
Parallelization in biomedical time series analysis

web platform: the MULTISAB project experience

Alan Jović
*
, Krešimir Jozić

**
, Davor Kukolja

*
, Krešimir Friganović

*
, Mario Cifrek*

* University of Zagreb Faculty of Electrical Engineering and Computing / Department of Electronics, Microelectronics,

Computer and Intelligent Systems, Unska 3, 10 000 Zagreb, Croatia
**

INA - industrija nafte, d.d., Avenija Većeslava Holjevca 10, p.p. 555, HR-10002 Zagreb, Croatia

Corresponding author: alan.jovic@fer.hr

Abstract - Parallel execution of operations required for

biomedical time series (BTS) analysis is an important issue

in optimization of medical software efficiency. We

investigate the applicability of several parallelization

approaches to BTS analysis in the context of feature

extraction from multiple heterogeneous BTS on a Java-

based web platform called MULTISAB, designed for

medical diagnostics. Considering only the calculation

parallelization of many different BTS features, our research

suggests that parallelization based on simple Java

multithreading works the best. The threads are assigned

based on the data and analysis parameters provided, where

feature extraction parallelization is performed on the

following levels: 1) multiple segments; 2) multiple signal

trails; 3) multiple patient records. The synchronization

mechanism should be simple: the analysis continues once all

threads terminate their work and record the extracted

feature vectors. A special case, when features from two

signal trails (bivariate features) are extracted, includes

multithreading on signal pairs for multiple signal trails level

parallelization. We also provide an overview of the web

platform architecture to put the parallelized parts into the

overall perspective.

Keywords - biomedical time series analysis, feature

extraction, web platform, parallelization, multithreading

I. INTRODUCTION

Biomedical time series (BTS) analysis software

usually possesses a significant amount of computational

complexity, due to the fact that the implemented

algorithms need to efficiently manage noisy and non-

stationary properties of the considered time series [1]. The

degree of complexity depends largely on the goal of the

analysis and the features used in reaching that goal. For

example, extracting linear statistical features such as mean

and standard deviation from an already preprocessed BTS

in order to determine if an analyzed segment significantly

deviates from an expected behavior does not require

intensive calculations. However, performing empirical

mode decomposition based Hilbert-Huang transform and

extracting many potentially relevant time-frequency

features on a broader scale of learning a model for a

disease, based on many patient records, is highly resource-

demanding [2].

In our earlier investigations, we approached the

problem of designing the architecture for a BTS analysis

web platform called MULTISAB
1
 [3]. The platform is

intended to provide ubiquitous web access to interested

researchers and medical personnel that want to analyze

BTS. The platform is based on specification and execution

of analysis scenarios. We have also previously shown the

feature implementation details regarding heart rate

variability, electrocardiogram, and electroencephalogram

analysis, also including a definition of expert

recommendation system for features that need to be

extracted, depending on the analysis goal and data type

[4]. Data mining methods, including feature selection and

classification algorithms are also implemented in the

platform, which is a topic of another, currently submitted

conference paper [5]. At the moment, the platform is in

integration and testing phase and is planned to be open for

users soon.

In this work, we focus on the details regarding

computational complexity amelioration that has been

achieved in the platform. In particular, we address the

complexity problem by examining the applicability of

different parallelization approaches to the feature

extraction step of the analysis. As feature extraction is the

crucial part of BTS analysis, accelerating this step brings

big difference to the web platform user experience.

The work is organized as follows. In Section 2, we

provide a brief overview of the current state of

MULTISAB platform implementation and highlight the

spots where parallelization may be beneficiary. Section 3

first discusses some related work and then describes our

attempt at directly parallelizing individual feature

calculations. Section 4 provides the details of

parallelization implemented in the platform, including

some experimental validation. Section 5 concludes the

paper and provides future guidelines.

II. PLATFORM STRUCTURE AND PARALLELIZATION

LOCATION

A. MULTISAB Platform Structure

The MULTISAB web platform is organized in three

separate subprojects: frontend, backend and processing.

