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Abstract. An approach is proposed for underdetermined blind separation of
nonnegative dependent (overlapped) sources from their nonlinear mixtures. The
method performs empirical kernel maps based mappings of original data matrix
onto reproducible kernel Hilbert spaces (RKHSs). Provided that sources comply
with probabilistic model that is sparse in support and amplitude nonlinear
underdetermined mixture model in the input space becomes overdetermined
linear mixture model in RKHS comprised of original sources and their mostly
second-order monomials. It is assumed that linear mixture models in different
RKHSs share the same representation, i.e. the matrix of sources. Thus, we
propose novel sparseness regularized joint nonnegative matrix factorization
method to separate sources shared across different RKHSs. The method is
validated comparatively on numerical problem related to extraction of eight
overlapped sources from three nonlinear mixtures.
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1 Introduction

Blind source separation (BSS) refers to extraction of source signals from observed
mixture signals only [1]. When the sources and mixing matrix are nonnegative algo-
rithms of nonnegative matrix factorization (NMF) are shown to be effective solving the
BSS problem [2–4]. In particular, when nonnegativity is combined with sparseness
underdetermined BSS problems, characterized with more sources than mixtures avail-
able, can be solved [5, 6]. That, as an example, is relevant to mass spectrometry [7] or
nuclear magnetic resonance (NMR) spectroscopy [8] based metabolic profiling where
large number of sources (a.k.a. pure components or analytes) needs to be separated from
the small number of available mixture spectra [7]. However, in a large number of cases
algorithms for BSS address separation of sources from their linear mixtures. As opposed
to them the number of methods that address the nonlinear BSS problem is rather small,
see chapter 14 in [1]. Thus, we propose a method for separation of nonnegative mutually
dependent (overlapped) but individually independent and identically distributed (i.i.d.)
sources from smaller number of their nonlinear mixtures. Compared with proposed
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method existing methods either: (i) address determined case, where the number of
sources equals the number of mixtures [9–18]; (ii) do not take into account nonnega-
tivity constraint [9–21]; (iii) assume that sources [10–12, 15–17, 19–22] or their
derivatives [18] are statistically independent or that sources are individually correlated
[16, 19–21]. In particular, we map data matrix from the input space onto reproducible
kernel Hilbert spaces (RKHSs) by means of empirical kernel maps (EKM) [23]. We treat
mapped data as they are coming from different views and propose a linear mixture
model (LMM)-based representation such that all models have different mixing matrices
but share the same source (representation) matrix. Thus, we propose an algorithm for
joint NMF such that LMMs of mixture data mapped in multiple RKHSs share the same
source matrix. That is different from joint NMF approach to multi-view clustering [24],
where LMMs comprised of view dependent mixing and source matrices are assumed
such that source matrices are forced to converge towards common consensus. We
introduce nonlinear BSS problem in Sect. 2. Section 3 presents new joint NMF-based
approach to nonlinear underdetermined BSS problem. Results of comparative perfor-
mance analysis on numerical problem are presented in Sect. 4. Section 5 concludes the
paper.

2 Problem Formulation

Nonlinear BSS problem with nonnegative dependent sources is formulated as:

X ¼ f Sð Þ þ E ð1Þ

whereX 2 R
N�T
0þ stands for nonnegativematrix ofNnonlinearmixtures atTobservations,

S 2 R
M�T
0þ stands for matrix ofM unknown nonnegative sources, f : RM

0þ ! R
N
0þ stands

for unknown nonlinear mapping f :¼ f1 Sð Þ. . .fN Sð Þ½ �T acting observation-wise,
E 2 R

N�T
0þ stands for an error term andR0þ stands for the set of real nonnegative numbers.

The symbol “:=” means “by definition”. We also assume that st 2 R
N�1
0þ

�� ��
0 �K

n oT

t¼1
,

where stk k0 is indicator function that counts number of non-zero entries of st and K
denotes maximal number of sources that can be present (active) at any observation

coordinate t. The nonlinear BSSproblem implies that sources sm 2 R
1�T
0þ

� �M
m¼1 have to be

inferred from the mixture data matrix X only. Herein, we impose assumptions on the
sources and nonlinear mixture model (1):

(A1) 0� smt � 1 8m ¼ 1; . . .; M and 8t ¼ 1; . . .; T ;
(A2) Amplitude smt is i.i.d. random variable that obeys exponential distribution on (0, 1]

interval and discrete distribution at zero, see Eq. (2),

(A3) Components of the vector-valued function f(S): fn Sð Þ : RM�T
0þ ! R

1�T
0þ

� �N
n¼1 are

differentiable up to second-order,
(A4) M > N.

