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Abstract - R is a working environment and computer 
language used in statistical computing. It is widely used as a 
tool in knowledge discovery and big data analytics as it 
provides an environment in which different statistical 
methods can be applied efficiently. As the size of analyzed 
data grows different data sources may be added to enrich 
statistical models and improve analysis quality. However, 
with R there is no need to store those datasets into the 
database. At the same time, R as environment support 
different data structures that make design and development 
of the information systems even more complex. R data 
structures could be divided into two main categories, 
homogeneous data such as atomic vector, matrix or array, 
and heterogeneous such as list and data frame. Additionally, 
we are witnesses to new trends in database design such as 
NoSQL, New SQL, graph database, in memory data 
storage, columnar and different application of SQL. Aim of 
this paper is to give an overview of different databases types 
in the context of R, covering concepts from navigational 
databases, to rational and post relational databases and how 
they are suited to host data for the purpose of access, 
storage and manipulation by statistical procedures in R. 
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I. INTRODUCTION 
There is evidence of several different trends that are 

having impact on information system design. The first 
trend is evident in more and more data being collected as 
the ratio between stored data and analyzed data decreases 
[1]. Another trend is an increase of frequently used data 
sources. This new situation imposes a question about 
what data sources could be leveraged and what data 
infrastructure is required to support data processing [2]. 
The third trend is a design of information systems being 
built on one or more clouds [3]. Those trends are creating 
new requirements for future information systems design 
and adoption of existing ones. These requirements are 
(based on [3]): i) use of machine learning and statistical 
techniques to enable automatisation of data processing 
scalability, ii) as the size of data and their sources 
increase there is need to clean data using efficient 
algorithms, iii) as more jobs depend on data there is a 
need to design end user interfaces in a way that they are 
able to perform data combining and analysis tasks 
without using computer code, and iv) information 
systems should be designed in a way that new data 
sources can be incrementally integrated. To meet those 

requirements information system designers have to look 
for the database and data processing techniques that are 
beyond data warehouse concepts. Some of the ideas 
discussing these issues could be found in [5,6,7] just to 
name a few. One of the possible direction in research is to 
investigate the use of computer statistical languages, in 
particular R, as a component in the design of information 
systems. Overview of the potential use is presented in 
Figure 1.  

 

 
 

Fig. 1. Application of R in data processing procedures. 
 

At the bottom tier of the scheme there are different 
types of databases used by information system. They can 
be internal or external. Directly above the databases there 
is a layer responsible for filtering the data for further 
analysis in terms of detecting anomaly. For example, 
filters could be set up to automatically analyze the 
number of returns (of goods sold), data collected that 
represent the customer satisfaction with shop assistants 
and the sentiments of the social media content relevant to 
company brand. If anomalies are detected, relevant data 
from different databases is “pushed” into the column-
oriented database systems for temporary analysis. This 
system is connected with R server that manages access to 
the data for further analysis by data scientists with R 
clients based on data virtualization approach. From the R 
server access to data can be given to numerous clients 
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and they may use different statistical techniques to 
simultaneously analyze detected anomalies. Data 
processing tasks can also be divided into smaller tasks 
and run asynchronously on a single client. By using this 
combined approach analysis time can be drastically 
reduced and different insights into same datasets can be 
concurrently generated. Datasets can be accessed by data 
scientist that are the part of the organization and others 
that are only temporarily employed. This could be useful 
if analysis is domain specific and there is no inside 
expertise in the organization. Except the above described 
“push” process, “pull” process could be used so that data 
scientists can access the data stored in different databases 
and “pull” them through different layers (filter, columnar, 
virtualization, R server) to their R clients’ statistical 
environments. But to implement and apply the proposed 
process there is a need to first understand R data 
structures and how well they fit with different data 
models and databases. This paper first elaborates R, its 
data types and structures, following with the brief 
overview of different types of databases. In the discussion 
synthesis of those two in terms will be presented together 
with outlined benefits and limitations in using R.  

