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Abstract - Parallel execution of operations required for 

biomedical time series (BTS) analysis is an important issue 

in optimization of medical software efficiency. We 

investigate the applicability of several parallelization 

approaches to BTS analysis in the context of feature 

extraction from multiple heterogeneous BTS on a Java-

based web platform called MULTISAB, designed for 

medical diagnostics. Considering only the calculation 

parallelization of many different BTS features, our research 

suggests that parallelization based on simple Java 

multithreading works the best. The threads are assigned 

based on the data and analysis parameters provided, where 

feature extraction parallelization is performed on the 

following levels: 1) multiple segments; 2) multiple signal 

trails; 3) multiple patient records. The synchronization 

mechanism should be simple: the analysis continues once all 

threads terminate their work and record the extracted 

feature vectors. A special case, when features from two 

signal trails (bivariate features) are extracted, includes 

multithreading on signal pairs for multiple signal trails level 

parallelization. We also provide an overview of the web 

platform architecture to put the parallelized parts into the 

overall perspective. 

Keywords - biomedical time series analysis, feature 

extraction, web platform, parallelization, multithreading 

I. INTRODUCTION 

Biomedical time series (BTS) analysis software 

usually possesses a significant amount of computational 

complexity, due to the fact that the implemented 

algorithms need to efficiently manage noisy and non-

stationary properties of the considered time series [1]. The 

degree of complexity depends largely on the goal of the 

analysis and the features used in reaching that goal. For 

example, extracting linear statistical features such as mean 

and standard deviation from an already preprocessed BTS 

in order to determine if an analyzed segment significantly 

deviates from an expected behavior does not require 

intensive calculations. However, performing empirical 

mode decomposition based Hilbert-Huang transform and 

extracting many potentially relevant time-frequency 

features on a broader scale of learning a model for a 

disease, based on many patient records, is highly resource-

demanding [2]. 

In our earlier investigations, we approached the 

problem of designing the architecture for a BTS analysis 

web platform called MULTISAB
1
 [3]. The platform is 

intended to provide ubiquitous web access to interested 

researchers and medical personnel that want to analyze 

BTS. The platform is based on specification and execution 

of analysis scenarios. We have also previously shown the 

feature implementation details regarding heart rate 

variability, electrocardiogram, and electroencephalogram 

analysis, also including a definition of expert 

recommendation system for features that need to be 

extracted, depending on the analysis goal and data type 

[4]. Data mining methods, including feature selection and 

classification algorithms are also implemented in the 

platform, which is a topic of another, currently submitted 

conference paper [5]. At the moment, the platform is in 

integration and testing phase and is planned to be open for 

users soon. 

In this work, we focus on the details regarding 

computational complexity amelioration that has been 

achieved in the platform. In particular, we address the 

complexity problem by examining the applicability of 

different parallelization approaches to the feature 

extraction step of the analysis. As feature extraction is the 

crucial part of BTS analysis, accelerating this step brings 

big difference to the web platform user experience. 

The work is organized as follows. In Section 2, we 

provide a brief overview of the current state of 

MULTISAB platform implementation and highlight the 

spots where parallelization may be beneficiary. Section 3 

first discusses some related work and then describes our 

attempt at directly parallelizing individual feature 

calculations. Section 4 provides the details of 

parallelization implemented in the platform, including 

some experimental validation. Section 5 concludes the 

paper and provides future guidelines. 

II. PLATFORM STRUCTURE AND PARALLELIZATION 

LOCATION 

A. MULTISAB Platform Structure  

The MULTISAB web platform is organized in three 

separate subprojects: frontend, backend and processing. 

                                                           
1 This work has been fully supported by the Croatian Science 

Foundation under the project number UIP-2014-09-6889. 



The main technologies and intended tasks of each 

subproject are briefly explained here.  

The frontend subproject is designed using several 

recognizable contemporary web frontend technologies, 

including Angular, HTML5, CSS3, and Node.js. The web 

site is organized as a single-page web application written 

using Angular components in TypeScript language, where 

a TypeScript compiler is used to produce JavaScript code. 

The majority of web application's content is focused 

on conducting an analysis scenario. The user starts the 

analysis scenario by logging into the platform and opening 

a new session (or continuing the last existing one). BTS 

analysis process is divided into 8 steps, some of which 

may be skipped, depending on the user: 1) analysis type 

selection, 2) scenario selection, 3) input data selection, 4) 

records inspection, 5) records preprocessing, 6) feature 

extraction, 7) model construction, and 8) reporting [4]. 