Assumptions A1 to A4 are shown in [7] to be relevant for separation of pure
components from nonlinear mixtures of mass spectra. They are expected to hold for
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separation of pure components from amplitude NMR spectra as well [8]. To be useful
solution of any BSS problem is expected to be essentially unique [1]. However, even
for linear underdetermined BSS problem hard (sparseness) constraints ought to be
imposed on sources [7, 25] to obtain essentially unique solution. The quality of sep-
aration heavily depends on degree of sparseness, i.e. the value of K. To make nonlinear
underdetermined BSS problem tractable we assume, as in [27], that amplitudes of the
source signals comply with sparse probabilistic model [25, 26]:

pðsmtÞ ¼ qmd smtð Þþ 1� qmð Þd� smtð Þg smtð Þ 8m ¼ 1; . . .;M and 8t ¼ 1; . . .T ð2Þ

where d smtð Þ is an indicator function and d� smtð Þ ¼ 1� d smtð Þ is its complementary
function, qm ¼ P smt ¼ 0ð Þf gTt¼1. Thus, P smt [ 0ð Þ ¼ 1� qmf gTt¼1. The nonzero state of
smt is distributed according to probability density function g smtð Þ. Exponential distribu-
tion g smtð Þ ¼ ð1=lmÞexpð�smt=lmÞ is selected in which case the most probable outcome
is equal to lm. To emphasize practical relevance of probabilistic model (2) we point out
[7]. Another modality to which model (2) can be relevant is NMR spectroscopy [8]. It has
been verified in [7] that mass spectra of pure components obey (2) with exponential
distribution selected for g smtð Þ. Thereby q̂m 2 0:27; 0:74½ � and l̂m 2 0:0012; 0:0014½ �.
Under such priors the nonlinear mixture model (1) simplifies to [27]:

X ¼ JS þ 1
2
H 1ð Þ

s21
. . .
s2M
. . .
sisj
� �M

i;j¼1

2
66664

3
77775 þ HOT ¼ B

S
s21
. . .
s2M
. . .
sisj
� �M

i;j¼1

2
6666664

3
7777775
þ HOT ð3Þ

where J stands for Jacobian matrix, H(1) stands for mode-1 unfolded third-order
Hessian tensor, B ¼ J 1

2 H 1ð Þ
� �

stands for the overall mixing matrix and HOT stands
for higher order terms. Since original nonlinear problem (1) is underdetermined the
equivalent linear problem (3) is even more underdetermined because it is comprised of
the same number of mixtures, N, but of the P ¼ 2MþM M � 1Þ=2ð Þ dependent
sources. When degree of the overlap of the sources in (1) is K degree of the overlap of
new sources in (3) is Q � 2K þK K � 1ð Þ=2. Uniqueness of the solution of (3)
depends on the triplet (N, P, Q). For deterministic mixing matrix B the necessary
condition for uniqueness is N = O(Q2) [28]. Thus, it becomes virtually impossible to
obtain an essentially unique solution of the underdetermined nonlinear BSS problem
(1) with overlapped sources. Separation quality can, however, be increased through

nonlinear mapping of mixture data xt 2 R
N�1
0þ ! / xtð Þ 2 R

�N�1
0þ

n oT

t¼1
where explicit

feature map (EFM) / xtð Þ maps data into, in principle, infinite dimensional feature
space. To make calculations in mapped space computationally tractable, / Xð Þ :¼
/ xtð Þf gTt¼1 needs to be projected to a low-dimensional subspace of induced space

spanned by / Vð Þ :¼ / vdð Þf gDd¼1. Thereby, the basis V :¼ vd 2 R
N�1
0þ

� �D
d¼1 spans the

input space: span vdf gDd¼1 � span xtf gTt¼1 and it is estimated from X by k-means
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clustering algorithm. Projection known as EKM, see Definition 2.15 in [23], maps data
from input space onto RKHS:

W V; Xð Þ ¼ / Vð ÞT/ Xð Þ ¼ K V; Xð Þ ð4Þ

where K V; Xð Þ 2 R
D�T
0þ denotes Gram or kernel matrix with the elements j vd ; xtð Þ ¼f

/ vdð ÞT/ xtð ÞgD; Td; t¼1. It is shown in [7] that under sparse probabilistic prior (2) Eq. (4)
becomes:

W V; Xð Þ � A
01�T

S
sisj
� �M

i; j¼1

2
4

3
5 þ �E ð5Þ

where A denotes a nonnegative mixing matrix of appropriate dimensions, 01�T stands
for row vector of zeros and �E stands for approximation error. The uniqueness condition
for system (5) becomes: D = O(Q2), [28]. When D 	N that can be fulfilled with
greater probability than uniqueness condition for system (3): N = O(Q2), [7, 27]. Thus,
the role of nonlinear EKM-based mapping is to “increase number of mixtures”.