II. R 
R is a working environment and computer language 

used in statistical computing. It is a GNU package and is 
available freely under GNU General Public Licence. It 
was created at the University of Auckland (in New 
Zealand). Its creators are Ross Ihaka and Robert 
Gentleman. The initial work of the beforementioned two 
authors appeared at Statlib as a binary copy of code in 
August of 1993. Receiving a good feedback from peer 
community (notably Martin Machler of ETH Zurich) the 
initial source code of R has been made available under 
Free Software Foundation's GNU general license in June 
of 1995. From the early beginnings many members of 
science community have been active in proposing 
enhancement to the core source code, and bug fixes 
through the established mailing list. All these efforts led 
to establishment of larger „core group“ in 1997 whose 
responsibility was to make changes to the source code of 
R, in response to suggestions from community [8]. R has 
been created as a successor to S programming language 
(S was created by Jon Chambers) and was inspired by 
functional programming language Scheme. Development 
of R began by creating an interpreter for a subset of 
Scheme. The interpreter supported initial mechanism for 
symbol-table management and counted approximately 
1000 lines of code written in C programming language 
[8]. R, referred to as a system, is written primarily in C, 
Fortran and R programming language. Even though there 
are similarities between R and S, there have been made 
some design time choices specific to R. The way memory 
is allocated is that it is set to some constant size. It is 
controlled with a built-in garbage collector resulting with 
the heap not getting too spaced up. There are 
substantially less paging issues in R design [8].  

Another major difference in R implementation are 
scoping rules. Functions can potentially reach variables 

which were present in time when the functions were 
being defined [8]. The syntax of R has some resemblance 
with the syntax of the C programming language, even 
though it has functional programming language semantics 
[9] R is an interpreted language and is used widely by 
statisticians for the purpose of data analysis.  
A. R Data types and Data Structures 

Everything in R is an object. To elaborate on that 
statement, it is important to present main mechanisms in 
R which are used for efficient data representation as well 
as performing operations on supported data types. There 
are Object types which are internal types implemented in 
C. Another step was introducing vector structures which 
are closely related to vectors. S3 classes present another 
approach, that is objects which have no class definition, 
but can have attributes. With S3 classes there is a one-
argument method dispatch. Formal (S4) classes have a 
class definition and support generic functions. S3 
approach lacks some flexibility and S4 approach to 
programming is recommended [10]. 

Internally in C implementation of R language, all 
objects are pointers to a structure of type SEXPREC. In R 
looking at its low level implementation in the C 
programming language objects are pointers. They point to 
a structure of type SEXPREC. Also in C, SEXPTYPE is 
used to represent various data types from R language [9]. 
Various data structures will be presented summarizing all 
major types of objects in R, and later the main data 
structures will be presented more thoroughly. Vectors are 
one of the basic data types in R and can be thought as 
contiguous structures holding data. R has six basic (also 
referred to as 'atomic') vector types. These vector types 
are:  integer, real, complex, logical, string (or character) 
and raw. Single numbers are vectors, and they have 
vector length of one. Lists are another basic data type and 
they can be thought of as 'generic vectors' meaning they 
can contain different elements which and each of them 
can be of a different type. In essence lists are vectors, but 
it is important to differentiate between atomic vectors and 
lists. Language objects are objects that are integral part of 
R language. They can be divided into: symbol objects, 
expression objects and function objects. There are also 
special objects (NULL type), built-in objects, promise 
objects (they are tightly coupled to lazy evaluation) [9]. 
These are not the only objects that exist but represent the 
most crucial types in R. There are also special compound 
objects: Factors and Data Frame objects. Factors are 
implemented using an integer array and are used to 
represent items that have a finite number of values. A 
data frame is a list of factors, matrices, vectors. What is 
common for them is that their length is identical [9]. 
General classification of R's data structures can also be 
made based on dimensionality and homogeneity. 
Homogenous data structures are atomic vector (one 
dimensional), matrix (2 dimensional) and array (many 
dimensional). Lists and data frames are heterogeneous 
data structures with list being one dimensional, and data 
frame being two dimensional [9]. Looking at the low-
level implementation of R most elements of the language 
are internally represented by a special data structure. This 
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data structure is sometimes referred to as BLE (basic 
language element) and is composed of five machine 
words. The first element is a tag that contains information 
about the type. The second word contains a pointer and 
serves as a mean of associating attributes with an object. 
According to the specific type of object the content of the 
last three words can vary [8].  

III. DATABASES 
 

A database can be referred to as a collection of 
dynamic data which provides persistency and integration. 
It also provides operations to manipulate and access its 
data. A database management system(DBMS)presents 
languages and services which enable administrators and 
users to efficiently work with the underlying database 
[11]. When categorizing databases they are often 
distinguished by the underlying data model. A data model 
gives definition of the objects and operators enabling 
interaction for end users. It presents an abstract, self-
contained definition. When talking about its 
implementation we are referring to its implementation on 
a physical machine. Knowing about implementation 
details of the model is not mandatory from a user's 
perspective, whereas knowing the data model is 
mandatory [11]. 

