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Abstract: This paper presents novel cycle-break (spanning tree generation) algorithms which can 

be used to find the optimal distribution network topology. These algorithms (adjacency 

matrix/top-down/bottom-up cycle break) represent a novel way of obtaining radial network 

topology by cycle regrouping using adjacency matrix or elementary cycle information. Proposed 

methods assure connected radial network topology and can be used in combination with genetic 

algorithms to obtain optimal distribution network structure under minimum active power loss or 

network loading index framework. The cycle-break algorithms are used in initial population 

generation, crossover and mutation process to enhance the performance of the genetic algorithms 

in terms of convergence rate. These modifications make the proposed approach suitable for the use 

on realistic distribution networks without concern of its complexity. The algorithms are tested on a 

several standard test networks and the results are compared with the other existing approaches. 

Keywords: distribution network reconfiguration; active power loss; load balancing; cycle-break 

algorithms; genetic algorithms 

 

1. Introduction 

This paper presents new approach for optimal distribution network (DN) reconfiguration using 

the combination of novel cycle break algorithms (based on adjacency matrix (AM) or elementary 

cycles (EC):‘bottom-up’ (BU) and ‘top-down’ (TD) approach) and genetic algorithms (GA). The cycle 

break algorithms which use AM or EC information are then integrated with GA process operators, 

assuring exchange and survival of best genetic material (parts of distribution network topologies) 

through evolution process. 

Early methods for distribution system reconfiguration used series of heuristic rules determined 

specifically for the loss reduction, load balancing or voltage profile improvement. In [1], Cinvanlar et 

al. quantified the possible switching combinations by a set of numerical indices which are then used 

to rapidly order switching combinations in relation to the potential loss reduction associated with 

them. In [2], Shirmohammadi and Hong proposed an approach that starts from the meshed grid 

structure and using optimal load flow pattern logic detects (in each step) the switch that minimally 

disturbs optimal load flow pattern in order to break the network cycles. They applied this procedure 

successively, until radial topology is obtained. Baran and Wu [3] used a simplified DistFlow method 

for fast approximate load flow calculations in order to determine optimal branch exchange in single 

network cycle. 

Tahboub et al. in [4] used GA for minimization of annual energy losses considering the actual 

annual data for the active and reactive power demand and distributed generation profiles. A fuzzy 
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C-means algorithm was used to classify data into respective clusters and to obtain centroids for the 

GA optimization. Using this procedure a single optimum is found and fixed through the year. In [5] 

Mendoza et al. detected fundamental loops from which they extracted individuals for crossover and 

mutation. Problems appear in the crossover phase where there is a possibility of obtaining 

non-feasible solutions, so the authors suggested applying filters for identification and 

rejection/modification of such individuals. Tomoiaga et al. in [6] used GA with initial population 

generation using heuristic branch exchange algorithm and standard crossover and mutation 

operators. In crossover they found unfeasible genetic material using information from vector of 

fundamental loops. Distribution network optimization with sequential encoding and GA was 

proposed in [7]. Switching operations are based on the two strategies: subtractive (beginning from 

the meshed network obtained by closing all switches until radial network is obtained) and additive 

(does the inverse by closing one switch at a time until the radial topology is obtained). Tomoiaga et 

al. in [8] proposed a multi-objective optimization problem which is solved using GA based on 

NSGA-II. The GA based on spanning trees of undirected graphs was presented in [9]. Heuristic 

approaches in combination with GA and hybrid GA for obtaining optimal DN topology, are 

presented in [10]. In [11], an improved adaptive genetic algorithm (IAGA) was developed for 

capacitor switching optimization and with branch exchange algorithms it makes joint optimization 

algorithm for network reconfiguration and capacitor control for loss reduction. Recent research has 

focused on finding linear or convex relaxations of the AC [12–13] or approximate DistFlow [14,15] 

power flow equations, adapting them to optimal network reconfiguration and power supply 

restoration problems. In [16] two-stage optimization which includes network reconfiguration and 

phase balancing is proposed. The method is used to improve voltage profiles, reduce energy losses, 

and increase network efficiency in low voltage unbalanced grids. In [17] the authors propose 

modified particle swarm optimization algorithm to determine the optimal network topology with 

minimum losses. The authors demonstrate system improvements for different network loading 

levels when optimal network topology is applied. In [18] the authors simultaneously optimizes the 

network topology and calculated optimal distributed generation (DG) while minimizing line loss 

cost, Expected Energy Not Supplied, and switch operation cost. The optimization was performed 

using the combination of binary particle swarm optimization and harmony search algorithm. Recent 

interest in the subject of distribution network reconfiguration problem is related to automatization 

and upgrade of communication infrastructure in distribution network at all levels allowing the 

implementation of such advance functions. In addition, integration of distributed generation, 

electric vehicles and energy storage together with the possibility of network islanding, makes the 

distribution system more dynamic requiring more frequent use of such advance functions. 