1 This work has been fully supported by the Croatian Science

Foundation under the project number UIP-2014-09-6889.

The main technologies and intended tasks of each

subproject are briefly explained here.

The frontend subproject is designed using several

recognizable contemporary web frontend technologies,

including Angular, HTML5, CSS3, and Node.js. The web

site is organized as a single-page web application written

using Angular components in TypeScript language, where

a TypeScript compiler is used to produce JavaScript code.

The majority of web application's content is focused

on conducting an analysis scenario. The user starts the

analysis scenario by logging into the platform and opening

a new session (or continuing the last existing one). BTS

analysis process is divided into 8 steps, some of which

may be skipped, depending on the user: 1) analysis type

selection, 2) scenario selection, 3) input data selection, 4)

records inspection, 5) records preprocessing, 6) feature

extraction, 7) model construction, and 8) reporting [4].

The analysis on frontend proceeds from a starting step

to an allowed set of next steps, which is continued until

the final step, reporting, is reached. The possible

transitions between steps are governed through a finite

state machine (FSM), where a step may correspond to one

or a few FSM states. Using this approach, we managed to

provide a clearly defined BTS analysis workflow, which

would not be possible using standard web site navigation,

where any (or most) transitions between steps would be

legal. An example of possible step transitions in the

platform are shown in Fig. 1, where the user is currently in

step "4. Data plot" (records inspection) and may move to

the earlier step "3. Select input data" or to steps "5.

Preprocessing" and "6. Feature extraction". OpenAPI [6]

is used to create the documentation for the MULTISAB's

RESTful API that is used for testing the communication

between backend and frontend subprojects.

The backend subproject is designed using Java 9 and

Spring Boot. Java Persistence API (JPA) is used for

communication with the database, which is also a part of

the backend project. H2 database management system was

chosen primarily because it stores all data in a single file.

As we store the uploaded BTS files into the backend

server file system, the H2 database is used only to store

registered users and sessions data. The backend subproject

is built using Maven build tool in order to easily integrate

all the required libraries. We use stateful session control

by tokens. After logging in, the user is given a token for

accessing protected resources on backend, which expires

after a timeout if no action is made. For security

insurance, we use HTTP/2 protocol. Backend currently

includes the processing subproject as a library. Backend

calls the methods of relevant classes in processing in order

to enable the execution of analysis steps. For example, a

call from analysis.RecordsInspectionController

class on backend to signalVisualization.

ImageCreating class on processing enables the

construction of an image file for visualization of a patient

record segment.

The processing subproject is designed in Java 9, and is

intended to cover all the details regarding BTS analysis. It

is implemented as a stand-alone library with potential to

be distributed on several hosts. Currently, it is located on

the same server as the backend subproject. The structure

of the processing subproject is the most complex one,

consisting of several frameworks for handling most of the

analysis steps as well as additional platform

functionalities. The frameworks with some of the most

important packages (small first letter) and classes (capital

first letter) are depicted in Table I.

TABLE I. MULTISAB PROCESSING SUBPROJECT FRAMEWORKS WITH

IMPORTANT PACKAGES OR CLASSES

Framework Package or class

Record input handling

AnnFile

CsvFile

EdfFile

InputData

Metadata

SignalParameterData

TxtFile

Preprocessing

filtering

iirj

morphologicalOperations

Signal visualization ImageCreating

General time series features

extraction

frequencyDomain

nonlinear

timeDomain

timeFrequencyDomain

Specific (domain) time series

features extraction

eegAnalysis

ecgAnalysis

hrvAnalysis

Feature extraction
FeatureExtraction

Parallelization

Expert system

recommendations

DroolsExpertSystem

ExpertSystem

Data mining

discretization

featureSelection

normalization

Classification

Reporting ReportingMain

More details regarding processing functionalities are

available in [5]. It is important to stress out that a large

number of general BTS features (e.g. approximate

entropy, mutual information) as well as specific BTS (i.e.

