurred at a significantly 
younger age (13).
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Introduction

Oral cancer is the sixth most common cancer in the world, 
constituting 3%-5% of all malignant diseases in both sexes. 
Over 90% of oral cancers are oral squamous cell carcinomas 
(OSCC) (1-3), with an annual worldwide incidence of over 
300,000 cases and a mortality rate of 48% due to its meta-
static potential and limited treatment options (4). The inci-
dence of OSCC has significantly increased during the past 2 
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The OSCC microenvironment consists of tumor cells, dif-
ferent stromal cells, and the extracellular matrix (ECM). Based 
on the latest research, the activated tumor environment in 
OSCC has a significantly greater effect on metastases than 
had previously been assumed (14, 15). However, it is still un-
known whether the mechanisms in OSCC-activated stromal 
cells that promote metastases are similar to those identified 
in the stroma of other cancers (16-18).

Cancer-associated fibroblasts (CAFs) are major promot-
ers of metastasis progression in cancer tissue and the dom-
inant cell population in tumor stroma (19, 20). They may 
have their origin in different cell types such as mesenchymal 
stem cells, bone marrow stem cells, endothelial cells and 
even cancer cells (21). CAFs produce growth factors, cyto-
kines, chemokines and metalloproteinases that stimulate 
cancer growth (22). Reprogrammed CAFs resembling myofi-
broblasts that aggregate around neoplastic tissue have been 
reported to invade normal tissue (23). These spindle-shaped 
cells in the stroma of OSCC play an active role in produc-
ing ECM components. Their increased presence significant-
ly correlates with stage, regional recurrence and distant 
 metastasis (15).

It has been suggested that CAFs induced in stroma mimic 
a wound-healing microenvironment and stimulate the activa-
tion of multiple active molecules that promote angiogenesis, 
desmoplasia and paracrine activities (19). CAFs initiate vascu-
larization of the tumor edge through the production of vascular 
endothelial growth factor (VEGF) (24). Together with CAFs, tu-
mor-associated mast cells (TAMCs) also promote angiogenesis 
and discharge signal molecules such as tumor necrosis factor 
alpha (TNF-α) and hypoxia-inducing factor 1 alpha (HIF-1α) as 
well as proinflammatory cytokines such as interleukin 6 (IL-6)  
(25, 26), which orchestrate cancer growth and influence the 
dynamics of metastasis.

It is interesting to mention that miR-21, which regulates 
cell proliferation, apoptosis and epithelial-to-mesenchymal 
transition during neoplastic progression, is increased in OSCC 
stroma and its stromal expression has a particularly negative 
prognostic value (27, 28), showing the potency of this finding 
for future investigation.

The aim of this review is to provide insight into the com-
plex multifactorial biology of OSCC stroma and the tumor mi-
croenvironment based on the currently available data on the 
role and interaction between stromal metalloproteinases, 
cytokines, growth factors and extracellular stromal proteins, 
all related to the mechanisms involved in the biology of OSCC 
and especially its progression. Additionally, using the systems 
biology tool “Systems Biology Graphical Notation” (SBGN), a 
presentation of the interaction between stromal active fac-
tors and tumor mechanisms is provided so as to suggest new 
approaches in the investigation of new biomarkers for diag-
nostics and therapy targets.

Impact of stromal cytokines on the aggressiveness  
of OSCC

IL-6 is produced by a variety of cells, primarily monocytes, 
macrophages and tumor cells, and plays a central role in the 
regulation of inflammatory and immune responses. It has 
an important role in cancer progression via effects on prolif-

eration, migration and angiogenesis in several cancers. Oral 
cancer cells induce CAFs to produce IL-6 (29-31). Additionally, 
IL-6 produced by stromal cells plays a role in the osteoclast 
formation induced by OSCC (32).

Interleukin-1 (IL-1) beta mediates the promotion of inflam-
matory cell migration from blood into inflamed tissue, and 
 regulates the synthesis and decomposition of the ECM (33, 34). 
It can thus be used as a marker of disease progression (35). IL-1 
alpha produced by OSCC cells has a dual effect on CAFs: pro-
motion of CAF proliferation and upregulation of the secretion 
of cytokines in CAFs such as CCL7, CXCL1 and IL-8 (36).

