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Abstract. Modern service selection in a cloud has to consider multiple
requests to various service classes by multiple users. Taking into account
quality-of-service requirements such as response time, throughput, and
reliability, as well as the processing capacities of the service instances,
we devise an efficient algorithm for minimum-cost mapping of mutually
independent requests to the corresponding service instances. The solu-
tion is based on reduction to transportation problems for which we com-
pare the optimal and a suboptimal but faster solution, investigating the
tradeoff. In comparison to the alternative service selection models, the
evaluation results confirm the efficiency and scalability of the proposed
approach(es).
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1 Introduction

Modern web applications make use of multiple services with different function-
alities [1] and can in effect be described as service compositions. An application
can be simultaneously used worldwide, and for each of the functional service
requests it makes, there are usually many possible candidates – corresponding
service instances on cloud servers all over the world [2]. Equivalent services cor-
responding to the same functional description are referred to as a service class
or an abstract service [3]. Application’s quality of service (QoS) may depend on
various user-specific, service-specific, and environment-specific parameters [4].
User-specific parameters include the user’s location, network and device capa-
bilities, and usage profiles. Service-specific parameters (for a service instance)
include its location, computational complexity, and system resources (e.g. CPU,
RAM, disk, and I/O operations). Environment-specific parameters include ser-
vice provider load and network performance at the time of the invocation. In a
system with many users consuming different applications with requirements on
various criteria such as response time, reliability, and price per service request [5],
there is a need of a robust model which will optimize the service selection in the



cloud and, thus, provide an answer which service instances will be invoked by
which applications instances (users).

Approaching this problem, many considerations must be taken into account.
Some service instances are infeasible to some users (due to QoS requirements of
corresponding requests); some are more reliable, but the cost of calling them is
higher; some of them might not be available due to their ”popularity” among
other users or other applications. As for the last point, we must respect the
processing capacity [6] of each service instance (the maximum number of requests
it can process in a given time frame) which is not a trivial task when there are
multiple users with requests for the same service class. In cases like this, greedy
algorithms will not work: selecting the closest, the most reliable or the cheapest
service instance for each request will generally break the processing capacity
limit of some service instances, and might also fail with respect to other criteria.

In this paper, we propose an efficient and scalable model which incorporates
the aforementioned considerations. Namely, the model considers multiple user
requests, each having required performance values (criteria) for QoS. The typical
criteria, considered in this paper, are response time, reliability, and throughput,
while total price of invoked services is sought to be minimized. The model is
easily extendable to other QoS attributes. The model is responsible of selecting
the service instances to facilitate the given requests, considering their respective
processing capacities and their respective values of response time, reliability, and
throughput for all considered users, in order to satisfy the requests’ requirements
and to minimize the total price.

Minimization is done by reducing the problem to several mutually indepen-
dent transportation problems. This is a time-efficient optimization, done by solv-
ing several transportation problems in parallel, with two variations of the pro-
posed algorithm with time/accuracy tradeoff. We have conducted several experi-
ments to confirm the correctness and efficiency of the proposed approach(es) and
to compare them with alternative approaches. The obtained evaluation results
strongly demonstrate that the proposed approach(es) meets its design require-
ments.

The paper is organized as follows. Sect. 2 discusses the related work, Sect.
3 describes a system model and defines the problem in precise terms, Sect. 4
describes the proposed algorithm, experimental results are presented in Sect. 6
and conclusions are given in Sect. 7.

2 Related Work

There has been a lot of work on QoS-based service selection, covering different
aspects and problem variations. Many models focus on predicting the user-service
QoS values. The model we propose assumes they are already known or predicted
with reasonable accuracy, focusing on the constrained selection phase instead.

Multi-criteria service selection is complex enough even when focusing on a
single user’s composite service pipeline. To name a few approaches, [7] employs
iterative multi-attribute combinatorial auction between services providers. This



approach was further improved by [8] using an incentive mechanism. BigData-
space service selection was tackled by [9], taking into account both qualitative
and quantitative user QoS preference with the service trust. Recently, [10] stud-
ied the problem from a general Pareto-optimal angle, seeking to reduce search
space in service composition. A polynomial time approximation for Pareto opti-
mality was done by [11]. Similar work was done by [12], trying to overcome the
limitations of Pareto optimality. Approach by [13] selects representative services
adaptively: it divides the value range of each quality attribute into sub-ranges,
considering the QoS values of a sub-range as local constraints, and selects the
appropriate services from the divided QoS ranges so they can maximize the util-
ity of a user task. Some recent papers such as [14] took into account the possible
correlation of services’ QoS attributes in a composition, while the probabilis-
tic QoS values are considered in [15]. Recently, [16] developed a mobility-aware
approach.

