
Using R with different types of databases: An
overview

A. Gužvanj*, Grigor Ćorić**, Marko Horvat and Sergej Lugović*
*Zagreb University of Applied Sciences, Department of Computer Science and Information Technology,

Zagreb, Croatia
**mStart, Zagreb, Croatia

slugovic@tvz.hr

Abstract - R is a working environment and computer
language used in statistical computing. It is widely used as a
tool in knowledge discovery and big data analytics as it
provides an environment in which different statistical
methods can be applied efficiently. As the size of analyzed
data grows different data sources may be added to enrich
statistical models and improve analysis quality. However,
with R there is no need to store those datasets into the
database. At the same time, R as environment support
different data structures that make design and development
of the information systems even more complex. R data
structures could be divided into two main categories,
homogeneous data such as atomic vector, matrix or array,
and heterogeneous such as list and data frame. Additionally,
we are witnesses to new trends in database design such as
NoSQL, New SQL, graph database, in memory data
storage, columnar and different application of SQL. Aim of
this paper is to give an overview of different databases types
in the context of R, covering concepts from navigational
databases, to rational and post relational databases and how
they are suited to host data for the purpose of access,
storage and manipulation by statistical procedures in R.

Keywords: R, Database, Big Data, Data Science, New SQL

I. INTRODUCTION
There is evidence of several different trends that are

having impact on information system design. The first
trend is evident in more and more data being collected as
the ratio between stored data and analyzed data decreases
[1]. Another trend is an increase of frequently used data
sources. This new situation imposes a question about
what data sources could be leveraged and what data
infrastructure is required to support data processing [2].
The third trend is a design of information systems being
built on one or more clouds [3]. Those trends are creating
new requirements for future information systems design
and adoption of existing ones. These requirements are
(based on [3]): i) use of machine learning and statistical
techniques to enable automatisation of data processing
scalability, ii) as the size of data and their sources
increase there is need to clean data using efficient
algorithms, iii) as more jobs depend on data there is a
need to design end user interfaces in a way that they are
able to perform data combining and analysis tasks
without using computer code, and iv) information
systems should be designed in a way that new data
sources can be incrementally integrated. To meet those

requirements information system designers have to look
for the database and data processing techniques that are
beyond data warehouse concepts. Some of the ideas
discussing these issues could be found in [5,6,7] just to
name a few. One of the possible direction in research is to
investigate the use of computer statistical languages, in
particular R, as a component in the design of information
systems. Overview of the potential use is presented in
Figure 1.

Fig. 1. Application of R in data processing procedures.

At the bottom tier of the scheme there are different
types of databases used by information system. They can
be internal or external. Directly above the databases there
is a layer responsible for filtering the data for further
analysis in terms of detecting anomaly. For example,
filters could be set up to automatically analyze the
number of returns (of goods sold), data collected that
represent the customer satisfaction with shop assistants
and the sentiments of the social media content relevant to
company brand. If anomalies are detected, relevant data
from different databases is “pushed” into the column-
oriented database systems for temporary analysis. This
system is connected with R server that manages access to
the data for further analysis by data scientists with R
clients based on data virtualization approach. From the R
server access to data can be given to numerous clients

MIPRO 2018/SSE 1663

and they may use different statistical techniques to
simultaneously analyze detected anomalies. Data
processing tasks can also be divided into smaller tasks
and run asynchronously on a single client. By using this
combined approach analysis time can be drastically
reduced and different insights into same datasets can be
concurrently generated. Datasets can be accessed by data
scientist that are the part of the organization and others
that are only temporarily employed. This could be useful
if analysis is domain specific and there is no inside
expertise in the organization. Except the above described
“push” process, “pull” process could be used so that data
scientists can access the data stored in different databases
and “pull” them through different layers (filter, columnar,
virtualization, R server) to their R clients’ statistical
environments. But to implement and apply the proposed
process there is a need to first understand R data
structures and how well they fit with different data
models and databases. This paper first elaborates R, its
data types and structures, following with the brief
overview of different types of databases. In the discussion
synthesis of those two in terms will be presented together
with outlined benefits and limitations in using R.