HRV, ECG, EEG) features are implemented in the

platform. Also, preprocessing steps, including filtering

methods and ECG characteristic points detection using

state-of-the-art algorithms such as the one from Elgendi et

al. [7] are also supported. Data mining methods currently

implemented include several filter-based feature selection

algorithms (e.g. symmetrical uncertainty, Chi-square) and

several classifiers: SVM [8], MLP, RBF, PNN and NEAT

[9]. Aside from our own implementations, permissive

licenses (Apache, MIT, BSD, or LGPL) only external

libraries are included in MULTISAB.

B. Parallelization Candidate Locations

We carefully examined the potential spots in the

platform that would benefit from parallelization. We

concluded that efficient speed up of BTS analysis may be

beneficiary in the preprocessing, feature extraction and

data mining steps, as these are the computationally most

demanding steps.

Our initial considerations indicated that input data

preprocessing (such as applying

parallelization may be achieved only for a subset of

preprocessing methods. Also, heavy use of preprocessing

methods is something that is not the primary focus of the

platform. Therefore, currently, if any computationally

demanding preprocessing is required, it is expected that

the platform would take some extra time. O

was to focus first on parallelization of feature extraction

on which we report in detail in Section 3

It is known that data mining algorithms, in particular,

various ANN and SVM algorithms, greatly benefit from

parallelization when training with

datasets. Generally, parallelizing such algorithms is not

trivial, as the internal steps are dependent on the previous

calculations. Nevertheless, some efficient parallelization

implementations are known, mostly based on OpenMP

and GPU [10,11]. This is something that we

in the next phase of MULTISAB implementation

probably not using OpenMP, as its support for Java is

limited. We also plan to implement

parallelizable data mining algorithms

random forest [12].

III. PARALLELIZATION APPROACHES

A. Related Work

The work of Wilson and Williams

achieving significant performance increase (up to 100x)

using GPU parallelization in the case of many

(more than 100 channels) for EEG spatial filtering,

because matrix multiplications, easily processed by GPU,

are used for that purpose. The same work also reported

success for parallelizing autoregressive Burg algorithm for

power spectral density estimate. However, specific Burg

algorithm code optimizations were needed, which

prohibits a more general solution for various BTS

preprocessing methods implemented in our platform

Chen et al. [14] managed to parallelize ensemble

Figure 1. Moving through the analysis steps on frontend

indicated that input data

applying various filters)

d only for a subset of

preprocessing methods. Also, heavy use of preprocessing

is something that is not the primary focus of the

if any computationally

demanding preprocessing is required, it is expected that

the platform would take some extra time. Our decision

was to focus first on parallelization of feature extraction,

Section 3.

data mining algorithms, in particular,

greatly benefit from

 sufficiently large

Generally, parallelizing such algorithms is not

trivial, as the internal steps are dependent on the previous

some efficient parallelization

, mostly based on OpenMP

s is something that we may consider

in the next phase of MULTISAB implementation, but

support for Java is

. We also plan to implement some naturally

parallelizable data mining algorithms soon, such as

PPROACHES

The work of Wilson and Williams [13] reported

achieving significant performance increase (up to 100x)

using GPU parallelization in the case of many-channel

(more than 100 channels) for EEG spatial filtering,

cause matrix multiplications, easily processed by GPU,

are used for that purpose. The same work also reported

success for parallelizing autoregressive Burg algorithm for

power spectral density estimate. However, specific Burg

ere needed, which

prohibits a more general solution for various BTS

preprocessing methods implemented in our platform.