Database model consists of three components: a set of 
data structure types, a set of operators or inference rules 
and a set of integrity rules [12]. It is important to mention 
a well-known DBMS three-layer architecture consisted of 
the conceptual layer, the physical layer and the external 
layer. The physical layer is used for describing how data 
is organized and stored on a physical storage media. 
External layer presents data to the users, and the 
conceptual layer is used for describing the total data 
model [11] DBMS systems are being coordinated through 
usage of the data definition language (DDL), data 
manipulation language (DML) and data query. By 
describing schemas in DDL language data model of the 
DBMS is described [11]. When developing different data 
models there is a set of criteria which have to be taken 
into consideration. These are: the characteristics or 
structure of the domain to be modeled, the type of 
theoretical tools that are of interest to the expected users 
and the hardware and software constraints [12].  Before 
the introduction of relational data model two data models 
existed. They were the hierarchical model and network 
model. In the hierarchical data model, information is 
organized as a collection of inverted trees of records. The 
records contains fields and a field may contain simple 
data value, or a pointer. It is interesting that the pointer 
graph is not permitted to contain cycles [11].  
Hierarchical databases could be explained, based on the 
hierarchical data model. In terms of storing, accessing 
and manipulating data represented in formal (S4) R 
classes if there is need to express complex models, 
hierarchical databases are impoverished in doing so, and 
it is not always suitable to form a parent-child 
relationship required to navigate in the database. 
Navigation in hierarchical databases starts from the root 

and continues in the opposite direction (from parents to 
children) until the desired record is found. Searching 
down the hierarchical tree is fast, but all other queries 
require sequential search techniques. It is also important 
to note that storing NULL values was implemented in 
only few concrete database implementations [11] In the 
network data model there are graphs of records. They can 
be accessed via pointers. Many individual fields 
constitute a record, and each field contains a simple value 
[11]. Some network DBMS doesn't allow NULL values 
which again limits the flexibility in storing certain objects 
from the R language data model. For the network model 
navigation in the database is implemented close to the 
physical storage structures (through pointers and 
indexes), implying that the network data model supports 
only limited data independence. Inevitably as the data 
model becomes more complex over time it is more 
difficult to maintain a network database. While providing 
more flexibility than hierarchical databases, network 
databases are not fit for efficiently persisting varying and 
changing data created by statistical computations. The 
relational database model was proposed by Codd in 
1970's and proposed separation between physical and 
logical levels of the relational database, introducing them 
as different abstraction levels in design [12]. The 
relational data model finds its roots in relational algebra. 
Relational data model organizes data in two dimensional 
tables (relations). Every relation has a set of records 
(tuples). Additionally, tuples contain fields. A relation 
can be viewed as a truth predicate [11]. It defines 
attributes which are part of the predicate. An attribute has 
a name and a domain. Domains can be considered data 
types [11]. Most relational database management systems 
allow NULL values and that is accommodating the 
storage of R's NULL objects. Relational databases 
introduce a more logical view on data but it is also 
important to stress out that from the perspective of 
persisting R data structures it is often not desirable to 
adhere to relational constraints imposed by relational data 
model. In terms of efficient querying of the stored data it 
is also important to differentiate between traditional row-
oriented database systems („row-stores“) and recent 
column-oriented database systems („column-stores“). As 
stated in [13]: “Column stores have been shown to 
perform more than an order of magnitude better than 
traditional row-oriented database systems on analytical 
workloads”. An object-oriented data model is based on 
concepts from object-oriented orientation. Objects are 
closely related to classes which serve a blueprint for 
object creation. Object orientated paradigm appeared as a 
result of joined effort in mitigating advanced systems 
[12]. It provides flexibility where each object has a 
number of attributes which can be simple values, 
complex values (a reference to another object due to 
composition) or methods. According to object-oriented 
database system manifesto, an OODBMS (object-
oriented database management system) must satisfy two 
criteria, which are stating that an OODBMS must satisfy 
all the features of a DBMS system and it should be an 
object-oriented system. Implementing the second 
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criterion in OODBMS provides means for encapsulation, 
complex objects, inheritance, polymorphism and 
extensibility [14]. When evaluating benefits of object-
oriented databases in storing R data it is important to 
point out that one of the key benefits in OODBMS is the 
possibility of modelling complex data models and 
extensibility via creation of new custom data types. These 
kinds of databases are suitable for persisting complex 
data structures from R's type system and since there is no 
impedance mismatch (due to object nature of both the 
object-oriented data model and R data structures). When 
listing the downsides of using an object-oriented data 
model, there are traditional setbacks in terms of no 
standard mathematical foundation via relational algebra. 
More importantly absence of a standard query language 
and nested queries may present a problem in efficiently 
accessing and manipulating persisted data in a 
standardized way despite the ease of manipulation via 
means of custom, more complex querying. There are 
other specialized forms of DBMS data models which 
emerged as a response to finding optimal ways of storing 
and organizing semi-structured data, or data that mainly 
depicts relationship between entities, or any other data for 
which these data models facilitate better means of 
database representation. The notion of graph database 
models is conceptualized with respect to three basic 
components. These components are basic data structures, 
integrity constraints and a transformation language. A 
graph database data model is a model where data is 
modelled as a directed, labeled graph. Graph oriented 
operations enable graph data manipulation. Type 
constructors and integrity constraints are defined over 
graph structures [12]. This text is referring to a full-
fledged property graph model with all the benefits it 
introduces. A property graph is a directed multi graph. It 
consists of set of vertices (nodes) and edges (arcs) They 
are finite and mutable. [15]. The properties of vertices 
and edges (attributes) are simple name value pairs. If 
there is a need to uniquely identify a vertice, or an edge, 
dedicated property could be used. The graph database 
model gained a significant momentum in the early 
nineties, but its significance decreased to other database 
models being developed at that time (namely spatial and 
semi-structured data models). Taking into consideration 
flexibility and natural expressiveness of graph related 
structures, graph databases have been used lately in 
traditional business applications (where graph data 
representation proves to be more efficient) and in newer 
applications such as Social Media Analysis, Context 
aware search and social asset management [15]. R data 
structures which depict complex interconnections 
between objects are suited for storing in graph databases 
as they are suited for representing component 
interconnectivity. Retrieving complex data can be also 
significantly faster. Not all applications of statistical 
analysis in R produce complex interconnected objects and 
therefore suitability of using a graph database is limited 
to storing a subset of complex data types in R. 