There have are many approaches that employ GA for optimal DN reconfiguration, but most of 

them have issues with assuring the DN radial topology, have long computational time or suffer 

implementation difficulties on real-world distribution networks [4–6,8–11]. By analyzing all these 

approaches and taking into consideration all the DN constraints, proposed cycle-break algorithms 

based on AM and EC can be recognized as the algorithms that surpasses these problems and do not 

violate DN radiality and connectivity constraints. The proposed approach is used to determine 

optimal distribution network topology with the objective function to minimize network active 

power losses or network loading index. 

From the literature review, it is obvious that GAs are a very popular approach used for solving 

the DN optimal reconfiguration problem. When using a GA for solving optimization problems, it is 

very important, like in every other optimization method, to choose a good starting point to achieve 

faster convergence rate and detection of optimal solution. That is why the most issues are related to 

ineffective initial population generation, which later causes unfeasible individuals which are 

subsequently rejected in the evolution process due to violation of different network constraints 

(radial constraint, voltage and loading constraint etc.). Hence, most of the approaches have poor 

convergence rate and are not suitable for large real-world distribution networks. The novel 

cycle-break algorithms based on the network AM or EC information proposed in this paper help to 

solve some of these issues. Significant improvements, in terms of convergence speed and network 
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applicability, are achieved by integrating cycle break algorithms in GA processes like population 

generation, crossover and mutation. 

This paper has two significant contributions. First, it introduces two novel methods for 

generation of spanning trees using the network AM or EC information. These methods are general 

and can be applied to other problems from the graph theory like random spanning tree generation 

or determination of minimum/maximum spanning tree. The other contribution is related to the 

integration of proposed cycle-break algorithms in the GA processes (initial population generation, 

crossover, mutation) in a way which assures good genetic material transfer from one generation to 

another and fulfillment of radiality/connectivity and other operational constraints in each step. At 

the end of the paper, combined GA and AM/EC cycle break algorithms are applied on standard 

network test cases to detect optimal network topology with minimal network losses and the results 

are compared with the other existing methods. 

2. Cycle Break Algorithms Based on Network Adjacency Matrix or Elementary Cycles 

Information 

This part describes a novel cycle-break algorithms for generation of spanning trees. The two 

sets of cycle-break algorithms, differing only in the context of information they use, are described. 

The first algorithm requires only the network AM and the second set of algorithms use only the EC 

information to obtain the radial network structure. 

The cycle-break algorithm which uses the AM assures radial topology based on information 

from initial adjacency matrix which is modified each time the network branch is switched off. On the 

other hand, the approach which uses the EC information doesn’t use the adjacency matrix but rather 

information regarding all elementary cycles present in the initial meshed network. This approach 

uses well-defined rules to reorganize elementary cycles every time when a network branch, 

belonging to any of the defined elementary cycles, is switched off. 

Both set of the algorithms starts with the meshed distribution network (graph) so initial AM 

and EC cycle information is obtained for this meshed network. Although the distribution network 

structure is changing through algorithm steps, the AM and EC information obtained for the initial 

meshed network is always applied as a starting point so there is no need for the additional network 

traversing after the topology modifications. These topology changes, in relation to the initial meshed 

network topology, are accounted for through the AM and EC information modifications, using the 

procedures which are described later on. 

2.1. Cycle-Break Algorithm Using Network Adjacency Matrix 

The AM cycle break algorithm starts with the meshed network (graph) structure. Algorithm 

assumes that the network isn’t multigraph, meaning that it doesn’t contain multiple edges/lines 

(parallel edges or a multi-edge) that are incident to the same two buses (vertices). If the network 

contains multiple edges, it is trivial task to break these simple cycles. For example, if the objective 

function is to minimize the network losses, simply switch off all parallel lines between two busses 

except the line with a minimum line resistance. If the objective function is to minimize the network 

loading index, simply switch off all parallel lines between the two busses except the line with a 

maximum rating. 

Cycle–break algorithms which use AM or EC information require network bus renumbering for 

the networks with multiple supply points. This means that in the process of generating radial 

topology, the algorithm temporarily assigns same bus number to all supply points (and change 

branch labels for branches connected to network supply points) and generates AM or finds 

elementary cycles for such bus labeling. In the process of running power flow calculations, the 

network data is returned to the original bus/branch labelling scheme in order to allow different 

reference voltages for the network supply points. 

The novel cycle-break algorithm which utilizes the network AM is implemented in two stages. 

The recursive pseudocode for both stages of the algorithm 1 is shown below. 
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Algorithm 1. Pseudocode for AM cycle break algorithm. 