] managed to parallelize ensemble

empirical mode decomposition algorithm for many

channel EEG on a CUDA GPU and thus enabl

calculation of Hilbert-Huang spectral entropy, which was

used to detect epileptic seizures.

parallelization may also be realized in a specialized

hardware, as was shown by Ahn et al. [1

The work of Sahoo et al. [1

cloud solution for ECG records preprocessing and

visualization. The platform called Cloudware relies on

Hadoop ‘big data’ infrastructure and enables fast

preprocessing of ECGs. Parallelization is achieved on

patient record and segment levels through

MapReduce jobs. By translating EDF format patient data

to WFDB format and utilizing PhysioNet

algorithms (e.g. for R peak detection

parallelized, resulted in faster preprocessing and

inspection of large amounts of data available to the

medical multicenter in which the system was installed.

B. Attempting BTS Feature Calculation Parallelization

Regarding feature extraction from BTS, we analyzed

several possible approaches to parallelization

idea was to parallelize feature calculation algorithms

themselves. Specifically, we considered GPU

well as CPU-based parallelization using Java OpenCL

library called aparapi [17]. Aparapi is designed to translate

native Java bytecode into OpenCL k

runtime, thus dispatching the tasks either to a multi

CPU or to GPU, depending on the settings.

uses processor drivers that need to be installed on the

computer and the most advanced instruction set

have available (e.g. AVX2

OpenCL GPU uses GPU's shader processors

default for large data sets, global GPU RAM. Initial

experiments with aparapi GPU and CPU parallelization

indicated more than an order of magnitude acceleration

compared to Java Thread Pool. However, the

included millions of signal samples and non

simple calculations. When faced with a real

on frontend: an example where the user is currently in "4. Data plot" (records inspection) step

relevant part is highlighted with the red rectangle

empirical mode decomposition algorithm for many-

channel EEG on a CUDA GPU and thus enable faster

Huang spectral entropy, which was

used to detect epileptic seizures. Signal preprocessing

parallelization may also be realized in a specialized

hardware, as was shown by Ahn et al. [15].

The work of Sahoo et al. [16] focused on a web based

cloud solution for ECG records preprocessing and

visualization. The platform called Cloudware relies on

Hadoop ‘big data’ infrastructure and enables fast

preprocessing of ECGs. Parallelization is achieved on

ent levels through the use of

ranslating EDF format patient data

to WFDB format and utilizing PhysioNet preprocessing

detection), which were not

faster preprocessing and

f large amounts of data available to the

medical multicenter in which the system was installed.

Attempting BTS Feature Calculation Parallelization

Regarding feature extraction from BTS, we analyzed

to parallelization. The first

idea was to parallelize feature calculation algorithms

Specifically, we considered GPU-based as

parallelization using Java OpenCL

Aparapi is designed to translate

native Java bytecode into OpenCL kernels dynamically at

, thus dispatching the tasks either to a multi-core

CPU or to GPU, depending on the settings. OpenCL CPU

drivers that need to be installed on the

computer and the most advanced instruction set that we

 for an Intel processor).

shader processors and, by

global GPU RAM. Initial

with aparapi GPU and CPU parallelization

indicated more than an order of magnitude acceleration

d to Java Thread Pool. However, the test data

included millions of signal samples and non-conditional

simple calculations. When faced with a real-world feature

in "4. Data plot" (records inspection) step, the

calculation algorithm (e.g. approximate entropy), taking

only several thousand samples, conditional next-step

execution and non-trivial mathematical operations (e.g.

square root), the results were far less impressive. More

precisely, the overhead needed to transfer data to CPU or

GPU, as well as inability to parallelize most of the feature

calculation steps, resulted in parallelization execution time

that was significantly longer than the traditional sequential

algorithm. The most important problems seemed to be the

nature of the feature calculation algorithm itself and

dynamic translation of OpenCL kernel. Having multiple

interdependent sequential steps, some conditional

branching and non-trivial mathematical operations (which

prevents parallel reduction technique [18]) resulted in

significant performance drop. This was the conclusion for

all the inspected feature calculation algorithms.