The analysis on frontend proceeds from a starting step 

to an allowed set of next steps, which is continued until 

the final step, reporting, is reached. The possible 

transitions between steps are governed through a finite 

state machine (FSM), where a step may correspond to one 

or a few FSM states. Using this approach, we managed to 

provide a clearly defined BTS analysis workflow, which 

would not be possible using standard web site navigation, 

where any (or most) transitions between steps would be 

legal. An example of possible step transitions in the 

platform are shown in Fig. 1, where the user is currently in 

step "4. Data plot" (records inspection) and may move to 

the earlier step "3. Select input data" or to steps "5. 

Preprocessing" and "6. Feature extraction". OpenAPI [6] 

is used to create the documentation for the MULTISAB's 

RESTful API that is used for testing the communication 

between backend and frontend subprojects. 

The backend subproject is designed using Java 9 and 

Spring Boot. Java Persistence API (JPA) is used for 

communication with the database, which is also a part of 

the backend project. H2 database management system was 

chosen primarily because it stores all data in a single file. 

As we store the uploaded BTS files into the backend 

server file system, the H2 database is used only to store 

registered users and sessions data. The backend subproject 

is built using Maven build tool in order to easily integrate 

all the required libraries. We use stateful session control 

by tokens. After logging in, the user is given a token for 

accessing protected resources on backend, which expires 

after a timeout if no action is made. For security 

insurance, we use HTTP/2 protocol. Backend currently 

includes the processing subproject as a library. Backend 

calls the methods of relevant classes in processing in order 

to enable the execution of analysis steps. For example, a 

call from analysis.RecordsInspectionController 

class on backend to signalVisualization. 

ImageCreating class on processing enables the 

construction of an image file for visualization of a patient 

record segment. 

The processing subproject is designed in Java 9, and is 

intended to cover all the details regarding BTS analysis. It 

is implemented as a stand-alone library with potential to 

be distributed on several hosts. Currently, it is located on 

the same server as the backend subproject. The structure 

of the processing subproject is the most complex one, 

consisting of several frameworks for handling most of the 

analysis steps as well as additional platform 

functionalities. The frameworks with some of the most 

important packages (small first letter) and classes (capital 

first letter) are depicted in Table I. 

TABLE I. MULTISAB PROCESSING SUBPROJECT FRAMEWORKS WITH 

IMPORTANT PACKAGES OR CLASSES 

Framework Package or class 

Record input handling 

AnnFile 

CsvFile 

EdfFile 

InputData 

Metadata 

SignalParameterData 

TxtFile 

Preprocessing 

filtering 

iirj 

morphologicalOperations 

Signal visualization ImageCreating 

General time series features 

extraction 

frequencyDomain 

nonlinear 

timeDomain 

timeFrequencyDomain 

Specific (domain) time series 

features extraction 

eegAnalysis 

ecgAnalysis 

hrvAnalysis 

Feature extraction 
FeatureExtraction 

Parallelization 

Expert system 

recommendations 

DroolsExpertSystem 

ExpertSystem 

Data mining 

discretization 

featureSelection 

normalization 

Classification 

Reporting ReportingMain 

 

More details regarding processing functionalities are 

available in [5]. It is important to stress out that a large 

number of general BTS features (e.g. approximate 

entropy, mutual information) as well as specific BTS (i.e. 

HRV, ECG, EEG) features are implemented in the 

platform. Also, preprocessing steps, including filtering 

methods and ECG characteristic points detection using 

state-of-the-art algorithms such as the one from Elgendi et 

al. [7] are also supported. Data mining methods currently 

implemented include several filter-based feature selection 

algorithms (e.g. symmetrical uncertainty, Chi-square) and 

several classifiers: SVM [8], MLP, RBF, PNN and NEAT 

[9]. Aside from our own implementations, permissive 

licenses (Apache, MIT, BSD, or LGPL) only external 

libraries are included in MULTISAB. 

B. Parallelization Candidate Locations 

We carefully examined the potential spots in the 

platform that would benefit from parallelization. We 

concluded that efficient speed up of BTS analysis may be 

beneficiary in the preprocessing, feature extraction and 

data mining steps, as these are the computationally most 

demanding steps. 