Further there are NoSQL (also referred to as not only 
SQL) databases which are supported by various data 

models such as key/value or documents. It is important to 
say that there is a distinction between traditional graph 
data model (and graph databases) from NoSQL 
underlying graph model. This text refers to graph 
databases as a separate entity separating it from the 
NoSQL class of databases. NoSQL databases as type of 
distributed database systems gained momentum in 2000's 
with the arrival of [16] applications that presented more 
resource requirements. Initial shortcomings of scaling the 
existing hardware infrastructure vertically and the 
impracticality of sharding middleware led to design of 
new distributed databases. This class of NoSQL 
databases focuses on availability and performance 
presenting eventual consistency of data [16]. This class of 
databases is suited for scaling out, and lacks strong 
transactional guarantees. As presented before they 
introduce alternative data models such as key/value and 
document [16] NoSQL databases try to solve three major 
problems which are not adequately addressed in relational 
databases [16]. These are growing data set size, growth of 
connectivity (as information is getting more connected) 
and semi-structurality of information which can be 
presented with few mandatory, but many optional 
attributes in the data model [17]. Considering the benefits 
of NoSQL databases when storing R data structures, R 
objects having few mandatory attributes which can 
present a basic data type or reference another object, and 
a handful of optional attributes which can be NULL, are 
suitable for persisting in document-oriented types of 
NoSQL class of databases. A major setback of using 
document databases with R data structures arises in need 
to write an additional code for handling inconsistent data 
when large quantity of data is being retrieved. There are 
also many applications that cannot give up strong 
transactional and consistency requirements making. 

There is also emergence of different kinds of 
applications that are based on data stream processing. 
Mostly they could be found in the area of sensor 
generated data. Such data streams could be processed 
using R language in two ways, inbound and outbound. 
With inbound processing models of execution, possible 
streams of data could be pushed and processed as they fly 
by in memory, making reads and writes to traditional 
storage optional [18]. The main difference between 
inbound and outbound data processing is that former is 
explaining situations when data is processed before 
transaction and in the later model transaction appears first 
and then data stream is processed. At the heart of 
outbound processing is committing the transaction and 
only then processing data. This approach presents latency 
issues [18]. This „inbound processing“ model is 
employed by a stream processing engine such as 
StreamBas. There is also evidence in increase of the 
popularity of a new breed of DBMS systems collectively 
referred to as NewSQL DBMS that are also suitable for 
storing and retrieving R data structures. New SQL 
databases are modern databases that maintain ACID 
guarantees for transactions, while offering scalability of 
NoSQL databases for OLTP reads and writes [16]. Those 
systems could be categorized according to their nature of 
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development and for the purpose of actual use. Main 
categories proposed in are; new systems built from 
scratch, middleware reimplementing the sharding 
infrastructure developed from 2000s and database as a 
service offerings based on new architectures [16]. 
Analyzing systems with a completely new architecture 
there is a trend of storing the complete database in main 
memory. Thus, these systems can get better performance 
because traditional database components are simply left 
out (such as a buffer pool) [16]. 