IV. PARALLELIZATION IMPLEMENTATION IN

MULTISAB

A. Parallelization Context

The backend subproject calls the methods of the

processing subproject when a user's request from frontend

arrives. Parallelization is handled as one of such requests,

currently supported during feature extraction step. The

assumptions for starting feature extraction are, as follows:

• There may be multiple patient records uploaded and

preprocessed in the earlier steps of the analysis session

in the platform.

• Patient records may contain heterogeneous signals

(signal trails), e.g. 10 EEG trails, 2 ECG trails and 1

skin conductivity trail.

• The number of feature extraction iterations is equal to

the number of different signal types (i.e. ECG, EEG...)

in the records.

• All uploaded and preprocessed patient records contain

the same types and numbers of signal trails.

• Each iteration of feature extraction is performed on

one signal type in all records, because each signal type

uses different features and feature parameters.

• All signals in all uploaded and preprocessed records

are of equal duration, and if this condition is not

satisfied, the analysis may be performed only until the

end of the shortest signal trail in all records.

Prior to execution of parallelization for a feature

extraction iteration, all the feature extraction parameters

need to be set:

• The list of features that need to be extracted in the

iteration.

• The list of feature parameters with values for each

feature that needs to be extracted in the iteration (in the

case where a feature has some parameters).

• The starting time in the record from which the feature

extraction process starts (the same for all iterations).

• The analyzed segment width (the same for all

iterations).

• The final time in the record until which the analysis is

performed (the same for all iterations).

All of these feature extraction parameters are sent

from the backend subproject after the user specified them

via browser GUI on frontend. The user may choose not to

use parallelization. In such a case, classical sequential

feature extract would ensue.

B. Parallelization Progression

Parallelization starts by a call from backend to class

Parallelization within the package called analysis

in the processing subproject. The Parallelization

class is designed to take as input the paths to patient

records that were uploaded and which may have been

preprocessed in the earlier steps of an analysis session.

The file paths are stored in the database on backend.

During object instantiation of the Parallelization

class, all the selected data records are loaded into the

working memory to enable faster calculations. Input

record size as well as total upload size may be limited by

the platform to prevent out-of-memory errors. The data

structure in memory is somewhat dependent on the input

file format, but it nevertheless allows the use of the same

methods for parallelization of execution.

We achieved parallelization through the use of Java

multithreading, without aparapi library. We limit the

degree of parallelization to the number of available logical

cores on the server computer at the moment of

parallelization starting minus one (let the number of

parallel threads in each such parallelization chunk be k).

Parallelization is achieved on several levels: for multiple

patient records, within a record for multiple signals of the

same type, and for multiple segments within a signal trail.

The procedure for parallelization of feature extraction is

implemented, as follows:

1. If there is more than one segment present within a

signal, then the features in these segments are

extracted in parallel, where the parallelization

proceeds until all the segments are analyzed.

2. Else, if there is only one segment per signal and there

are multiple signals of the same type, then the signals

are processed in parallel, where the parallelization

proceeds until all the signals are analyzed; a special

case for the implemented bivariate features is that all

signal pairs (e.g. for calculation of the mutual

information feature) are analyzed in parallel.

3. Else, if there is only one segment and one signal of the

same type per record, and there is more than one

record, then the parallelization is run so that multiple

records are analyzed concurrently, which proceeds

until all of them are analyzed.

4. Else, when there is only a single record with a single

signal type and a single segment, then the

parallelization is not performed and the record is

analyzed in the original thread.

It is important to note that the extraction of the list of

features in a single segment, signal, or record always

proceeds sequentially. The reason for this is because the

complexity of individual features calculation differs

significantly from one feature to another. Therefore, due

to easier synchronization, we decided not to create new

threads for each feature calculation.

The parallelization synchronization is, as follows: all k

threads need to finish with the current feature extraction

before moving on to the next chunk of parallelization.