II. R
R is a working environment and computer language

used in statistical computing. It is a GNU package and is
available freely under GNU General Public Licence. It
was created at the University of Auckland (in New
Zealand). Its creators are Ross Ihaka and Robert
Gentleman. The initial work of the beforementioned two
authors appeared at Statlib as a binary copy of code in
August of 1993. Receiving a good feedback from peer
community (notably Martin Machler of ETH Zurich) the
initial source code of R has been made available under
Free Software Foundation's GNU general license in June
of 1995. From the early beginnings many members of
science community have been active in proposing
enhancement to the core source code, and bug fixes
through the established mailing list. All these efforts led
to establishment of larger „core group“ in 1997 whose
responsibility was to make changes to the source code of
R, in response to suggestions from community [8]. R has
been created as a successor to S programming language
(S was created by Jon Chambers) and was inspired by
functional programming language Scheme. Development
of R began by creating an interpreter for a subset of
Scheme. The interpreter supported initial mechanism for
symbol-table management and counted approximately
1000 lines of code written in C programming language
[8]. R, referred to as a system, is written primarily in C,
Fortran and R programming language. Even though there
are similarities between R and S, there have been made
some design time choices specific to R. The way memory
is allocated is that it is set to some constant size. It is
controlled with a built-in garbage collector resulting with
the heap not getting too spaced up. There are
substantially less paging issues in R design [8].

Another major difference in R implementation are
scoping rules. Functions can potentially reach variables

which were present in time when the functions were
being defined [8]. The syntax of R has some resemblance
with the syntax of the C programming language, even
though it has functional programming language semantics
[9] R is an interpreted language and is used widely by
statisticians for the purpose of data analysis.
A. R Data types and Data Structures

Everything in R is an object. To elaborate on that
statement, it is important to present main mechanisms in
R which are used for efficient data representation as well
as performing operations on supported data types. There
are Object types which are internal types implemented in
C. Another step was introducing vector structures which
are closely related to vectors. S3 classes present another
approach, that is objects which have no class definition,
but can have attributes. With S3 classes there is a one-
argument method dispatch. Formal (S4) classes have a
class definition and support generic functions. S3
approach lacks some flexibility and S4 approach to
programming is recommended [10].

Internally in C implementation of R language, all
objects are pointers to a structure of type SEXPREC. In R
looking at its low level implementation in the C
programming language objects are pointers. They point to
a structure of type SEXPREC. Also in C, SEXPTYPE is
used to represent various data types from R language [9].
Various data structures will be presented summarizing all
major types of objects in R, and later the main data
structures will be presented more thoroughly. Vectors are
one of the basic data types in R and can be thought as
contiguous structures holding data. R has six basic (also
referred to as 'atomic') vector types. These vector types
are: integer, real, complex, logical, string (or character)
and raw. Single numbers are vectors, and they have
vector length of one. Lists are another basic data type and
they can be thought of as 'generic vectors' meaning they
can contain different elements which and each of them
can be of a different type. In essence lists are vectors, but
it is important to differentiate between atomic vectors and
lists. Language objects are objects that are integral part of
R language. They can be divided into: symbol objects,
expression objects and function objects. There are also
special objects (NULL type), built-in objects, promise
objects (they are tightly coupled to lazy evaluation) [9].
These are not the only objects that exist but represent the
most crucial types in R. There are also special compound
objects: Factors and Data Frame objects. Factors are
implemented using an integer array and are used to
represent items that have a finite number of values. A
data frame is a list of factors, matrices, vectors. What is
common for them is that their length is identical [9].
General classification of R's data structures can also be
made based on dimensionality and homogeneity.
Homogenous data structures are atomic vector (one
dimensional), matrix (2 dimensional) and array (many
dimensional). Lists and data frames are heterogeneous
data structures with list being one dimensional, and data
frame being two dimensional [9]. Looking at the low-
level implementation of R most elements of the language
are internally represented by a special data structure. This

1664 MIPRO 2018/SSE

data structure is sometimes referred to as BLE (basic
language element) and is composed of five machine
words. The first element is a tag that contains information
about the type. The second word contains a pointer and
serves as a mean of associating attributes with an object.
According to the specific type of object the content of the
last three words can vary [8].

III. DATABASES

A database can be referred to as a collection of
dynamic data which provides persistency and integration.
It also provides operations to manipulate and access its
data. A database management system(DBMS)presents
languages and services which enable administrators and
users to efficiently work with the underlying database
[11]. When categorizing databases they are often
distinguished by the underlying data model. A data model
gives definition of the objects and operators enabling
interaction for end users. It presents an abstract, self-
contained definition. When talking about its
implementation we are referring to its implementation on
a physical machine. Knowing about implementation
details of the model is not mandatory from a user's
perspective, whereas knowing the data model is
mandatory [11].