STAGE 1 of AM cycle-break algorithm 

 

procedure  =>  delete_all_leaves() 

1:  for i in [1,…,Nbus] do 

2:    if �∑��,∗ == 1�then 

3:      while true 

4:        remove_leaves(i) 

5:      end while 

6:    end if 

7:  end for 

8:  return A <= adjecency matrix  

             with leaves removed 
 

STAGE 2 of AM cycle-break algorithm 

 

procedure  =>  AM_spanning_tree(A)  

1:  set nb_cycles:=0; tie_lines=[];   

2:  while ∑ 	∑ ��,�
����
���

����
��� ≠ 0 do 

3:    randomly choose �, �	 ∈ [1, … , ����] 
      ����	����	��,� == 1 

4:    set ��,�: = 0	;	��,�: = 0 

5:    set nb_cycles++ 

6:    set tie_lines[nb_cycles,:]=[i,j]; 

7:    if �∑��,∗ == 1�then 

8:      remove_leaves(i); 

9:    end if 

10:   if �∑��,∗ == 1�then 

11:     remove_leaves(j); 

12:   end if 

13: end while  

14: return nb_cycles, tie_lines; 
 

procedure  =>  remove_leaves(i) 

1:  find j such that ��,� == 1 

2:  if (j exists) then 

3:    set ��,�: = 0	;	��,�: = 0 

4:    if �∑��,∗ == 1� then 

5:      remove_leaves (j) 

6:    else 

7:      return false 

8:    end if 

9:  else 

10:   return false 

11: end if 
 

 

In the first stage, the algorithm finds all network branches (graph leaves) whose exclusion 

would lead to the isolation of some parts of the network. The lines that are detected in this process 

have to be part of the network’s radial structure (members of a spanning tree). This search process is 

based on the recursive detection of network external busses/vertexes (those having connectivity 

degree of 1), and a removal of line/edge that is incident to that bus/vertex. The network AM is 

modified every time a new network external bus is detected and adjunct line is removed. After the 

1st step of AM cycle break algorithm, modified AM that indicates the remaining lines/edges which 

constitute network elementary cycles is obtained. For the network shown in Figure 1, the algorithm 

would first detect bus 8 as the external bus and removed incident line 7–8 from the AM. This would 

result in bus 7 becoming new external bus and the algorithm removing incident line 5–7 from AM. 

Given that bus 5 has connectivity degree of 2 after this step, the algorithm would detect bus 10 as the 

next external bus, and would proceed in a similar manner. By applying the described procedure for 

the network shown on Figure 1, in 4 iterations the algorithm is able to detect lines 5–7, 7–8, 4–9 and 

9–10 as part of the spanning tree/radial network structure. These lines are removed from the 

network AM in the stage 1 of the algorithm, and after this the algorithm enters stage 2. 

In the stage 2, the AM cycle break algorithm enters the process of breaking elementary cycles 

without the need for even detecting these elementary cycles. In the process of a random spanning 

tree generation, the arbitrary line is selected for opening (to break single elementary cycle) if the AM 

element indicating this connection is different from zero. After randomly switching off single line, 

the AM is modified by removing this connection. After this, the algorithm searches for the network 

external buses starting from the buses/vertices which are incident to the line that was switched off. 
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This way, the algorithm identifies and prohibits switching-off power lines which would have led to 

the isolation of some parts of the network. For example, if the algorithm randomly chooses to open 

line 2–3 it starts a guided recursive search for external buses starting from buses 2 and 3 and detects 

lines 1–2 and 3–4 as network leaves and members of network radial topology (Figure 1). This 

procedure is repeated as many times as there are elementary cycles in the meshed distribution 

network. After all elementary cycles are opened, radial network structure (spanning tree) is obtained 

together with the zero value for the AM as indicator. The AM cycle break algorithm applied in this 

way, represents a method to generate random spanning trees for undirected graphs. The algorithm 

is applied in initial population generation process, crossover process and mutation process of the 

genetic algorithm. 

 

Figure 1. Illustration of AM cycle break algorithm. 

In order to use this algorithm for optimal distribution network reconfiguration, it is necessary 

to modify the way that branches are switched off. The algorithm is modified in a sense that branches 

are not selected randomly (as described in step 3: of AM_spanning_tree(A) procedure), but rather 

heuristically, by assigning the weight to each branch in a specific manner. The weights are calculated 

by running simplified DistFlow [3] load flow and assigning the weight to each branch in the amount 

that is a reciprocal value of an apparent power flowing through that branch. These values are 

updated every time a single branch is switched-off. The basic AM cycle break algorithm is modified 

to account for the assigned weights and used to generate minimum or stochastic minimum spanning 

tree with dynamically changing branch weights. In order to account for network constraints, like 

maximum element loading and bus voltage limits, the switching operation is allowed only if it 

doesn’t violate these constraints. The basic concept of this algorithm is illustrated by a flowchart in 

Figure 2. 
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Figure 2. Initial population generation using the AM cycle break algorithm. 

The generation of initial population, through a minimum spanning tree switch-off algorithm, 

provides radial distribution network topology with power flow profile similar to the optimal load 

flow pattern. The optimal load flow pattern equals to the network load flows for the meshed 

distribution network. This load flow pattern will produce the lowest network active power losses, so 

a radial distribution network topology with a lowest impact on such load flow patterns is a good 

starting point for the genetic algorithms with the objective to minimize network losses. Given that 

the minimum spanning tree switch-off algorithm will always produce same radial network 

topology, all but one individual in initial population is generated using the stochastic minimum 

spanning tree switch-off algorithm. This way, a diverse initial population is obtained with different 

radial network topologies that are likely to be concentrated near the optimal radial network solution. 