This may slow down the possibly achievable runtime of

parallelization, but the synchronization is simpler and thus

less error-prone. After all k threads finish, the results of

feature extraction (feature vectors) are appended to two

output files, one in .csv format and the other one in a more

informative, .arff file format [19]. The process is repeated

for each parallelization chunk, until all the records are

analyzed in the iteration.

After all the iterations are completed, the model

construction step (data mining) may begin. Therein,

complex models may consider features from different

signal types stored in several output files, and also other

patient metadata, while simple models may use feature

vectors extracted from a single type of BTS.

In Table II, we state the most important classes in the

processing subproject that directly or indirectly (through

object references) take part in the feature extraction

parallelization process. All of these classes may be found

in the analysis package of the subproject.

C. Parallelization Validation

As demonstration, we conduct a validation experiment

of the implemented feature extraction parallelization to

establish its efficiency compared to sequential execution.

For that purpose, we proceed with a rather complex

feature extraction scenario for extracting multiple features

(27 in total) from cardiac rhythm annotation records from

PhysioNet MIT-BIH Arrhythmia database [20], which is

the standard database for testing algorithms to detect

various types of arrhythmias based on heart rate variability

(HRV).

We include the following general time series features:

four approximate entropies (for m = 2, r = {0.1, 0.15, 0.2,

0.25}*σ), four sample entropies (for m = 2, r = {0.1, 0.15,

0.2, 0.25}*σ), corrected conditional Shannon entropy,

spatial filling index, Allan factor, and five recurrence plot

features (rec. rate, Lmean, DET, rec. Shannon entropy,

and rec. laminarity). We also include: 1) standard time

domain HRV features – AVNN, SDNN, RMSSD, SDSD,

pNN50, HRV triangular index, TINN; 2) standard

frequency domain features calculated using Lomb-Scargle

periodogram – low frequency PSD, high frequency PSD,

and low/high frequency PSD ratio; and 3) standard

deviation ratio of Poincaré plot feature. Some details

about the features may be found in [21].

The experiments were conducted on an Intel Core i7-

4790 CPU @3.6 GHz with 16 GB RAM and 8 logical

cores, of which 7 were used for parallelization. We used

three settings: 1) only a single record, "100.ann"; 2) first

12 records of the MIT-BIH Arrhythmia Database; and 3)

all 48 records of the MIT-BIH Arrhythmia Database.

The results are shown in Table III. The experiments

were run five times, with mean ± stddev reported. We can

see that, with the exception of single record with the

largest number of segments and shortest segment length,

parallel execution outperforms sequential execution. We

can observe that few longer segments take more time to

analyze than many shorter segments. This is because most

of the features calculations complexities are more than

linearly dependent on the size of the segments. Based on

the results for 7 segments, we can expect that the largest

positive effect of parallelization takes place when the

number of segments is the multiple of the number of used

logical cores. Also, as we can see from the results of

analyzing only 2 longest segments, better positive effect

can be achieved by analyzing longer segments (the effect

is almost the theoretical double for 48 records). The

reason for this is because threads spend most of the time

calculating the features, and less time preparing data for

the next chunk or waiting on other threads to finish the

current chunk. Based on these results, we may conclude

that the maximum effect of multithreading for a general

BTS analysis may be achieved for long segments and for

the number of segments given as multiple of the number

of used logical cores.

V. CONCLUSION

In this work, we have shown the organization of the

MULTISAB platform and highlighted the steps that may

TABLE II. PROCESSING CLASSES THAT IMPLEMENT

PARALLEL (AND SEQUENTIAL) FEATURE EXTRACTION

Class Purpose

Parallelization

The main class intended for starting

parallelization. It supports loading data

from preprocessed files, adjusting

parameters and job scheduling among

threads

ParallelExtraction

Thread

A single thread that deals with the

analysis of a single data section

(commonly, a file segment, rarely the

whole file)