Studies have suggested that TAMs produce IL-10, which 
points to a stromal contribution in immunosuppression 
mechanisms (37).

The influence of gender on the levels of stromal cytokines 
in the progression of OSCC has been poorly investigated, 
 although cytokine levels are known to be estrogen and tes-
tosterone dependent (38, 39). Such information would be of 
significant value in designing personalized therapy, especially 
in OSCC, where significant gender differences in incidence 
and survival have been described.

OSCC stromal growth factors and hypoxia factor

The proliferation and spread of tumor cells depend on 
their angiogenesis. Tumors that grow quickly lead to hypox-
ia, which regulates tumor cell survival factors such as HIF-
1α and VEGF, leading to even stronger tumor proliferation, 
angiogenesis and increased radioresistance (40-42). Thus, 
VEGF interacts with mast cells, especially in the early stages 
of OSCC carcinogenesis, by promoting epithelial growth and 
angiogenesis (43, 44). Over 90% of OSCCs have elevated lev-
els of VEGF and HIF-1α (45), both being related to poorer 
survival (46). These findings support the hypothesis that 
tumor angiogenesis is closely related to – but not strictly 
dependent on – the hypoxic conditions of a tumor’s micro-
environment (47).

VEGF-A and VEGF-C protein expression is significantly 
higher in primary OSCC than in normal oral mucosa. Lymph 
node metastases in patients with oral cancer are closely cor-
related with positive VEGF and matrix metalloproteinase 9 
(MMP-9) expression (25). Besides, VEGF has been shown to 
be a predictive marker of malignant potential, as increased 
levels were found in precancerous oral lesions and oral can-
cer in comparison with controls (48). VEGF acts as an acti-
vator of tumor lymphangiogenesis within metastases also 
via CD163-positive stromal tumor-associated macrophages 
(44, 49).

Transforming growth factor beta (TGF-β) family members 
show different expression in OSCC subtypes. CAFs from ge-
netically unstable OSCC, which promote the malignant phe-
notype by weakening intercellular epithelial adhesion, have 
shown increased levels of active TGF-β1 and TGF-β2. (50). 
Additionally, TGF-β1 secreted by stromal fibroblasts induces 
expression of PDPN (the gene encoding podoplanin) in OSCC 
cells, which significantly correlates with invadopodia forma-
tion and lymph node metastasis (51).

Platelet-derived growth factor receptor beta is exclusively 
expressed in CAFs of OSCC but not in tumor cells, which gives 
this biomarker particular significance in diagnostics (52).
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Role of stroma in the formation of ECM and  
desmoplasia

Cancer cells degrade the ECM, thus facilitating migration 
and metastasis by mechanisms similar to wound healing. 
As described previously, the OSCC stroma secretes several 
growth factors and inflammatory mediators that play a crucial 
role in cancer progression. On the other hand, cancer stroma 
also expresses altered levels of collagens, elastin, hyaluronic 
acid, fibronectin, proteoglycans and glycoproteins, leading to 
the loss of tissue architecture (53).

ECM degradation is caused by proteinases. Matrix metal-
loproteinases (MMPs) are involved in the initiation, invasion 
and metastasis of cancer. In oral cancers, MMPs, especially 
MMP-9, are associated with ECM degradation, allowing the 
cancer to spread (54).

Disruption in the expression of MMP-1 promotes OSCC 
progression via increased levels of hyaluronan synthase 2, 
which is associated with alpha smooth muscle actin (α-SMA)-
positive myofibroblasts in the stroma (55). It has been shown 
that a stromal environment that promotes cancer cell migra-
tion is accomplished via stimulated expression of MMPs. This 
type of expression is the responsibility of thrombospondin-1 
produced by stromal cells (56).

In OSCC, retrodifferentiation is demonstrated by the ex-
pression of oncofetal fibronectins in the stroma. Both tumor 
cells and recruited stromal myofibroblasts take part in the 
formation of the fetal ECM milieu. As shown in one study 
(57), the oncofetal type III extra-domain (ED-B) fibronectin 
matrix is produced by recruited stromal cells, which enables 
the remodeling of the carcinoma invasion front.