3 Joint Nonnegative Matrix Factorization in Reproducible
Kernel Hilbert Spaces

It has been demonstrated that sparseness constrained NMF in an EKM-induced RKHS
enables separation of nonnegative dependent sources from smaller number of their
nonlinear mixtures [27]. However, the fundamental issue is how to select the kernel
function, i.e. its parameters in (4)/(5). The common choice is a Gaussian kernel

j vd; xtð Þ ¼ exp � vd � xtk k2=r2
� �

. That is justified by its universal approximation

property [29]. However, proper selection of the kernel variance r2 requires a priori
knowledge of the signal-to-noise (SNR) ratio. When dealing with experimental data
that is often hard to know in practice. Herein, we propose to map data X into multiple
RKHSs using EKMs with Gaussian kernel with the values for variance that cover wide

enough range: r2 2 r2
1; . . .;r

2
nv

n o
. Hence, we obtain nv data matrices in induced

RKHSs with representations as follow:

Wi V; Xð Þ ¼ Ai
�Sþ �Ei i ¼ 1; . . .; nv ð6Þ

where meaning of �S is clear from direct comparison between (6) and (5). To establish
weak analogy with the multi-view clustering, [24], we denoted mixture matrices in
RKHSs as data arising from multiple views. Also, without loss of generality, to enable
fair comparison with multi-view NMF algorithm [24] we assume that mixture matrices
in each “view i” satisfy Wi V; Xð Þk k1¼ 1

� �nv
i¼1. The difference between our model (6)

and multi-view NMF model [24] is that our model (6) assumes that all the views share
the same source matrix �S, while in [25] source matrices are different for each view and
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are enforced to converge towards a common consensus. To derive the NMF update rule
on the level of “view i” we assume Gaussian distribution for the error term in (6) and
minimize the loss function under constrains Ai 
 0, �S
 0:

L Ai; �S
	 
 ¼ 1

2
Wi V; Xð Þ � Ai

�S
�� ��2

2 þ a �S
�� ��

1 ð7Þ

where a stands for sparseness regularization constant. Minimization yields the fol-
lowing update rules for Ai and �S, see also Table 1 in [3]:

Ai ¼ Ai � Wi V; Xð Þ�ST

AiSS
T þ e1DP

�S ¼ �S� AT
i Wi V; Xð Þ � a1PT

� �
þ

AT
i Ai

�S þ e1PT

ð8Þ

In (8) � denotes entry-wise multiplication, 1DP and 1PT stand for matrices of all
ones, e is a small constant and [x]+ stands for max(0, x) operator. At each iteration the
algorithm cycles through all the views 1,…, nv. It is clear that representation (6)
automatically resolves the permutation indeterminacy issue that is problematic for joint
NMF across multiple views [24]. We coin our method multi-view NMF (mvNMF).
The joint NMF method [24] is coined multi-view consensus NMF (mvCNMF). Even
though our method is developed for separation of sources from nonlinear underde-
termined mixtures it can be applied directly to multi-view clustering in the same spirit
as joint NMF method in [24]. In that case Wi V;Xð Þ ought to be replaced with the data
matrix at view i: Xi. Furthermore, when BSS problem is linear, X = AS, with one view
only, i.e. nv = 1, Eq. (8) with the appropriate substitutions represents standard
sparseness constrained NMF [3].

4 Numerical Evaluation

To validate proposed mvNMF method we generate three nonlinear mixtures of eight
overlapped sources according to:

f1 sð Þ ¼ s31 þ s22 þ tan�1 s3ð Þ þ s24 þ s35 þ s36 þ tanh s7ð Þ þ sin s8ð Þ þ e1

f2 sð Þ ¼ tanh s1ð Þ þ s32 þ s33 þ tan�1 s4ð Þ þ tanh s5ð Þ þ sin s6ð Þ þ s27 þ s28 þ e2

f3 sð Þ ¼ sin s1ð Þ þ tan�1 s2ð Þ þ s23 þ s34 þ tanh s5ð Þ þ sin s6ð Þ þ s37 þ tan�1 s8ð Þ þ e3