To find the optimal solution for a single user’s service selection with com-
posite service pipeline, [17] reduced the problem to a Multiple Choice Knapsack
Problem (MCKP) which is NP-hard, but solvable in pseudo-polynomial time.
However, they considered only a single execution path in a composite pipeline.
Taking into account a directed graph which contains all execution paths in a
dynamic pipeline, the problem becomes a Multiple Choice Multiple Dimension
Knapsack (MMKP), which is more complex and is usually solved by mixed in-
teger programming (MIP) [18, 19]. Others tried to improve on this exponential
solution by reducing the size of the NP-hard problem instance: for a single user,
papers such as [20] decompose each QoS global constraint c0 into a set of lo-
cal constraints c1, . . . , cn where n is the number of abstract service classes in
the composite pipeline. For multiple users, [21] formed a reduced service set by
dismissing the services dominated by another service, while others reduced the
problem size by clustering the services [22] or both users and services [23]. Still,
future scalability issues call for a polynomial solution.

With some framework similarities to the present work, polynomial work on
service selection was done by Wang et al. [6] (multiple users, single service class)
and Jin et al. [24] (multiple users, multiple service classes), on which some effi-
ciency comparisons will be made.

3 System Model

The proposed service selection algorithm assumes a set U of active users, a set
F of abstract services (service classes) and a set If of service instances in the
cloud corresponding to each service class (functionality) f ∈ F . Each service
instance i ∈ If has a processing capacity PCi, a maximal number of requests it
can handle in the given time frame. Each user u ∈ U has a set of (possibly one)
mutually independent requests Ru.

Each request r ∈ Ru has a corresponding service class f(r) ∈ F and inherits
from its corresponding application the required maximum response time RTr,
minimum reliability Relr, and minimum throughput TRr. The way in which



these values are derived from, for example, the global application-level SLA
(service-level agreement) is beyond the scope of the paper: this problem is re-
ferred to as a decomposition of global QoS constraints by e.g. [20], which deals
with it by considering quality levels of different service classes; a similar and
more recent approach is given in [13].

Let I =
⋃
If denote the set of all service instances. Let RT , Rel, TR, and

Pr be four matrices of size |U | × |I| describing the connections between users
and service instances. Namely, RTui, Relui, TRui, and Prui are response time,
reliability, throughput, and price per request for invocation of service instance
i ∈ I by user u ∈ U . The infeasible user-service connection can be described by
very large values of RT and Pr (denoted by Einf ), and the values of Rel and
TR close or equal to zero (denoted by ε0). These constants can be set to e.g.
109 and 10−9.

We do not further explore how matrices RTui, Relui, TRui, and Prui are
obtained. In general, these values can be derived either by prediction or by
estimating values using service monitoring approaches. For instance, a variety
of service monitoring approaches have been described in the literature [25], [26].
Although they can be effective, these methods can have limitations in practice
as frequent service polling for the purposes of reliability estimation can lead to
degradation in service performance. One way to mitigate the issues present in
service monitoring is to utilize predictive methods, either by fitting the collected
data to predefined models or by using statistical methods [27], [28], [29].

Other criteria can also be considered, which does not change the proposed
algorithm. The potential criteria include reputation, availability, compliance,
best practices (with respect to WS-I Basic Profile), amount of documentation,
etc., defined in e.g. [30].

Each user request r ∈ Ru(r) must be mapped to a concrete service instance
i(r) ∈ If(r), satisfying the QoS requirements (RTu(r)i(r) ≤ RTr, Relu(r)i(r) ≥
Relr, TRu(r)i(r) ≥ TRr). Processing capacity limits must be satisfied: for each
i ∈ I it holds that PCi is not less than the number of requests mapped to i. Our
goal is to find a solution such that the total cost (the sum of all Pru(r)i(r)) is as
low as possible.

In the proposed and the alternative approaches, we will separately solve the
subproblems for each service class (which can be done in parallel). Thus, in the
following text we assume that all observed requests belong to the same class and
are enumerated r ∈ {1, 2, . . . , n}, with the service instances in the corresponding
class enumerated as i ∈ {1, 2, . . . ,m}.

4 Proposed Method

Our approach first constructs an unbalanced transportation problem (TP) [31]
as follows. The nodes on one side of the bipartite graph represent requests, each
having a demand equal to 1 (total demand = n). The nodes on the other side
of the bipartite graph repesent service instances, each having a supply equal to
its processing capacity PCi (total supply =

∑
PCi). Matching a request to a



service instance (shipment edge) has a given cost. In TP, the goal is to find the
shipping distribution (i.e., to choose edges) from the suppliers to the demanders
which minimizes the total shipment cost while satisfying all demands and supply
constraints. The problem in our case is unbalanced because not all supplies have
to be used, i.e., processing capacities do not have to be exhausted.

In the balanced TP, for which the standard TP algorithms are used, the
difference between the total demand and the total supply should be zero. To
balance the problem, we add an ”artificial request” with the demand equal to this
difference (

∑
PCi−n) and connect it to all suppliers with zero cost, making the

service instances able to ”spend” their unused capacity on the artificial request.
The transportation problem is solved in two steps:

1. Finding an initial (heuristic) solution using Vogel Approximation Method
(VAM) [31,32].

2. Iteratively improving the solution until it is optimal, using the Transporta-
tion Simplex Method (TSM) which is a (polynomial) specialization of the
simplex method designed for TP [33,34].