Another difference with NewSQL Systems is its 
ability to move data from main memory to hard disc if 
there is an increased demand for random access memory 
[19]. These new types of databases are well suitable for 
working with R data, as in main memory data processing 
introduce large performance benefits. Being ACID 
compliant, and supporting storage of vast quantities of 
data due to increase in main memory price, they are 
suitable for data-intensive, fast workloads. In some cases 
there is a need to consolidate data from disperse data 
sources in order to do statistical analysis in R. There are 
technologies addressing this need enabling virtual 
connections to remote database objects where only 
metadata about remote sources is stored in virtual tables. 
Unification of disconnected sources presents a new 
approach in statistical analysis of data being present in 
different external databases [19]. Cell stores is also one 
among of new approaches in structuring a database 
model. The cell store data model organizes data at the cell 
level. Cells can be seen as atoms of data. Cell stores are 
associated with dimension data and a big collection of 
cell stores can be easily clustered, replicated or retrieved 
efficiently. Cells can also be assembled into data cubes or 
into spreadsheet views [20]. Structuring R data types into 
the cell store data model allows storing highly 
dimensional data. 

IV. DISCUSSION 
In Table 1 different types of databases (or streaming 

engines) and their suitability to store R data structures (in 
terms of key benefits and setbacks) are discussed. 
Streaming data processing is not directly related to a 
particular database but as more and more data from 
sensors is collected, processing it «on the fly» before it is 
stored in a database (or after transactions are executed) 
deployment of R language in those procedures is of a 
high importance. 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I. 
Properties of different database types in relation to R data 

structures storage ability 

V. CONCLUSION 
We have described new trends influencing the design 

of data processing information systems. The trends are: 1) 
decreasing ratio between continuously collected and 
analyzed data; 2) increasing number of available data 
sources; 3) accelerated introduction of cloud and multi-
cloud information systems. These trends will have a 
significant impact on the development of current and 
future data mining systems. Knowledge discovery 
research will also have to adapt to the new situation and 
requirements from the IT industry. Incremental system 
integration and intelligent user interfaces regulated by 
information need will become a necessity [21] [22] [23]. 
The standard data warehouse paradigm will become 
inadequate and new concepts for acquisition, integration 
and analysis of heterogeneous data sources will have to 
emerge. The most immediate and efficient solution is the 
use of a standardized data model built on computer 
statistical language R. We believe that the importance of 

Database 
types and 
streaming 
engines 

R usage key benefits and deficiencies 

Hierarchical Searching down the hierarchical tree is fast but 
there is no possibility to store NULL values   

Network Network databases are not fit for efficiently 
persisting varying and changing data created by 
statistical computations. 

Relational Imposed data relations and constraints are not very 
suitable for statistical computing because to be 
able to perform different analysis, data models 
should be easy to change. Column store database 
types could help to overcome such limitations, as 
data could be stored in one or few tables, making 
them more suitable for statistical computing. They 
also support storage of NULL values. 

Object Object-oriented databases are beneficial for 
processing R data as they give the possibility to 
analyze and process complex data models and are 
able to support data extensibility via provisioning 
of new custom data types. The limitations of using 
this type of database are that there is no standard 
mathematical foundation via relational algebra and 
there is an absence of standard query language. 

NoSQL Analyzing data sets with few mandatory fields but 
with a high velocity of additional attributes are the 
main benefits of using NoSQL for the purpose of 
storing and processing R data. The main setback is 
manifested in the need to write a lot of additional 
code for handling inconsistent data when a large 
quantity of data is being retrieved. 

New SQL Use memory to store data, utilize the opportunities 
of cloud computing based on data virtualization 
techniques and use different data sources stored in 
different databases. 

Cell Store and analyze highly dimensional data. 
Streaming Reduce the amount of data before transaction 

(inbound) and/or analyze data streams that are a 
result of a high number of transactions. In both 
cases, out of the large volume of data streams, 
systems use only those parts that are relevant to 
triggering a particular function (by using R scripts) 
and that data is stored in a database system chosen 
by a designer. 
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R in the design of information processing systems will 
continue to grow. 
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