2.2. Cycle-Break Algorithms Using EC Information 

This part presents additional novel algorithms for the spanning tree generation which use 

information regarding the graph/network elementary cycles. Both TD and BU cycle break algorithm 

are general and can be applied to other problems from the graph theory like random spanning tree 

generation or determination of the minimum/maximum spanning tree. The elementary cycles can be 

detected using the depth-first search (DFS) algorithm [19,20]. The DFS algorithm is called only once 

for the meshed network and the information regarding EC is later used to generate radial network 

topologies, regardless of the network topological changes. The important contribution of these 

algorithms is a fulfilment of the radial network topology constraint, without imposing filters and 

topology rechecking after the implementation of the algorithms. 

The general framework of the algorithm is given by flowchart presented in Figure 3. As shown 

in Figure 3, TD/BU cycle break algorithm uses minimum (for single individual), or stochastic 

minimum spanning tree (for multiple diverse individuals), switch off algorithms in the same way as 
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the AM cycle break algorithm. The major difference is related to the cycle break mechanisms. Given 

this, in the following subsections we present two different cycle break algorithms which use EC 

information: top-down and bottom-up CB algorithm. 
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Figure 3. General framework for TD and BU cycle break algorithms. 

2.2.1. Top-Down Cycle Break Algorithm 

In each iteration of the TD cycle break algorithm, one network branch is switched off and a 

single cycle is broken. This cycle is then removed from the set of elementary cycles. After that, 

algorithm reconfigures remaining set of cycles if reconfiguration criteria are met. The pseudocode 

for the random spanning tree generation, using the novel TD cycle break algorithm, is defined with 

Algorithm 2. 

The basic concept of the algorithm is illustrated on the Figure 4. For example, in the first 

iteration the algorithm chooses to open line 2–3, which is detected as a member of elementary cycle 

EC_1. This switching action brakes elementary cycle EC_1. However, given that the line 2–3 is also a 

member of the EC_2, it is necessary to reconfigure the EC_2 to reflect a new network topology. The 

intersection between the cycles EC_1 and EC_2 consists of a set of lines 1–2, 2–3, 3–4 and 4–5 which 

are then removed from the EC_1 and EC_2. Remaining lines from the EC_1 (only line 1–5) are then 

transferred to EC_2, making cycle with lines 5–6, 6–1, 1–5. This procedure is not applied on EC_3, 

given that this cycle doesn’t contain line 2–3 that was switched-off in iteration 1. Through this cycle 

reconfiguration process, we have updated elementary cycles to reflect current network topology, 

without the need for graph/network traversal. 
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Algorithm 2. Pseudocode for TD cycle break algorithm. 

procedure  => TD_cycle_break() 

1:  set nb_cycles:=0; tie_lines=[];   

2:  while �� ≠ {	} do 

3:    randomly choose �, �	 ∈ [1, … , ����] such  

      that edge 	���� is member of cycle in EC 

4:    set nb_cycles++ 

5:    set tie_lines[nb_cycles,:]=[i,j]; 

6:    find first current_cycle Ccurrent  

      containing edge ���� 

7:    for every cycle C in EC except Ccurrent do 

8:      if edge ���� is member of cycle C then 

9:        cycle_reconfiguration(C, Ccurrent) 

10:     end if 

11:   end for 

12:   from set of EC remove Ccurrent 

13: end while 

procedure  => cycle_reconfiguration(C, Ccurrent) 

1:  find ���������: = 	�	 ∩		�������� 

2:  set � ≔ 	�	 ∪	�������� 

3:  from C remove every edge that is  

    member of intersect 

4:  return C 
 

In iteration 2, the algorithm chooses to open line 4–6, which is detected as the member of EC_3. 

Given that the line 4–6 is not a member of remaining EC_2, this cycle remains unchanged 

throughout this iteration. In the final iteration 3, the algorithm randomly chooses to open line 1–5, 

which is member of EC_2, and by doing so breaks the last EC and forms a radial network structure. 

2.2.2. Bottom-Up Cycle Break Algorithm 

The BU cycle break algorithm uses similar principles of cycle reconfiguration, just like the TD 

cycle break approach. In every iteration, the algorithm checks if the current elementary cycle 

contains any of the already opened lines from the previous iterations, in which case it proceeds to 

the cycle reconfiguration. Pseudocode for BU cycle break algorithm is given with Algorithm 3. 

Algorithm 3. Pseudocode for BU cycle break algorithm. 

procedure  => BU_cycle_break() 

1:  set nb_cycles:=0; tie_lines=[];   

2:  for current cycle Ccurrent in EC do 

3:    while true do 

4:      if any edge in cycle Ccurrent is  

        member of tie_lines 

5:        determine previous cycle Cprev used to  

          turn off that tie_line 

6:        cycle_reconfiguration(Ccurrent, Cprev) 

7:      else  

8:        false 

9:      end if 

10:    end while 

11:    randomly choose �, �	 ∈ [1,… ,����] such that edge 

 	����is member of cycle Ccurrent 

12:    set nb_cycles++ 

13:    set tie_lines[nb_cycles,:]=[i,j]; 

14:  end for 
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Figure 4. Illustration of TD and BU cycle break algorithms. 