This two-step approach will be called SS-TSM (Service Selection using Trans-
portation Simplex Method). If we stop after the first step, we get a faster but,
generally, more expensive solution in terms of the defined goal function. We
will call this approach SS-VAM (Service Selection using Vogel Approximation
Method). This tradeoff will be investigated in the experimental results. We have
also experimented with other optimal solutions of TP, such as reducing it to
a minimum cost flow problem, but the time performance was inferior to the
proposed algorithm by an order of magnitude.

5 Alternative Approaches

The following paragraphs describe two existing, competing solutions to the prob-
lem defined in Sect. 3.

Integer Programming (IP). The given problem is usually formulated and
solved using integer programming (see e.g. [18,19]). In our model, the unknowns
are integers xri ∈ {0, 1} – whether request r is mapped to the service instance
i. The given requirements can then be expressed in linear form as follows:

–
∑

i xri = 1 for each r – each request is mapped to exactly one service in-
stance,

–
∑

r xri ≤ PCi for each i – processing capacity limits,
–

∑
i xriRTri ≤ RTr for each r – response time requirement,

–
∑

i xriRelri ≥ Relr for each r – reliability requirement,
–

∑
i xriTRri ≥ TRr for each r – throughput requirement.

Assignment Problem (AP). Another approach is using reduction to the
assignment problem (by [6] and [24]). Namely, for a service instance with pro-
cessing capacity k, they create k virtual instances, each being able to handle
a single request. The obtained assignment problem (weighted matching) is first



tackled by greedy algorithm, and then if greedy does not find the optimal so-
lution, the Hungarian (Kuhn-Munkres) algorithm for the assignment problem
is applied. Multiplying the number of service instances strongly degrades the
efficiency of such an algorithm when processing capacities are high.

6 Experimental Results

Here we describe the basic setup used in generating the artificial test data.1 The
services were randomly divided into a set number of service classes of similar
size using uniform distribution; the generated requests were divided among a set
number of users in the same manner. The required (request-based) and actual
(user-service) properties of response time, reliability, throughput, and price per
request were generated artificially according to normal distributions. The exis-
tence of a feasible solution was ensured by relaxing the required properties of
requests, for about 30% on average, with respect to the actual ones. For the
same reason, the sum of services’ processing capacities was set to be about 30%
higher than the total number of requests to be handled.

We have used two different experiment setups with respect to the total num-
ber of users, service instances, service classes, and requests. In setup A, these
numbers respectively were (50, 50, 4, 100) in the small experiment, (500, 500,
16, 1000) in the medium experiment, and (5000, 5000, 32, 10000) in the large
experiment. In setup B, these numbers respectively were (50, 50, 4, 200) in the
small experiment, (500, 500, 16, 2000) in the medium experiment, and (5000,
5000, 32, 20000) in the large experiment. The difference between the setups lies
in the total number of requests and, consequently, the service instance capaci-
ties, whose size affects the AP algorithm, but not the proposed algorithm. Each
experiment was run 50 times with different random seeds and the results were
averaged.

The upper figures in Table 1 depict the average obtained total cost. As shown,
the proposed SS-TSM algorithm is equally expensive in terms of the goal function
as the alternatives, because all three are optimal, while the proposed suboptimal
heuristic SS-VAM achieves the cost higher by 9%− 25%.

The lower figures show timing results on logarithmic scale. The proposed SS-
TSM always outperforms IP, by a factor of up to 8.7x. The proposed SS-TSM
is slower than AP in setup A by up to 3.7x, but faster than AP in setup B
(where the processing capacities are higher) by up to 8.0x. The proposed SS-
VAM always outperforms both alternatives and SS-TSM, being up to 13x faster
than SS-TSM, up to 70x faster than AP, and up to 84x faster than IP. This
shows a tradeoff between accuracy (SS-TSM) and efficiency (SS-VAM) and the
variant can be decided on by the system administrator based on the system’s
properties and requirements. In many cases, fast service selection is preferred
regardless of the suboptimal cost since high execution time makes the algorithm
infeasible. For these reasons, SS-VAM seems to be the best method overall.

1 The details can be found in the implementation:
https://bitbucket.org/satja/rsoa-selection
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Table 1: Results of setup A (left) and setup B (right)

Although we have tried to make the test data realistic, the numerical results
partly depend on the values generated artificially for testing purposes. These
will certainly change in different environments. Still, the experiments make their
point, which was to compare the approaches with respect to the problem size,
and to show the effect of time-accuracy tradeoff.

7 Conclusion

The proposed approach for multiple-user service selection problem is shown to
be more efficient than the alternatives. It relies on efficient solution to the trans-
portation problem, where two possible variants allow the tradeoff between a
high reduction in execution time (SS-VAM) and a decrease in the obtained cost
(SS-TSM).
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