Our initial considerations indicated that input data 

preprocessing (such as applying 

parallelization may be achieved only for a subset of 

preprocessing methods. Also, heavy use of preprocessing 

methods is something that is not the primary focus of the 

platform. Therefore, currently, if any computationally 

demanding preprocessing is required, it is expected that 

the platform would take some extra time. O

was to focus first on parallelization of feature extraction

on which we report in detail in Section 3

It is known that data mining algorithms, in particular, 

various ANN and SVM algorithms, greatly benefit from 

parallelization when training with 

datasets. Generally, parallelizing such algorithms is not 

trivial, as the internal steps are dependent on the previous 

calculations. Nevertheless, some efficient parallelization 

implementations are known, mostly based on OpenMP 

and GPU [10,11]. This is something that we 

in the next phase of MULTISAB implementation

probably not using OpenMP, as its support for Java is 

limited. We also plan to implement 

parallelizable data mining algorithms 

random forest [12]. 

III. PARALLELIZATION APPROACHES

A. Related Work 

The work of Wilson and Williams

achieving significant performance increase (up to 100x) 

using GPU parallelization in the case of many

(more than 100 channels) for EEG spatial filtering, 

because matrix multiplications, easily processed by GPU, 

are used for that purpose. The same work also reported 

success for parallelizing autoregressive Burg algorithm for 

power spectral density estimate. However, specific Burg 

algorithm code optimizations were needed, which 

prohibits a more general solution for various BTS 

preprocessing methods implemented in our platform

Chen et al. [14] managed to parallelize ensemble 

Figure 1. Moving through the analysis steps on frontend

indicated that input data 

applying various filters) 

d only for a subset of 

preprocessing methods. Also, heavy use of preprocessing 

is something that is not the primary focus of the 

if any computationally 

demanding preprocessing is required, it is expected that 

the platform would take some extra time. Our decision 

was to focus first on parallelization of feature extraction, 

Section 3. 

data mining algorithms, in particular, 

greatly benefit from 

 sufficiently large 

Generally, parallelizing such algorithms is not 

trivial, as the internal steps are dependent on the previous 

some efficient parallelization 

, mostly based on OpenMP 

s is something that we may consider 

in the next phase of MULTISAB implementation, but 

support for Java is 

. We also plan to implement some naturally 

parallelizable data mining algorithms soon, such as 

PPROACHES 

The work of Wilson and Williams [13] reported 

achieving significant performance increase (up to 100x) 

using GPU parallelization in the case of many-channel 

(more than 100 channels) for EEG spatial filtering, 

cause matrix multiplications, easily processed by GPU, 

are used for that purpose. The same work also reported 

success for parallelizing autoregressive Burg algorithm for 

power spectral density estimate. However, specific Burg 

ere needed, which 

prohibits a more general solution for various BTS 

preprocessing methods implemented in our platform. 

] managed to parallelize ensemble 

empirical mode decomposition algorithm for many

channel EEG on a CUDA GPU and thus enabl

calculation of Hilbert-Huang spectral entropy, which was 

used to detect epileptic seizures.

parallelization may also be realized in a specialized 

hardware, as was shown by Ahn et al. [1

The work of Sahoo et al. [1

cloud solution for ECG records preprocessing and 

visualization. The platform called Cloudware relies on 

Hadoop ‘big data’ infrastructure and enables fast 

preprocessing of ECGs. Parallelization is achieved on 

patient record and segment levels through

MapReduce jobs. By translating EDF format patient data 

to WFDB format and utilizing PhysioNet 

algorithms (e.g. for R peak detection

parallelized, resulted in faster preprocessing and 

inspection of large amounts of data available to the 

medical multicenter in which the system was installed.

B. Attempting BTS Feature Calculation Parallelization

Regarding feature extraction from BTS, we analyzed 

several possible approaches to parallelization

idea was to parallelize feature calculation algorithms 

themselves. Specifically, we considered GPU

well as CPU-based parallelization using Java OpenCL 

library called aparapi [17]. Aparapi is designed to translate 

native Java bytecode into OpenCL k

runtime, thus dispatching the tasks either to a multi

CPU or to GPU, depending on the settings.

uses processor drivers that need to be installed on the 

computer and the most advanced instruction set 

have available (e.g. AVX2 

OpenCL GPU uses GPU's shader processors

default for large data sets, global GPU RAM. Initial 

experiments with aparapi GPU and CPU parallelization

indicated more than an order of magnitude acceleration 

compared to Java Thread Pool. However, the

included millions of signal samples and non

simple calculations. When faced with a real

on frontend: an example where the user is currently in "4. Data plot" (records inspection) step

relevant part is highlighted with the red rectangle 

empirical mode decomposition algorithm for many-

channel EEG on a CUDA GPU and thus enable faster 

Huang spectral entropy, which was 

used to detect epileptic seizures. Signal preprocessing 

parallelization may also be realized in a specialized 

hardware, as was shown by Ahn et al. [15]. 