The process of elementary cycle reconfiguration is nicely shown in iteration 3 of the BU cycle 

break algorithm, which is illustrated on Figure 4. In iteration 3, we are breaking EC_2 of our meshed 

network. Given that EC_2 contains line 2–3, which was opened in the process of breaking EC_1, we 

proceed to cycle reconfiguration between EC_2 and EC_1 using the same procedure 

(cycle_reconfiguration()) as in the TD cycle break algorithm. This changes EC_2, which now contains 

a set of lines 1–6, 6–5 and 5–1. Given that the current set of lines, which forms a transformed EC_2, 

doesn’t contain any of previously switched-off lines (2–3, 4–6), we stop with the reconfiguration of 

EC_2 and randomly choose to open any of the lines from the transformed EC_2. 

The pseudocode for the TD and BU cycle break algorithm can be used for random spanning tree 

generation. In order to use these algorithms in optimal network reconfiguration problems (for initial 

population generation, crossover and mutation process), we have to select lines to switch-off in 

heuristic manner, using (stochastic) minimum spanning tree switch off algorithm as shown in Figure 

3, considering network load flows and operational constraints. The principle of weight assignment is 

the same as for the AM cycle break algorithm. 
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3. Integration in Genetic Algorithm Operations 

The optimal network reconfiguration using GA is significantly improved, in terms of 

convergence speed and solution quality, by integrating the AM or EC cycle break algorithms in all 

GA operators. In addition to that, other improvements are introduced in the crossover and mutation 

process of the GA. 

The initial population is generated using the AM or EC cycle break algorithms in a way that 

was described in section II. These algorithms are used to generate population with individuals 

which are good starting point for GA, thus significantly reducing the computational time to find an 

optimal solution. 

Once the initial population is created, the fitness function for each individual is calculated as 

shown in the Equations (1) or (2). The proposed approach can be used to find the optimal 

distribution network topology, either with minimal active power losses (Equation (1)) or minimal 

network loading index (Equation (2)). 

Given that genetic algorithms are usually used to maximize fitness functions, the fitness 

functions for the two separate objectives are formulated, as described below in order to reduce the 

problem to the maximization of fitness functions: 

�������� → 	�������	(�) =
1

1 + �����(�)
 

(1) 

����� = � ���
���
� + ���

�

��
�

�:(�,�)∈��

 
 

�������� → 	�������	(�) =
1

1 + �����_���(�)
 

(2) 

�����_��� = �

����
� + ���

�

���
�

�:(�,�)∈��

 

 

Distribution load flow equations are given with following set of equations: 

� ���

	

�:(�,�)∈�

= ��� − ���
���
� + ���

�

��
� − ��

�			∀� ∈ � 
(3) 

� ���

	

�:(�,�)∈�

= ��� − ���
���
� + ���

�

��
� − ��

�			∀� ∈ � 
(4) 

��
� = ��

� − 2������� + ������� + ����
� + ���

� �
���
� + ���

�

��
� 			∀� ∈ �\�� 

(5) 

subject to network constraints: 

��
��� ≤ ��

	 ≤ ��
���				∀� ∈ �\�� (6) 

��
	 = ��

���
				∀� ∈ �� (7) 

����
� + ���

� ≤ ���
�					∀�: (�, �) ∈ �� 

(8) 

where: 

�����(�) Network active power loss for individual i; 

�����_���(�) Network loading index for individual i; 

���
	  Real power flow from bus i to j 

���
	  Reactive power flow from bus i to j 

��
�	 Net (load-production) active power injection at bus i 

��
�	 Net reactive power injection at bus i 

��
	  Voltage at bus i 

� Set of nodes 

BS Set of supply point nodes 

W Set of branches 

W0 Set of online branches 

���  Resistance of branch between nodes i and j 
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���  Reactance of branch between nodes i and j 

���
�  Nominal power of the branch between nodes i and j 

Equation (3) represents the bus active power balance and the equation is valid for all busses in 

the network. Net (load-production) active power injection at bus i is calculated by subtracting the 

active power flow going through the incident power line supplying the bus i with the active power 

losses along this line and with active power flows along the lines incident to bus i which are used to 

supply “downstream” incident busses. Equation (4) represents the bus reactive power balance 

which is calculated in analogy with Equation (3), with a difference of using the reactive power losses 

and the reactive power flows. Equation (5) is used to calculate the voltage drop along the online 

network lines, while Equations (6) and (7) define the voltage limits for all network busses. The limits 

related to the power line capacity of each network branch, are expressed with the Equation (8). 

The procedure described in the following sections can be adapted also to other objective 

functions such as minimization of voltage profile deviations or system reliability index (ENS, SAIDI, 

SAIFI) improvement. This requires only minor modifications regarding the fitness function 

formulation and weight assignment process during the initialization and crossover process of the 

genetic algorithm, but the main concepts related to the application of the cycle break algorithms and 

methods of performing operations inside the genetic algorithm remain the same. 