Features

The class intended for storing and

transferring features that need to be

analyzed

FeatureParameters

The class intended for storing and

transferring parameter values for

individual features that need to be

analyzed

FeatureExtraction

The class intended for feature extraction

from data. As input, it takes signal data

needed to be processed. As output,

extracted feature vectors are sent as

results to the ExtractedFeatures

class

ExtractedFeatures

The class intended to save the extraction

results to two output files. Feature vectors

are stored line by line in the output files,

with the values that correspond to the

extracted features and feature parameters

specified by the user and available in the

files' headers

TABLE III. PARALLELIZATION VALIDATION

RESULTS ON MIT-BIH ARRHYTHMIA DATABASE

RECORDS, RESULTS ARE IN MILLISECONDS

No. of analyzed

record segments,

with their length

Parallel /

sequential

execution

Number of included records

1 12 48

85 segments, each

20 s

parallel 116±30 357±14 1135±79

sequential 103±14 393±15 1304±66

18 segments, each

90 s

parallel 145±13 447±9 1506±23

sequential 178±8 962±29 3372±13

7 segments, each

240 s

parallel 200±17 890±43 2519±12

sequential 266±16 1973±20 8002±42

3 segments, each

560 s

parallel 315±7 1966±23 7858±204

sequential 531±16 4268±117 17672±115

2 segments, each

840 s

parallel 466±7 3556±49 14781±244

sequential 766±29 6181±55 26395±223

benefit from parallelization. The specifics of the platform

mandated a practical solution to accelerate feature

extraction. We have learned that, due to the nature of

feature calculations, it is impractical to perform OpenCL

based CPU and GPU parallelization on the level of

individual feature calculation algorithms. In our

experience, the best solution was to use Java

multithreading and parallelize feature extraction based on

available data, by examining multiple segments, signals

and records at the same time.

In the future, we plan to consider several venues for

improvements. First, as mentioned, we would like to add

the option to the backend subproject to communicate with

multiple computers, each host containing an instance of

the processing subproject, thus increasing the degree of

parallelization. For some specific preprocessing

algorithms for which parallelization was shown to be

beneficial in literature [13], we also plan to add

parallelization support using GPU. Another venue is to

explore parallelization for some specific, yet

unimplemented complex multivariate features, such as the

one measuring synchronization between brain regions in

an EEG [22].

REFERENCES

[1] S. A. Rahman, Y. Huang, J. Claassen, N. Heintzman, and S.
Kleinberg, “Combining Fourier and lagged k-nearest neighbor
imputation for biomedical time series data,” Journal of Biomedical

Informatics, vol 58, pp. 198–207, 2015; doi:
10.1016/j.jbi.2015.10.004

[2] R. J. Oweis and E. W. Abdulhay, “Seizure classification in EEG
signals utilizing Hilbert-Huang transform,” BioMedical

Engineering OnLine, vol. 10, p. 38. 2011; doi:10.1186/1475-
925X-10-38

[3] K. Friganović, A. Jović, K. Jozić, D. Kukolja, and M. Cifrek,
“MULTISAB project: a web platform based on specialized
frameworks for heterogeneous biomedical time series analysis - an
architectural overview,” Proceedings of the International

Conference on Medical and Biological Engineering (CMBEBiH

2017), Sarajevo, Bosnia and Herzegovina, Springer Nature
Singapore, pp. 9–15, 2017.

[4] A. Jović, D. Kukolja, K. Friganović, K. Jozić, and S. Car,
“Biomedical Time Series Preprocessing and Expert-System Based
Feature Extraction in MULTISAB Platform,” Proceedings of

MIPRO 2017 International Conference, Opatija, Croatia, MIPRO,
pp. 349–354, 2017.

[5] A. Jović, D. Kukolja, K. Friganović, K. Jozić, and M. Cifrek,
“MULTISAB: A Web Platform for Analysis of Multivariate
Heterogeneous Biomedical Time-series,” World Congress on

Medical Physics & Biomedical Engineering (IUPESM 2018),
Prague, submitted work.