Database model consists of three components: a set of
data structure types, a set of operators or inference rules
and a set of integrity rules [12]. It is important to mention
a well-known DBMS three-layer architecture consisted of
the conceptual layer, the physical layer and the external
layer. The physical layer is used for describing how data
is organized and stored on a physical storage media.
External layer presents data to the users, and the
conceptual layer is used for describing the total data
model [11] DBMS systems are being coordinated through
usage of the data definition language (DDL), data
manipulation language (DML) and data query. By
describing schemas in DDL language data model of the
DBMS is described [11]. When developing different data
models there is a set of criteria which have to be taken
into consideration. These are: the characteristics or
structure of the domain to be modeled, the type of
theoretical tools that are of interest to the expected users
and the hardware and software constraints [12]. Before
the introduction of relational data model two data models
existed. They were the hierarchical model and network
model. In the hierarchical data model, information is
organized as a collection of inverted trees of records. The
records contains fields and a field may contain simple
data value, or a pointer. It is interesting that the pointer
graph is not permitted to contain cycles [11].
Hierarchical databases could be explained, based on the
hierarchical data model. In terms of storing, accessing
and manipulating data represented in formal (S4) R
classes if there is need to express complex models,
hierarchical databases are impoverished in doing so, and
it is not always suitable to form a parent-child
relationship required to navigate in the database.
Navigation in hierarchical databases starts from the root

and continues in the opposite direction (from parents to
children) until the desired record is found. Searching
down the hierarchical tree is fast, but all other queries
require sequential search techniques. It is also important
to note that storing NULL values was implemented in
only few concrete database implementations [11] In the
network data model there are graphs of records. They can
be accessed via pointers. Many individual fields
constitute a record, and each field contains a simple value
[11]. Some network DBMS doesn't allow NULL values
which again limits the flexibility in storing certain objects
from the R language data model. For the network model
navigation in the database is implemented close to the
physical storage structures (through pointers and
indexes), implying that the network data model supports
only limited data independence. Inevitably as the data
model becomes more complex over time it is more
difficult to maintain a network database. While providing
more flexibility than hierarchical databases, network
databases are not fit for efficiently persisting varying and
changing data created by statistical computations. The
relational database model was proposed by Codd in
1970's and proposed separation between physical and
logical levels of the relational database, introducing them
as different abstraction levels in design [12]. The
relational data model finds its roots in relational algebra.
Relational data model organizes data in two dimensional
tables (relations). Every relation has a set of records
(tuples). Additionally, tuples contain fields. A relation
can be viewed as a truth predicate [11]. It defines
attributes which are part of the predicate. An attribute has
a name and a domain. Domains can be considered data
types [11]. Most relational database management systems
allow NULL values and that is accommodating the
storage of R's NULL objects. Relational databases
introduce a more logical view on data but it is also
important to stress out that from the perspective of
persisting R data structures it is often not desirable to
adhere to relational constraints imposed by relational data
model. In terms of efficient querying of the stored data it
is also important to differentiate between traditional row-
oriented database systems („row-stores“) and recent
column-oriented database systems („column-stores“). As
stated in [13]: “Column stores have been shown to
perform more than an order of magnitude better than
traditional row-oriented database systems on analytical
workloads”. An object-oriented data model is based on
concepts from object-oriented orientation. Objects are
closely related to classes which serve a blueprint for
object creation. Object orientated paradigm appeared as a
result of joined effort in mitigating advanced systems
[12]. It provides flexibility where each object has a
number of attributes which can be simple values,
complex values (a reference to another object due to
composition) or methods. According to object-oriented
database system manifesto, an OODBMS (object-
oriented database management system) must satisfy two
criteria, which are stating that an OODBMS must satisfy
all the features of a DBMS system and it should be an
object-oriented system. Implementing the second