The work of Sahoo et al. [16] focused on a web based 

cloud solution for ECG records preprocessing and 

visualization. The platform called Cloudware relies on 

Hadoop ‘big data’ infrastructure and enables fast 

preprocessing of ECGs. Parallelization is achieved on 

ent levels through the use of 

ranslating EDF format patient data 

to WFDB format and utilizing PhysioNet preprocessing 

detection), which were not 

faster preprocessing and 

f large amounts of data available to the 

medical multicenter in which the system was installed. 

Attempting BTS Feature Calculation Parallelization 

Regarding feature extraction from BTS, we analyzed 

to parallelization. The first 

idea was to parallelize feature calculation algorithms 

Specifically, we considered GPU-based as 

parallelization using Java OpenCL 

Aparapi is designed to translate 

native Java bytecode into OpenCL kernels dynamically at 

, thus dispatching the tasks either to a multi-core 

CPU or to GPU, depending on the settings. OpenCL CPU 

drivers that need to be installed on the 

computer and the most advanced instruction set that we 

 for an Intel processor). 

shader processors and, by 

global GPU RAM. Initial 

with aparapi GPU and CPU parallelization 

indicated more than an order of magnitude acceleration 

d to Java Thread Pool. However, the test data 

included millions of signal samples and non-conditional 

simple calculations. When faced with a real-world feature 

 
in "4. Data plot" (records inspection) step, the 



calculation algorithm (e.g. approximate entropy), taking 

only several thousand samples, conditional next-step 

execution and non-trivial mathematical operations (e.g. 

square root), the results were far less impressive. More 

precisely, the overhead needed to transfer data to CPU or 

GPU, as well as inability to parallelize most of the feature 

calculation steps, resulted in parallelization execution time 

that was significantly longer than the traditional sequential 

algorithm. The most important problems seemed to be the 

nature of the feature calculation algorithm itself and 

dynamic translation of OpenCL kernel. Having multiple 

interdependent sequential steps, some conditional 

branching and non-trivial mathematical operations (which 

prevents parallel reduction technique [18]) resulted in 

significant performance drop. This was the conclusion for 

all the inspected feature calculation algorithms. 

IV. PARALLELIZATION IMPLEMENTATION IN 

MULTISAB 

A. Parallelization Context 

The backend subproject calls the methods of the 

processing subproject when a user's request from frontend 

arrives. Parallelization is handled as one of such requests, 

currently supported during feature extraction step. The 

assumptions for starting feature extraction are, as follows: 

• There may be multiple patient records uploaded and 

preprocessed in the earlier steps of the analysis session 

in the platform. 

• Patient records may contain heterogeneous signals 

(signal trails), e.g. 10 EEG trails, 2 ECG trails and 1 

skin conductivity trail. 

• The number of feature extraction iterations is equal to 

the number of different signal types (i.e. ECG, EEG...) 

in the records. 

• All uploaded and preprocessed patient records contain 

the same types and numbers of signal trails. 

• Each iteration of feature extraction is performed on 

one signal type in all records, because each signal type 

uses different features and feature parameters. 

• All signals in all uploaded and preprocessed records 

are of equal duration, and if this condition is not 

satisfied, the analysis may be performed only until the 

end of the shortest signal trail in all records. 

Prior to execution of parallelization for a feature 

extraction iteration, all the feature extraction parameters 

need to be set: 

• The list of features that need to be extracted in the 

iteration. 

• The list of feature parameters with values for each 

feature that needs to be extracted in the iteration (in the 

case where a feature has some parameters). 

• The starting time in the record from which the feature 

extraction process starts (the same for all iterations). 

• The analyzed segment width (the same for all 

iterations). 

• The final time in the record until which the analysis is 

performed (the same for all iterations). 

All of these feature extraction parameters are sent 

from the backend subproject after the user specified them 

via browser GUI on frontend. The user may choose not to 

use parallelization. In such a case, classical sequential 

feature extract would ensue. 