The fitness function values are used to associate the probability of selection with each 

individual (radial DN topology) present in the population. Pairs of individuals (parents) which will 

undergo the crossover process are selected using the fitness proportionate selection also known as 

the roulette wheel selection. At the beginning of every iteration, specified number of best individuals 

(elite individuals) is transferred directly to the next evolution epoch unchanged, which assures 

monotonic increasing improvement of the fitness function throughout the evolution epochs. 

In order to integrate the AM or EC cycle break algorithms in the crossover and mutation 

process, it is necessary to adapt the branch weight assignment. This is described in more details in 

the next subsections. 

3.1. Integrating Cycle Break Algorithms in Crossover Process 

In order to enhance the efficiency of the crossover process, two main goals need to be achieved: 

first it is necessary to assure that the generated offspring has radial network structure without the 

need for topology rechecking or correction, and second, good genetic material needs to be 

transferred to offspring to enhance the convergence rate. The transfer of good genetic material from 

parents to offspring, in reality, means that if same network lines are online in both parents then they 

should be online in offspring, and if same network lines are offline in both parents then they should 

be offline in offspring as well. 

This transfer of good genetic material from parents to offspring can be achieved by adapting 

crossover process to specifics of the DN reconfiguration problem. In order to create a single 

offspring, the algorithm finds intersection and union between a pair of DN network topologies 

(parents’ pair). This information is used later to assign weights to the distribution network lines that 

are present in the union of parent topologies. 

By creating a network topology, which is determined as a union of parent topologies, the 

algorithm forms a meshed network structure that represents the “backbone” for the radial 

distribution network topology, which is determined at the end of crossover process (single 

offspring). After creating such a network topology, the algorithm assigns zero weights to all the lines 

that are present in the parent intersection topology. All the other lines, which are present in parent 

union topology, have weights assigned in a manner described on Figure 2 or Figure 3. In addition to 

that, all the lines that are offline in both parents are also offline in the offspring. 

For the network shown in Figure 5, given that both “parent 1” and “parent 2” topologies have 

lines 1–2, 3–4, 1–6, 5–7, 7–8, 4–9 and 9–10 online, these lines are assigned with a zero weight. In both 

parents, line 4–6 is switched off, so it is also switched off in the offspring. All the other lines in a 

union of parents (1–5, 2–3, 4–5, 5–6) have weights assigned according to the procedure described in 

Figure 2 or Figure 3. By using (stochastic) minimum spanning tree switch-off algorithm, it is possible 
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to create offspring from this weighted network subgraph. This is achieved by integrating the AM or 

EC cycle break algorithm in the crossover process. 

w1-5

w
4-5

w
1-6 =0

 

Figure 5. Illustration of crossover process. 

The process of integrating the AM cycle break algorithm in the crossover process is trivial. We 

generate AM for the topology that is a union of parents and apply the procedure described with a 

flowchart shown in Figure 2. The only difference is that line weights need to be fixed to zero value 

for all the lines that are member of a parent intersection topology in all iterations. 

The process of integrating EC cycle break algorithm in the crossover process can be performed 

in two ways. The slower and easier way that requires network traversal, consists of detecting new 

EC by applying DFS algorithm [19,20] on network topology which is formed as a union of the parent 

topologies. The remaining part of the process is described with a flowchart shown in Figure 3, with 

the same difference, as for the AM cycle break algorithm, related to fixing zero weight to some of the 

network lines. 

The faster way, which doesn’t require network traversal, uses EC information obtained for the 

initial meshed distribution network. After detecting which lines are switched off in both parents, the 

algorithm reorganizes elementary cycles obtained for meshed network topology to reflect new state 

of distribution network. Reorganization of EC is performed using the same principle as described in 

Section 2.2. The difference is that not random but specific lines need to be turned off to reconfigure 

EC for current state of DN. For example, for network shown in Figure 5, we see that line 4–6 is offline 

in a union of parent topology. To modify EC information the algorithm detects line 4–6 as member of 

EC3 {4-5-6-4} (Figure 4). This means that this cycle doesn’t exist in topology shown on Figure 5, 

which was obtained as a union of parents. Also, given that line 4–6 is not a member of EC1 

{1-2-3-4-5-1} and EC2 {1-2-3-4-5-6-1}, it is not necessary to reconfigure these two ECs. If, for example, 
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line 4–5 would be offline, then both EC1 and EC2 would have to be reconfigured, given that line 4–5 

is a member of these cycles. Cycle reconfiguration, when needed, can be performed using procedure 

described for the TD cycle break algorithm. By using this approach, we can eliminate the cycles 

which don’t exist in a union of parent topologies and reconfigure the cycles which remain in this 

network topology. All this is performed without the need for additional network traversal, using 

only EC information obtained once for initial meshed network topology. 

3.2. Integrating Cycle Break Algorithms in Mutation Process 

Mutation process with the AM or EC cycle break algorithm is slightly different, compared to the 

crossover. Each offspring obtained throughout crossover process undergoes mutation if the 

generated random number has value lower than a specified mutation probability. The mutation 

process assumes random closure of one offline branch in a network which forms a single cycle in the 

network. Using AM or EC cycle break algorithm, this cycle is then broken producing a different 

radial DN network topology. This makes mutation process fast and simple. 

