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Introduction (1)

d The increasing demand of utility customers for stability of the
power supply has stressed the importance of improving the
reliability and power quality in the distribution network.

d Lightning is a major cause of faults on overhead lines, so it is
essential to evaluate the lightning electromagnetic environment
in order to mitigate its effects and improve the power system
reliability.

d Transient faults are usually acceptable by the consumers, except
in cases where the loads are very sensitive to short time
interruptions or voltage dips.
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Introduction (2)

ad Lightning overvoltages in a 35 kV distribution network were
calculated by using the EMTP-ATP software.

Od Mixed overhead line and underground cable distribution
network supplying an industrial consumer.

3 An open end of a cable was considered in the simulations as the
most unfavorable switching configuration.

3 An optimal overvoltage protection was selected which
significantly improves the overvoltage protection of the cable.
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Combined overhead line and underground
cable distribution network
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35 kV overhead line with steel lattice towers 35 kV cable with cross-linked
and a single shield wire polyethylene (XLPE) insulation
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Model of distribution network in EMTP-ATP

Lightning current
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d The overhead line and cable were represented by the
frequency-dependent model in EMTP-ATP.

a The equipment in high voltage substation were represented by
surge capacitances obtained from manufacturer’s data.
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Lightning current

d The lightning stroke (hitting a tower or a phase conductor) was

represented by a CIGRE concave shape.
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d The peak current magnitude and the tail time are important when
observing the arrester energy. Front time is an important parameter
with regard to the insulator flashover.

d The CIGRE shape represents more accurately the concave front of a
lightning stroke and usually gives more realistic results.
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Transmission line tower model

ad The tower surge impedance depends on
the direction of wave propagation and the

shape of a lightning current. {
d An approximation of surge impedance m
equation is determined by equivalently % I
replacing the tower with a cylinder: %W“ L=
k/T_‘

L e {m( H j‘ 1} N
R :fm\k/ﬁ

1 g [x]] PN
: a2an
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where H represents the tower height and R
the equivalent radius of a tower base.
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Insulator flashover - Leader Propagation Model

ad The flashover mechanism of the overhead line insulators was
represented with differential equation of the leader propagation
model recommended by the CIGRE WG 33-01:

_ﬂ_k U (t) U(t) ~E,, Leader
dt g-|
— leader velocity (m/s); 'I “
% 4 g lum
—

U(t) - voltage across the gap (kV);
g - gap length (m);

[ - leader length(m); & .. Y )
E,, - critical leader inception gradient (kV/m);
k, - leader coefficient (m2V-2s1).
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Tower footing resistance model — soil ionization

O The ionization model takes into account the soil ionization caused
by the lightning currents.
ad Tower grounding non-linear resistor should be represented as:

Arc Streamer
R t Electrolytic
Ri — 0 conductivity
| Constant
1+ — conductivity
| Earth surface

R, - footing resistance at low current and low
frequency, i.e. 50 or 60 Hz;

| - stroke current through the resistance;

I, - limiting current to initiate sufficient soil
ionization.
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Tower footing resistance model — soil ionization

d Limiting current to initiate sufficient soil ionization:

| = pEO
v 2-n-R;

p- soil resistivity (Qm);
E, - is the soil ionization gradient, recommended value: 400 (kV/m).

Od Tower grounding was represented as a non-linear resistor using
MODELS language and TACS-controlled time-dependent resistor
in EMTP-ATP.
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Gapless type surge arresters (SA)

a SAs with continuous operating voltage U_=30 kV, rated voltage

U,=37.5 kV and energy class 4 (13.3 kI/kV(U.)) were considered in
simulations.

O U-I characteristic of SA for impulse current waveform 8/20 ps:

Current [kA] 2 5 10 20 40
Voltage [kV] | 79.5 | 83.4 | 87.0 | 949 |106.2

O The SA leads were represented by the inductance of 1 pH/m

taking into account the effects of additional voltage rise across
the lead inductance.
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Simulation of different overvoltage protection
scenarios

3 Lightning strikes the upper phase conductor and a shield wire at
the first tower close to the beginning of the cable section.

Q Three different overvoltage protection scenarios were analyzed:

1) no SAs installed;
2) SAs installed at the beginning of a cable;
3) SAs installed at the beginning and at the end of a cable.

d The most severe switching condition was considered: opened
circuit breaker at the end of cable.
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Simulation results
Lightning stroke to tower
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Scenario 1): no SAs installed
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Scenario 1): no SAs installed

 Lightning-impulse withstand voltage of the cable: 142 kV.
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Scenario 2): SAs installed at the beginning of a cable

 Lightning-impulse withstand voltage of the cable: 142 kV.
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Scenario 2): SAs installed at the beginning of a cable

 Surge arrester energy capability: 13.3 kJ/kV(U,) = 399 kJ
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Scenario 3): SAs installed at both cable ends

 Lightning-impulse withstand voltage of the cable: 142 kV.
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Scenario 3): SAs installed at both cable ends

[ Surge arrester energy capability: 13.3 kJ/kV(U,) = 399 kJ
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Simulation results — lightning stroke to tower

J Lightning-impulse withstand voltage of the cable: 142 kV.