B. Parallelization Progression 

Parallelization starts by a call from backend to class 

Parallelization within the package called analysis 

in the processing subproject. The Parallelization 

class is designed to take as input the paths to patient 

records that were uploaded and which may have been 

preprocessed in the earlier steps of an analysis session. 

The file paths are stored in the database on backend. 

During object instantiation of the Parallelization 

class, all the selected data records are loaded into the 

working memory to enable faster calculations. Input 

record size as well as total upload size may be limited by 

the platform to prevent out-of-memory errors. The data 

structure in memory is somewhat dependent on the input 

file format, but it nevertheless allows the use of the same 

methods for parallelization of execution. 

We achieved parallelization through the use of Java 

multithreading, without aparapi library. We limit the 

degree of parallelization to the number of available logical 

cores on the server computer at the moment of 

parallelization starting minus one (let the number of 

parallel threads in each such parallelization chunk be k). 

Parallelization is achieved on several levels: for multiple 

patient records, within a record for multiple signals of the 

same type, and for multiple segments within a signal trail. 

The procedure for parallelization of feature extraction is 

implemented, as follows: 

1. If there is more than one segment present within a 

signal, then the features in these segments are 

extracted in parallel, where the parallelization 

proceeds until all the segments are analyzed. 

2. Else, if there is only one segment per signal and there 

are multiple signals of the same type, then the signals 

are processed in parallel, where the parallelization 

proceeds until all the signals are analyzed; a special 

case for the implemented bivariate features is that all 

signal pairs (e.g. for calculation of the mutual 

information feature) are analyzed in parallel. 

3. Else, if there is only one segment and one signal of the 

same type per record, and there is more than one 

record, then the parallelization is run so that multiple 

records are analyzed concurrently, which proceeds 

until all of them are analyzed. 

4. Else, when there is only a single record with a single 

signal type and a single segment, then the 

parallelization is not performed and the record is 

analyzed in the original thread. 



It is important to note that the extraction of the list of 

features in a single segment, signal, or record always 

proceeds sequentially. The reason for this is because the 

complexity of individual features calculation differs 

significantly from one feature to another. Therefore, due 

to easier synchronization, we decided not to create new 

threads for each feature calculation. 

The parallelization synchronization is, as follows: all k 

threads need to finish with the current feature extraction 

before moving on to the next chunk of parallelization. 

This may slow down the possibly achievable runtime of 

parallelization, but the synchronization is simpler and thus 

less error-prone. After all k threads finish, the results of 

feature extraction (feature vectors) are appended to two 

output files, one in .csv format and the other one in a more 

informative, .arff file format [19]. The process is repeated 

for each parallelization chunk, until all the records are 

analyzed in the iteration. 

After all the iterations are completed, the model 

construction step (data mining) may begin. Therein, 

complex models may consider features from different 

signal types stored in several output files, and also other 

patient metadata, while simple models may use feature 

vectors extracted from a single type of BTS.  

In Table II, we state the most important classes in the 

processing subproject that directly or indirectly (through 

object references) take part in the feature extraction 

parallelization process. All of these classes may be found 

in the analysis package of the subproject. 

C. Parallelization Validation 

As demonstration, we conduct a validation experiment 

of the implemented feature extraction parallelization to 

establish its efficiency compared to sequential execution. 

For that purpose, we proceed with a rather complex 

feature extraction scenario for extracting multiple features 

(27 in total) from cardiac rhythm annotation records from 

PhysioNet MIT-BIH Arrhythmia database [20], which is 

the standard database for testing algorithms to detect 

various types of arrhythmias based on heart rate variability 

(HRV). 

We include the following general time series features: 

four approximate entropies (for m = 2, r = {0.1, 0.15, 0.2, 

0.25}*σ), four sample entropies (for m = 2, r = {0.1, 0.15, 

0.2, 0.25}*σ), corrected conditional Shannon entropy, 

spatial filling index, Allan factor, and five recurrence plot 

features (rec. rate, Lmean, DET, rec. Shannon entropy, 

and rec. laminarity). We also include: 1) standard time 

domain HRV features – AVNN, SDNN, RMSSD, SDSD, 

pNN50, HRV triangular index, TINN; 2) standard 

frequency domain features calculated using Lomb-Scargle 

periodogram – low frequency PSD, high frequency PSD, 

and low/high frequency PSD ratio; and 3) standard 

deviation ratio of Poincaré plot feature. Some details 

about the features may be found in [21]. 