MIPRO 2018/SSE 1665

criterion in OODBMS provides means for encapsulation,
complex objects, inheritance, polymorphism and
extensibility [14]. When evaluating benefits of object-
oriented databases in storing R data it is important to
point out that one of the key benefits in OODBMS is the
possibility of modelling complex data models and
extensibility via creation of new custom data types. These
kinds of databases are suitable for persisting complex
data structures from R's type system and since there is no
impedance mismatch (due to object nature of both the
object-oriented data model and R data structures). When
listing the downsides of using an object-oriented data
model, there are traditional setbacks in terms of no
standard mathematical foundation via relational algebra.
More importantly absence of a standard query language
and nested queries may present a problem in efficiently
accessing and manipulating persisted data in a
standardized way despite the ease of manipulation via
means of custom, more complex querying. There are
other specialized forms of DBMS data models which
emerged as a response to finding optimal ways of storing
and organizing semi-structured data, or data that mainly
depicts relationship between entities, or any other data for
which these data models facilitate better means of
database representation. The notion of graph database
models is conceptualized with respect to three basic
components. These components are basic data structures,
integrity constraints and a transformation language. A
graph database data model is a model where data is
modelled as a directed, labeled graph. Graph oriented
operations enable graph data manipulation. Type
constructors and integrity constraints are defined over
graph structures [12]. This text is referring to a full-
fledged property graph model with all the benefits it
introduces. A property graph is a directed multi graph. It
consists of set of vertices (nodes) and edges (arcs) They
are finite and mutable. [15]. The properties of vertices
and edges (attributes) are simple name value pairs. If
there is a need to uniquely identify a vertice, or an edge,
dedicated property could be used. The graph database
model gained a significant momentum in the early
nineties, but its significance decreased to other database
models being developed at that time (namely spatial and
semi-structured data models). Taking into consideration
flexibility and natural expressiveness of graph related
structures, graph databases have been used lately in
traditional business applications (where graph data
representation proves to be more efficient) and in newer
applications such as Social Media Analysis, Context
aware search and social asset management [15]. R data
structures which depict complex interconnections
between objects are suited for storing in graph databases
as they are suited for representing component
interconnectivity. Retrieving complex data can be also
significantly faster. Not all applications of statistical
analysis in R produce complex interconnected objects and
therefore suitability of using a graph database is limited
to storing a subset of complex data types in R.

Further there are NoSQL (also referred to as not only
SQL) databases which are supported by various data

models such as key/value or documents. It is important to
say that there is a distinction between traditional graph
data model (and graph databases) from NoSQL
underlying graph model. This text refers to graph
databases as a separate entity separating it from the
NoSQL class of databases. NoSQL databases as type of
distributed database systems gained momentum in 2000's
with the arrival of [16] applications that presented more
resource requirements. Initial shortcomings of scaling the
existing hardware infrastructure vertically and the
impracticality of sharding middleware led to design of
new distributed databases. This class of NoSQL
databases focuses on availability and performance
presenting eventual consistency of data [16]. This class of
databases is suited for scaling out, and lacks strong
transactional guarantees. As presented before they
introduce alternative data models such as key/value and
document [16] NoSQL databases try to solve three major
problems which are not adequately addressed in relational
databases [16]. These are growing data set size, growth of
connectivity (as information is getting more connected)
and semi-structurality of information which can be
presented with few mandatory, but many optional
attributes in the data model [17]. Considering the benefits
of NoSQL databases when storing R data structures, R
objects having few mandatory attributes which can
present a basic data type or reference another object, and
a handful of optional attributes which can be NULL, are
suitable for persisting in document-oriented types of
NoSQL class of databases. A major setback of using
document databases with R data structures arises in need
to write an additional code for handling inconsistent data
when large quantity of data is being retrieved. There are
also many applications that cannot give up strong
transactional and consistency requirements making.

There is also emergence of different kinds of
applications that are based on data stream processing.
Mostly they could be found in the area of sensor
generated data. Such data streams could be processed
using R language in two ways, inbound and outbound.
With inbound processing models of execution, possible
streams of data could be pushed and processed as they fly
by in memory, making reads and writes to traditional
storage optional [18]. The main difference between
inbound and outbound data processing is that former is
explaining situations when data is processed before
transaction and in the later model transaction appears first
and then data stream is processed. At the heart of
outbound processing is committing the transaction and
only then processing data. This approach presents latency
issues [18]. This „inbound processing“ model is
employed by a stream processing engine such as
StreamBas. There is also evidence in increase of the
popularity of a new breed of DBMS systems collectively
referred to as NewSQL DBMS that are also suitable for
storing and retrieving R data structures. New SQL
databases are modern databases that maintain ACID
guarantees for transactions, while offering scalability of
NoSQL databases for OLTP reads and writes [16]. Those
systems could be categorized according to their nature of

1666 MIPRO 2018/SSE

development and for the purpose of actual use. Main
categories proposed in are; new systems built from
scratch, middleware reimplementing the sharding
infrastructure developed from 2000s and database as a
service offerings based on new architectures [16].
Analyzing systems with a completely new architecture
there is a trend of storing the complete database in main
memory. Thus, these systems can get better performance
because traditional database components are simply left
out (such as a buffer pool) [16].