Insulator Overvoltages Overvoltages SA energy at SA energy at
. flashover at at the the
Scenario . at the end of . the end of
the struck beginning of the cable beginning of the cable
tower the cable the cable
1) No SAs installed YeZ p;acses 272.8 kV 456.0 kV i i
2) SAs at the Yes phases
beginning of a /P 98.3 kV 192.7 kV 85.9 kJ i
A, B, C
cable
3) SAs at the Ves. phases
beginning and at /P 98.3 kV 86.3 kV 61.9 kJ 32.9klJ

the end of a cable

A, B,C
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Simulation results
Lightning stroke to upper phase conductor
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Lightning stroke to upper phase conductor

(JAccording to the electro-geometric model of the overhead line
the highest (critical) lightning current that can hit the upper
phase conductor is 17.8 KA.
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Lightning stroke to upper phase conductor

(] No SAs installed.

 Lightning-impulse withstand voltage of the cable: 142 kV.
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Simulation results — lightning stroke to upper phase
conductor

Insulator Overvoltages Overvoltages | SA energy at | SA energy at
. flashover at at the .
Scenario . at the end of | the beginning | the end of
the struck beginning of
the cable of the cable the cable
tower the cable
1) No SAs Yes, phases
installed A B, C 70.8 kV 95.0 kV - -
2) SAs at the Yes phases
beginning of a /P 64.4 kV 85.5 kV 1.9 kJ i
A, B, C
cable
3) SAs at the
beginning and at | Yes, phases
the end of a A B, C 64.4 kV 73.5 kV 1.4 kJ 1.9 kJ
cable
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Data from lightning location system (1)

ad The lightning activity around 35 kV overhead line (9.63 km long)
was observed for a 7 year period within an alarm zone radius of
2 km (surface of 50.71 km?).

Od The data were obtained from the LINET lightning location system
(LLS).

3 An algorithm was developed to group lightning strokes into flashes
(lightning stroke multiplicity) in order to determine the current
probability distribution of the first and subsequent CG strokes.

d The multiplicity was calculated for a maximum temporal separation
of 200 ms and a maximum lateral distance of 2 km between
successive strokes.
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Data from lightning location system (2)

Flash Stroke FMF CG cg+  CO/CGH
ratio '
2000 283 374 132 374 281 93 3.02 558 738
2010 704 1059 150 1059 746 313 238 13.88  20.88
2011 117 137 117 137 8 50 1.74 231 2.70
2012 151 189 125 189 116 73 1.59 208  3.73
2013 269 422 157 422 306 116 2.64 530 832
2014 435 639 147 639 386 253 1.53 858  12.60
2015 266 350 132 350 159 191 0.83 525 6.90
Total 2225 3170 1.42 3170 2081 1089 1.91 627  8.93

FMF - Flash Multiplicity Factor;
Ng - the lightning flash density;
N, - the lightning stroke density.
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Data from lightning location system (3)

1200

1000

800

600

No. of Strokes

400

200

s CG/IC ratio

2009 2010 2011 2012 2013 2014 2015
Year

Number of CG and IC lightning strokes detected by LLS around 35 kV
overhead line

5.00

4,00

g
=
)

i
=
CG/IC ratio

1,00

0,00

oth Annual Grounding & Lightning Conference, October 3 - 4, 2017 « San Antonio, Texas



Data from lightning location system (4)
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Data from lightning location system (5)

d There is a significantly higher probability of lightning strokes
occurrence with lower current amplitudes, compared to CIGRE
data.

d This difference is caused by the sensitivity of LLS which is
capable of detecting multiple CG strokes with low current
amplitudes.

a LLS gives lower median values of current amplitudes both for
first and subsequent strokes.
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Conclusions (1)

d An optimal overvoltage protection was selected including the
installation of surge arresters at both cable ends which
significantly improves the overvoltage protection of the cable.

d Lightning parameters derived from the LINET lightning location
system were analyzed and compared to the ones used in
literature.

d The analysis of the LLS data showed that the lightning current
parameters used in the simulations were conservative and on
the “safe side”.
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Conclusions (2)

Q The selected surge arrester with U=30 kV, U=37.5 kV and
energy class 4 can withstand energy stress caused by multiple
lightning strokes with relatively high amplitudes and long tail
times.

d Induced overvoltages were not analyzed but in some cases they
may also cause an insulator flashover.

d This can be prevented by installing line surge arresters (LSAs) in
order to reduce the number of overhead line outages.
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