A migration-promoting microenvironment in OSCC is also 
mediated by myofibroblast progression with stromal upregu-
lation of laminin isoforms, which leads to vascular basement 
membrane reorganization (alpha-3- and gamma-2-chain lami-
nins) (58). Myofibroblasts are α-SMA and vimentin positive, 
by which they also contribute to OSCC invasion (59). The Gas 
6/Axl axis, which takes part in cadherin and vimentin expres-
sion and promotes cell invasion, migration and the triggering 
of NF-κB signaling, has been reported to be active in OSCC and 
to induce cancer to become apoptosis resistant (37). Addition-
ally, the OSCC stroma seems to have a desmoplastic response 
that has been described in highly invasive tumors (60).

Versican is overexpressed in different cancer types. It plays 
a significant role in tumor growth by repressing cell adhesion, 
stimulating cell proliferation and migration, and regulating 
angiogenesis. OSCC has strong stromal versican expression, 
which has been shown to be an independent predictor of 
 unfavorable prognosis (61). Invasion in OSCC is associated 
with the increased deposition of laminin in stroma, beneath 
the invading carcinoma cells. Increased expression of lam-
inin-5 has been shown to occur in the areas of direct tumor-
stroma interaction (57, 62).

Galectin 1 increases CAF-conditioned-medium-induced 
tumor cell migration and invasion, possibly by production of 
monocyte chemotactic protein-1 (MCP-1/CCL2) (63), which 
has been reported to be associated with decreased disease-
free survival in OSCC (64).

A significant inverse correlation has been reported be-
tween the Ki-67 level and the stroma/tumor proportion and 
degree of keratinization (65).

Biology of OSCC presented by SBGN

Systems biology has become an inevitable part of data in-
terpretation and presentation in research based on complex-
ity. In the near future, it will undoubtedly become a potent 
tool in communicating the achievements of clinical research 
and will probably very soon take part in decision-making pro-
cesses regarding personalized medicine. In this paper, the col-
lected data on the interactions between stromal biomarkers 
associated with OSCC progression are presented using SBGN, 
whose main advantages are its clarity and wide applicability 
(66). This set of 3 languages was developed a few years ago 
and is accompanied by detailed technical specifications and 
a software application that makes it simple to use. This paper 
uses the Activity Flow language of SBGN, the simplest of the 3 
and perfectly suited to the “bird view” description of disease 
mechanisms. Figure 1 shows OSCC in its microenvironment 
as well as the interaction of the molecules described in this 
paper, known to play a significant role in the etiology and pro-
gression of this cancer type. This is the first time that SBGN has 
been applied for clinical purposes and we believe it has shown 
a unique capacity not only to summarize data but also to ex-
amine biological pathways in the contexts of the living envi-
ronment and gender on the cellular, stromal and matrix level.

Fig. 1 - Interactions between EGFR, 
AR, ER, Ki67, INFα, Il-1, Il-6, VEGF, 
MMP9 and gender in OSCC tumour 
microenvironment presented by 
SBGN.
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Conclusion

Understanding the interaction between neoplastic cells 
and their microenvironmental niche opens up new  possibilities 
in OSCC diagnosis, prognosis and therapy. Although OSCC in-
cidence and survival are gender related, the cross-reaction 
 between estrogen and androgen receptors, estrogen and tes-
tosterone levels, and relevant stromal factors and proteins has 
so far not been investigated in OSCC. Similarly, following the 
knowledge gained from research into other cancer types, the 
induction of cytokines, MMPs, ECM and growth factors should 
be integrated with other factors relevant for early OSCC profil-
ing and success of therapy. The level of stromal activation could 
become a significant factor for histopathological diagnostics as 
well as for decisions on the treatment and monitoring of OSCC 
patients. Stromal secretome profiling will contribute to a better 
future exploitation of the tumor microenvironment as a novel 
therapeutic target.
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TGF  transforming growth factor
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VEGF  vascular endothelial growth factor
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