Another difference with NewSQL Systems is its
ability to move data from main memory to hard disc if
there is an increased demand for random access memory
[19]. These new types of databases are well suitable for
working with R data, as in main memory data processing
introduce large performance benefits. Being ACID
compliant, and supporting storage of vast quantities of
data due to increase in main memory price, they are
suitable for data-intensive, fast workloads. In some cases
there is a need to consolidate data from disperse data
sources in order to do statistical analysis in R. There are
technologies addressing this need enabling virtual
connections to remote database objects where only
metadata about remote sources is stored in virtual tables.
Unification of disconnected sources presents a new
approach in statistical analysis of data being present in
different external databases [19]. Cell stores is also one
among of new approaches in structuring a database
model. The cell store data model organizes data at the cell
level. Cells can be seen as atoms of data. Cell stores are
associated with dimension data and a big collection of
cell stores can be easily clustered, replicated or retrieved
efficiently. Cells can also be assembled into data cubes or
into spreadsheet views [20]. Structuring R data types into
the cell store data model allows storing highly
dimensional data.

IV. DISCUSSION
In Table 1 different types of databases (or streaming

engines) and their suitability to store R data structures (in
terms of key benefits and setbacks) are discussed.
Streaming data processing is not directly related to a
particular database but as more and more data from
sensors is collected, processing it «on the fly» before it is
stored in a database (or after transactions are executed)
deployment of R language in those procedures is of a
high importance.

TABLE I.
Properties of different database types in relation to R data

structures storage ability

V. CONCLUSION
We have described new trends influencing the design

of data processing information systems. The trends are: 1)
decreasing ratio between continuously collected and
analyzed data; 2) increasing number of available data
sources; 3) accelerated introduction of cloud and multi-
cloud information systems. These trends will have a
significant impact on the development of current and
future data mining systems. Knowledge discovery
research will also have to adapt to the new situation and
requirements from the IT industry. Incremental system
integration and intelligent user interfaces regulated by
information need will become a necessity [21] [22] [23].
The standard data warehouse paradigm will become
inadequate and new concepts for acquisition, integration
and analysis of heterogeneous data sources will have to
emerge. The most immediate and efficient solution is the
use of a standardized data model built on computer
statistical language R. We believe that the importance of

Database
types and
streaming
engines

R usage key benefits and deficiencies

Hierarchical Searching down the hierarchical tree is fast but
there is no possibility to store NULL values

Network Network databases are not fit for efficiently
persisting varying and changing data created by
statistical computations.

Relational Imposed data relations and constraints are not very
suitable for statistical computing because to be
able to perform different analysis, data models
should be easy to change. Column store database
types could help to overcome such limitations, as
data could be stored in one or few tables, making
them more suitable for statistical computing. They
also support storage of NULL values.

Object Object-oriented databases are beneficial for
processing R data as they give the possibility to
analyze and process complex data models and are
able to support data extensibility via provisioning
of new custom data types. The limitations of using
this type of database are that there is no standard
mathematical foundation via relational algebra and
there is an absence of standard query language.

NoSQL Analyzing data sets with few mandatory fields but
with a high velocity of additional attributes are the
main benefits of using NoSQL for the purpose of
storing and processing R data. The main setback is
manifested in the need to write a lot of additional
code for handling inconsistent data when a large
quantity of data is being retrieved.

New SQL Use memory to store data, utilize the opportunities
of cloud computing based on data virtualization
techniques and use different data sources stored in
different databases.

Cell Store and analyze highly dimensional data.
Streaming Reduce the amount of data before transaction

(inbound) and/or analyze data streams that are a
result of a high number of transactions. In both
cases, out of the large volume of data streams,
systems use only those parts that are relevant to
triggering a particular function (by using R scripts)
and that data is stored in a database system chosen
by a designer.

MIPRO 2018/SSE 1667

R in the design of information processing systems will
continue to grow.

VI. REFERENCES

[1] J.Gantz and D. Reinsel, “The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east,“ IDC
iView: IDC Analyze the future, pp. 1–16, 2012.