After the mutation process, the specified number of individuals with the lowest fitness function 

values is substituted with the same number of parents which have the highest fitness function. 

Introduction of elite individuals accelerates convergence rate by preventing the best individuals 

from each evolution epoch to be lost or substituted by the inferior individuals. 

4. Case Study 

Algorithms described in previous sections are implemented in MATLAB (MathWorks, Natick, 

MA, USA). Tests were performed on a Windows machine equipped with an AMD six-core (3.3 GHz) 

processor and 8 GB of RAM. Tests are conducted on standard network test cases for 70, 136 and 880 

bus systems to prove applicability for both small and large DN networks. The basic network data for 

these networks is summarized in Table 1 while the full network models are described in [21–23]. 

These networks were also considered by Taylor and Hover in [14] which allows us to compare the 

proposed approaches with the results obtained using mixed integer quadratic programming 

(MIQP), mixed integer quadratic constrained programming (MIQCP) and mixed integer second 

order cone programming (MISOCP) approximations described in [14]. In order to achieve this, and 

provide adequate numerical comparisons, we implemented approaches based on MIQP, MIQCP, 

and MISOCP in General Algebraic Modeling System (GAMS) [24] and solved underlying problems 

using CPLEX software (IBM, Armonk, NY, USA) [25]. 

Table 1. Basic network data for 70, 136 and 880 bus network. 

Buses 

(Nbus) 

Supply Points 

(NSP) 

Lines 

(Nbr ) 

Sectionalizing 

Switches 

Tie 

Switches 

Initial Losses 

(kW) 

70 2 76 68 8 33,745 

136 1 156 135 21 32,040 

880 7 900 873 27 149,630 

The proposed algorithm was tested with GA parameters as follows: maximum number of 

iterations = 20; population size = 20; mutation probability = 0.2; number of elite individuals = 1. The 

cycle break algorithm that is used in the initialization phase, crossover and the mutation phase of 

GA is based on the TD cycle break algorithm. The execution times for other cycle break algorithms 

are approximately the same, due to the same level of complexity for the AM, TD and BU cycle break 

algorithms we proposed. 

4.1. Results 

The optimal network topologies, as well as loss reduction in relation to initial topologies, are 

given in Table 2. The level of loss reduction differ between test networks depending on the initial 

network topologies ranging from relatively low 11.51% for 70 bus test network to extremely high 
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reduction in the amount of 69.46% for 880 bus network. For all the test networks, the proposed 

approach identified reported global optimum solutions, regardless of the network size. 

Table 2. Initial and optimal network topology for 70, 136 and 880 bus network. 

Test 

Network  

Initial Network Topology Optimal Network Topology Power Loss 

Reduction 

(%) 
Offline Branches Losses (kW) Offline Branches 

Losses 

(kW) 

Network I 

(70 bus) 
69;70;71;72;73;74;75;76 33,745 30;39;45;51;66;70;71;76 29,860 11.51% 

Network II 

(136 bus) 

136;137;138;139;140;141;142; 

143;144;145;146;147;148;149; 

150;151;152;153;154;155;156 

32,040 

7;35;51;90;96;106;118;126; 

135;137;138;141;142;144; 

145;146;147;148;150;151;155 

27,992 12.63% 

Network 

III (880 

bus) 

874;875;876;877;878;879;880; 

881;882;883;884;885;886;887; 

888;889;890;891;892;893;894; 

895;896;897;898;899;900 

149,630 

84;130;141;159;190;282;288; 

306;312;409;411;452;494;596;616;

630;631;637;698;815;844;885;888;

889;890;896;900 

45,700 69.46% 

Figure 6 presents branch losses for 70, 136 and 880 bus network, for the initial and the optimal 

topology, together with the power loss difference for each network branch. We can see that, 

although there is an increase of power losses along certain branches, by applying optimal network 

topology, decrease of the losses on other branches is more pronounced, leading to the loss reduction 

at a network level. 

Although the objective of distribution network topology optimization was to reduce network 

losses, by applying optimal network topology, significant improvement of network voltage profile is 

achieved as well (Figure 7). This is most evident for a 70 bus network, which has low voltages for the 

initial network topology, with voltages reaching as low as 0.884 p.u. (11.6% voltage drop). 

 

Figure 6. Branch losses for initial and optimal network topology. 

Such low voltages represent power quality issue, given that they are far below the limits 

defined by the power quality standards. By applying optimal network topology, the voltage profile 

was improved considerably and brought to the normal limits. 
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Figure 7. Network voltage profile for initial and optimal network topology. 

Based on the measured average hourly data of network load for period of one year (data from 

real distribution network), annual energy losses were calculated for initial and optimal network 

topology for the considered networks. Figure 8 shows relative chronological load (in relation to peak 

demand), as well as load duration curve which was considered in this analysis. 

 

Figure 8. Network voltage profile for initial and optimal network topology. 