The experiments were conducted on an Intel Core i7-

4790 CPU @3.6 GHz with 16 GB RAM and 8 logical 

cores, of which 7 were used for parallelization. We used 

three settings: 1) only a single record, "100.ann"; 2) first 

12 records of the MIT-BIH Arrhythmia Database; and 3) 

all 48 records of the MIT-BIH Arrhythmia Database. 

The results are shown in Table III. The experiments 

were run five times, with mean ± stddev reported. We can 

see that, with the exception of single record with the 

largest number of segments and shortest segment length, 

parallel execution outperforms sequential execution. We 

can observe that few longer segments take more time to 

analyze than many shorter segments. This is because most 

of the features calculations complexities are more than 

linearly dependent on the size of the segments. Based on 

the results for 7 segments, we can expect that the largest 

positive effect of parallelization takes place when the 

number of segments is the multiple of the number of used 

logical cores. Also, as we can see from the results of 

analyzing only 2 longest segments, better positive effect 

can be achieved by analyzing longer segments (the effect 

is almost the theoretical double for 48 records). The 

reason for this is because threads spend most of the time 

calculating the features, and less time preparing data for 

the next chunk or waiting on other threads to finish the 

current chunk. Based on these results, we may conclude 

that the maximum effect of multithreading for a general 

BTS analysis may be achieved for long segments and for 

the number of segments given as multiple of the number 

of used logical cores. 

V. CONCLUSION 

In this work, we have shown the organization of the 

MULTISAB platform and highlighted the steps that may  

 

TABLE II. PROCESSING CLASSES THAT IMPLEMENT 

PARALLEL (AND SEQUENTIAL) FEATURE EXTRACTION 

Class Purpose 

Parallelization 

The main class intended for starting 

parallelization. It supports loading data 

from preprocessed files, adjusting 

parameters and job scheduling among 

threads 

ParallelExtraction

Thread 

A single thread that deals with the 

analysis of a single data section 

(commonly, a file segment, rarely the 

whole file) 

Features 

The class intended for storing and 

transferring features that need to be 

analyzed 

FeatureParameters 

The class intended for storing and 

transferring parameter values for 

individual features that need to be 

analyzed 

FeatureExtraction 

The class intended for feature extraction 

from data. As input, it takes signal data 

needed to be processed. As output, 

extracted feature vectors are sent as 

results to the ExtractedFeatures 

class 

ExtractedFeatures 

The class intended to save the extraction 

results to two output files. Feature vectors 

are stored line by line in the output files, 

with the values that correspond to the 

extracted features and feature parameters 

specified by the user and available in the 

files' headers 



TABLE III. PARALLELIZATION VALIDATION 

RESULTS ON MIT-BIH ARRHYTHMIA DATABASE 

RECORDS, RESULTS ARE IN MILLISECONDS 

No. of analyzed 

record segments, 

with their length 

Parallel / 

sequential 

execution 

Number of included records 

1 12 48 

85 segments, each 

20 s 

parallel 116±30 357±14 1135±79 

sequential 103±14 393±15 1304±66 

18 segments, each 

90 s 

parallel 145±13 447±9 1506±23 

sequential 178±8 962±29 3372±13 

7 segments, each 

240 s 

parallel 200±17 890±43 2519±12 

sequential 266±16 1973±20 8002±42 

3 segments, each 

560 s 

parallel 315±7 1966±23 7858±204 

sequential 531±16 4268±117 17672±115 

2 segments, each 

840 s 

parallel 466±7 3556±49 14781±244 

sequential 766±29 6181±55 26395±223 

 

benefit from parallelization. The specifics of the platform 

mandated a practical solution to accelerate feature 

extraction. We have learned that, due to the nature of 

feature calculations, it is impractical to perform OpenCL 

based CPU and GPU parallelization on the level of 

individual feature calculation algorithms. In our 

experience, the best solution was to use Java 

multithreading and parallelize feature extraction based on 

available data, by examining multiple segments, signals 

and records at the same time. 

In the future, we plan to consider several venues for 

improvements. First, as mentioned, we would like to add 

the option to the backend subproject to communicate with 

multiple computers, each host containing an instance of 

the processing subproject, thus increasing the degree of 

parallelization. For some specific preprocessing 

algorithms for which parallelization was shown to be 

beneficial in literature [13], we also plan to add 

parallelization support using GPU. Another venue is to 

explore parallelization for some specific, yet 

unimplemented complex multivariate features, such as the 

one measuring synchronization between brain regions in 

an EEG [22]. 
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