[2] A. Abbasi, S. Sarker, and R. H. Chiang, “Big data research in
information systems: Toward an inclusive research agenda,”
Journal of the Association for Information Systems, vol. 17(2),
2016.

[3] I. A. T. Hashem, I.Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of “big data” on cloud computing: Review
and open research issues,” Information Systems, vol. 47, pp. 98–
115, 2015.

[4] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M.
Cherniack, S. Zdonik, A. Pagan, and S. Xu, “Data Curation at
Scale: The Data Tamer System,” In CIDR, 2013.

[5] M. Golfarelli, S. Rizziand, and I. Cella, “Beyond data
warehousing: what's next in business intelligence?,”
In Proceedings of the 7th ACM international workshop on Data
warehousing and OLAP , pp. 1–6, 2004.

[6] S. Rizzi, A. Abelló, J. Lechtenbörger, and J. Trujillo, “Research in
data warehouse modeling and design: dead or alive?,”
In Proceedings of the 9th ACM international workshop on Data
warehousing and OLAP, pp. 3–10, 2006.

[7] L. H. R. M. B. Niswonger, P. M. Roth, Schwarz and E. L.
Wimmers, “Transforming heterogeneous data with database
middleware: Beyond integration,” Data Engineering, vol. 31,
1999.

[8] R. Ihaka, “R: Past and future history,” In Dimension Reduction,
Computational Complexity and Information: Proceedings of the
30th Symposium on the Interface, Minneapolis, Minnesota, pp.
13–16, 1998; Computing Science and Statistics, vol. 30; Interface
Foundation of North America, pp 392– 396, 1998.

[9] R. C. Team, “R language definition,” Vienna, Austria: R
foundation for statistical computing, 2000.	

[10] J. Chambers, “Software for data analysis: programming with R,”
Springer Science & Business Media, 2008.

[11] L Bergholt, J. S. Due, T. H. Daimi, J. L. Knudsen, K. H.Nielsen,
T. S. Olesen, and E. H. Pedersen, “Database management systems:
relational, object-relational, and object-oriented data models,”
1998.

[12] R.Angles and C. Gutierrez, “Survey of graph database models,”
ACM Computing Surveys 40, 1, pp. 1–39, 2008.

[13] D. J. Abadi, S. R. Madden and N. Hachem, “Column-stores vs.
row-stores: how different are they really?,” In Proceedings of the
2008 ACM SIGMOD international conference on Management of
data, pp. 967–980, 2008.	

[14] H.Alzahrani, “Evolution of Object-Oriented Database Systems,”
Global Journal of Computer Science and Technology, 2016.

[15] M. Rudolf, M. Paradies, C. Bornhövd, and W. Lehner, “The Graph
Story of the SAP HANA Database,” In BTW, vol. 13, pp. 403–
420, 2013.

[16] A. Pavlo and M. Aslett, “What's really new with NewSQL?,”
ACM Sigmod Record, vol. 45(2), pp. 45–55, 2016.

[17] C. J.Tauro, S.Aravindh and A.B. Shreeharsha, “Comparative
study of the new generation, agile, scalable, high performance
NOSQL databases,” International Journal of Computer
Applications, vol. 48(20), pp. 1–4, 2012.	

[18] M. Stonebraker and U. Cetintemel, “"One size fits all": an idea
whose time has come and gone,” In Data Engineering, 2005.
ICDE 2005. Proceedings. 21st International Conference on, pp. 2–
11, 2005.

[19] A. Pattanayak, “Data Virtualization with SAP HANA Smart Data
Access,” Journal of Computer and Communications, 5(08), 62,
2017.

[20] G. Fourny, “Cell Stores,” arXiv preprint arXiv:1410.0600, 2014	

[21] S.Lugović, I. Dunđer and M. Horvat, “Primary and secondary
experience in developing adaptive information systems supporting
knowledge transfer,” In Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2017
40th International Convention on, pp. 1207–1210, 2017.

[22] S., Lugović, I., Dunđer, and M. Horvat, “Secondary Experience of
an Information System Enabling Scientific Communication,” In
Proceedigs of the 1st International Communication Management
Forum (CMF2015), pp. 562–587, 2015.

[23] S., Lugović, I., Dunđer, and M. Horvat, “Patterns-based
information systems organization,” In Proceedings of the 5th
International Conference: The Future of Information Sciences
(INFuture), pp. 163–174, 2015.

1668 MIPRO 2018/SSE