[6] SmartBear Software, “Swagger Editor and Swagger UI,”
https://swagger.io/ (accessed: 2018-02-11)

[7] M. Elgendi, M. Meo, and D. Abbott, “A Proof-of-Concept Study:
Simple and Effective Detection of P and T Waves in Arrhythmic
ECG Signals,” Bioengineering, vol. 3, p. 26, 2016;
doi:10.3390/bioengineering3040026

[8] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 27, pp. 1–27, 2011.

[9] J. Heaton, “Encog: Library of Interchangeable Machine Learning
Models for Java and C#,” Journal of Machine Learning Research,
vol. 16, pp. 1243–1247, 2015.

[10] P. Chang, Z. Bi, and Y. Feng, “Parallel SMO algorithm
implementation based on OpenMP,” 2014 IEEE International

Conference on System Science and Engineering (ICSSE),
Shanghai, pp. 236–240, 2014; doi: 10.1109/ICSSE.2014.6887941

[11] A. A. Huqqani, E. Schikuta, S. Ye, and P. Chen, “Multicore and
GPU Parallelization of Neural Networks for Face Recognition,”
Procedia Computer Science, vol 18, pp. 349–358, 2013;
doi:10.1016/j.procs.2013.05.198

[12] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001; doi: 10.1023/A:1010933404324.

[13] J. A. Wilson and J. C. Williams, Massively parallel signal
processing using the graphics processing unit for real-time brain-
computer interface feature extraction, Frontiers in

Neuroengineering, vol. 2, pp. 1–11, 14 July 2009; doi:
10.3389/neuro.16.011.2009

[14] D. Chen, L. Wang, G. Ouyang, and X. Li, “Massively Parallel
Neural Signal Processing on a Many-Core Platform,” Computing

in Science & Engineering, vol. 13, no. 6, pp. 42–51, 2011; doi:
10.1109/MCSE.2011.20

[15] J. Ahn, H. Chang, J. Cho, and W. Sung, “SIMD processor based
implementation of recursive filtering equations,” 2009 IEEE

Workshop on Signal Processing Systems, Tampere, Finland, pp.
87–92, 2009; doi: 10.1109/SIPS.2009.5336230

[16] S. S Sahoo, C. Jayapandian, G. Garg, F. Kaffashi, S. Chung, A.
Bozorgi, C.-H. Chen, K. Loparo, S. D Lhatoo, and G.-Q. Zhang,
“Heart beats in the cloud: distributed analysis of
electrophysiological ‘Big Data’ using cloud computing for
epilepsy clinical research,” Journal of the American Medical

Informatics Association, vol. 21, issue 2, pp. 263–271, 2014;
doi:10.1136/amiajnl-2013-002156

[17] Syncleus, “Aparapi,” http://aparapi.com, (accessed: 2018-02-11)

[18] NVIDIA, “NVIDIA CUDA Compute Unified Device Architecture
Programming Guide,” v. 2.0. Santa Clara, CA, NVIDIA, 2008.

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.
H. Witten, “The WEKA data mining software: an update,”
SIGKDD Explor. Newsl. vol. 11, no. 1, pp. 10–18 2009;
doi:10.1145/1656274.1656278

[20] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH
Arrhythmia Database,” IEEE Engineering in Medicine and
Biology, vol. 20, no. 3, pp. 45–50, 2001.

[21] A. Jović and N. Bogunović, “Evaluating and Comparing
Performance of Feature Combinations of Heart Rate Variability
Measures for Cardiac Rhythm Classification,” Biomedical Signal
Processing and Control, vol. 7, no. 3, pp. 245–255, 2012.

[22] D. Chen, X. Li, D. Cui, L. Wang, and D. Lu, “Global
Synchronization Measurement of Multivariate Neural Signals with
Massively Parallel Nonlinear Interdependence Analysis,” IEEE

Transactions on Neural Systems and Rehabilitation Engineering,
vol. 22, no. 1, pp. 33–43, 2014; doi:
10.1109/TNSRE.2013.2258939