We generated eight source signals in T = 1000 observations with degrees of
overlap equal to K 2 1; 3; 5f g. According to probabilistic prior (2) we set
qm ¼ 0:6f g8m¼1 and lm ¼ 0:15f g8m¼1. Thus, generated sources correspond with the real

world signals such as mass spectra. Furthermore, noise was added to the mixtures with
SNR = 0 dB. We use the Gaussian kernel with the variance r2 2 {1000, 100, 10, 1,
0.1, 0.01, 0.001}. That covers wide range of possible SNRs. The basis matrix V for
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EKM-based mappings was estimated from X by k-means algorithm with D = 100
cluster centers. We compare the proposed mvNMF algorithm with the mvCNMF
algorithm [24], with ordinary NMF algorithm [3] applied directly to mixture data
matrix X and with algorithm (8) applied to each “view”, mapped data matrix
Wi V; Xð Þf gnvi¼1, separately. We coined the last algorithm as single view NMF (svNMF)

and point out that it coincides with the algorithm [27] applied in each RKHS separately.
We set sparseness related regularization constant in (8) to a = 0.2. In case of mvCNMF
algorithm we use the result for consensus matrix to be compared with the result of
mvNMF. For each value of K we repeated the comparison 100 times. In each exper-
iment we separated eight sources from the mixtures and annotated them with the true
sources using mean normalized correlation as criterion:

mean correlation ¼
X
i2Ic

ci ŝi; sið Þ
 !,

M ð9Þ

where Ic denotes index set of correctly assigned sources, ŝi denotes the separated and si
the true source and 0� ci ŝi; sið Þ� 1 stands for the normalized correlation coefficient.
Thus, if more than one separated source was assigned to the same true source that was
counted as assignment error and reduced value of the mean correlation.

Figure 1a shows mean values of assignment errors (with the variance as error bar)
for NMF, mvNMF and mvCNMF algorithms. Figures 1b shows assignment errors for
the svNMF algorithm. Corresponding correlation coefficients (9) are shown in Fig. 2a
and b. The largest mean value of assignment error is 36% for mvNMF, 34.63% for
NMF, 45.37% for mvCNMF and 35.37% for svNMF. The largest values of mean
correlation coefficient for the algorithms in respective order are 8.12%, 4.23%, 7.44%
and 4.36%. Thus. proposed mvNMF method increased correlation coefficient in
comparison with NMF and svNMF methods having similar assignment error. In
comparison with mvCNMF the mvNMF method has similar correlation coefficient but
smaller assignment error. The mvCNMF method extracted typically two or three
unique sources with the “highest” value of correlation coefficient. That explains its

Fig. 1. Assignment error. (a) NMF, mvNMF and mvCNMF algorithms. (b) svNMF algorithm,
i.e. NMF algorithm applied to each “view” separately. (Color figure online)
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“good” performance in terms of correlation and poor in terms of assignment error.
Figures 1b and 2b show that performing source separation in each induced RKHS
separately yields results worse than when all the RKHSs are used. Although the sep-
aration quality of proposed mvNMF method could be considered low we comment that
described nonlinear BSS problem is hard and for it, to the best of our knowledge, no
method is developed yet.

5 Conclusion

Blind separation of nonnegative dependent (overlapped) sources from smaller number
of nonlinear mixtures represents a hard problem with, arguably, no algorithm proposed
to solve it. Herein, we propose method for separation of sparse dependent sources by
joint NMF on mixture matrices mapped in multiple RKHSs. RKHSs were induced by
mappings based on Gaussian kernel with variances that cover a wide range of possible
SNR values. Mixtures in induced RKHSs were represented with the linear mixture
models comprised of different mixing matrices and common matrix of sources. That is
justified by the fact that mixtures in mapped data space are obtained from the same
mixture matrix in input data space. Thus, a novel joint NMF method is proposed to
separate common source matrix from multiple mixtures. On numerical experiment the
proposed method achieved competitive performance. In addition for nonlinear BSS
proposed joint NMF method could be also used for clustering data from multiple views
in the spirit of [24].

Acknowledgments. This work has been supported in part by the Grant IP-2016-06-5253 funded
by Croatian Science Foundation and in part by the European Regional Development Fund under
the grant KK.01.1.1.01.0009 (DATACROSS).

Fig. 2. Mean correlation coefficients (9) of correctly assigned sources separated with: (a) NMF,
mvNMF and mvCNMF algorithms. (b) svNMF algorithm, i.e. NMF algorithm applied to each
“view” separately. (Color figure online)
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