Based on the hourly load data, energy losses were calculated for the initial and the optimal 

network topology. Figure 9 shows loss duration curve for the considered networks as well as annual 

energy losses for the initial and the optimal network topology. Reduction of annual energy losses 

ranges from 10.19% for 70 bus network to 68.67% for 880 bus network which is approximately 

similar to the reduction of power losses calculated for the peak load (Table 2). 

 

Figure 9. Network voltage profile for initial and optimal network topology. 
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4.2. Computational Time 

Table 3 summarizes the computational time for different approaches. The MIQP, MICQP and 

MISOCP approximation of Taylor and Hover [14] was implemented with a relative gap of 2% and 

maximum computational time limit set to 10 h. The final objective values for these approaches were 

obtained by running full AC power flow [26] after obtaining the integer solution based on 

approximate DistFlow. 

Table 3. Comparison of computational time for different approaches. 

Test network  

Proposed Approach MIQP [14] MICQP [14] MISOCP [14] 

Obj.value 

(MW) 

Time 

(s) 

Obj.value 

rel.gap (%) 
Time (s) 

Obj.value 

rel.gap (%) 

Time 

(s) 

Obj.value 

rel.gap (%) 

Time 

(s) 

Network I 

(70 bus) 
0.2986 3.54 

0.3009 

0.0093 
0.562 

0.3002 

0.0191 
2.688 

0.2993 

0.0199 
36.308 

Network II  

(136 bus) 
0.2799 23.20 

0.2815 

0.0137 
7.745 

0.2901 

0.0159 
4.999 

0.2833  

0.0357 

T.L. 

>36,000 

Network III  

(880 bus) 
0.4570 47.99 

0.4586 

0.0200 
11,038 

0.4765 

0.0199 
18,312 

0.5039  

0.1964 

T.L. 

>36,000 

We can see from the results shown in Table 2 that these approaches require smaller relative gap 

in order to find reported global optimal solution, which would significantly extend computational 

time for these approaches. Also, from the computational time, we can see that these approaches 

suffer from the computational inefficiencies and are therefore not adequate for larger and more 

complex distribution networks. Moreover, the MIQP and MICQP approach presented in [14] doesn’t 

consider bus voltage limits. 

On the other hand, proposed approach which integrates cycle-break and genetic algorithms, is 

able to detect global optimum solutions for all the test networks. For smaller networks, the algorithm 

produces network topologies with lower objective values (lower network losses), but with higher 

computational times. In this analysis, we assume that the method converged if we obtain global 

optimum solution in three consecutive evaluation epochs. The proposed method shows better 

performance in relation to MIQP, MICQP and MISOCP approach, in the sense of objective function 

value and execution time for larger distribution networks, producing optimal solution in a fraction 

of the time of these approaches. 

Results shown in Tables 2 and 3 are obtained with a cycle break algorithm that uses minimum 

spanning tree switch off strategy. Figure 10 shows convergence characteristics of the proposed 

approach for different cycle break switch off strategies (stochastic vs. minimum spanning tree). We 

can see that the proposed cycle break algorithms, employing minimum spanning tree switch-off 

strategy, provide batter population initialization and faster convergence rate in relation to the 

stochastic minimum spanning tree approach. Despite of this, both switch-off approaches are able to 

identify the optimal network topology in time frames shorter than MIQP, MICQP and MISOCP 

approaches, for large distribution networks. 

 

Figure 10. Convergence rate for different switch-off approaches—for 880 bus network. 
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5. Conclusions 

This paper presents novel cycle break algorithms which use network AM or EC information to 

produce radial network structures. The AM cycle break algorithm uses adjacency matrix 

information for the meshed grid, which is modified with each branch elimination through a 

recursive guided matrix search. On the other hand, EC cycle break algorithms (TD and BU 

approach) use information regarding elementary cycles for meshed network, which are then 

reorganized with each branch elimination to reflect a current network state. 

The developed algorithms are integrated with a genetic algorithm to solve the optimal 

distribution network reconfiguration problem, with a focus on the network loss reduction or 

network load balancing. Specific approaches described in this paper assure always feasible network 

solution, without the need for constant rechecking of network radiality and connectivity constraints 

and optional topology modifications when these constraints are violated. Enhancements like this 

significantly accelerate convergence rate and reduce computation time, which was demonstrated on 

a small scale and a large scale distribution networks considered in the paper. The reduction of 

network power losses was achieved in the range of 11.5 to 69.5%, depending on the network initial 

topology and network parameters. In addition to this, significant voltage profile improvements were 

achieved through the network topology optimization. The main contributions of this paper can be 

further summarized as follows: 

 Development of novel cycle-break (spanning tree/forest generation) algorithms, based on 

elementary cycle information or adjacency matrix information. These algorithms show high 

computational efficiency in relation to other similar greedy algorithms when repetitive 

calculations are needed. Proposed cycle-break algorithms can be applied to large spectrum of 

problems, other than the one presented here. 

 Integration of cycle-break algorithms in genetic algorithm process to assure solution feasibility 

in a sense of radiality constraints, which was often the problem in similar approaches. 

 Development of method which integrates cycle-break algorithms and genetic algorithms to 

solve optimal distribution reconfiguration problem in computationally efficient way, making 

the method applicable to realistic distribution grids. 
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