
EbXML Registry/Repository Implementation

 Ivan Magdalenić, Ivan Matasić, Damir Pintar, Ivo Pejaković, Mihaela Sokić
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, HR-10000 Zagreb, Croatia
Tel: +385 1 6129 756; Fax: +385 1 6129 616

 E-mails: ivan.magdalenic@fer.hr, ivan.matasic@fer.hr, damir.pintar@fer.hr, ivo.pejakovic@fer.hr, mihaela.sokic@fer.hr

Abstract: There are several B2B frameworks at the market,
ebXML being one of them. Market position of ebXML is getting
stronger due to its interoperability and strong support by
UN/CEFACT and OASIS. EbXML has modular architecture
consisting of five layers: Core Components, Business Process,
Trading Partner Agreement, Registry/Repository and T,R,P
(Transport, Routing and Packaging). Modularity of ebXML
specifications enables implementation of layers without the need
to implement all of its functionality. This paper describes
implementation model of Registry/Repository layer. Role of
Registry/Repository in ebXML is vital as it stores all necessary
information to perform B2B transactions and gives a
standardized methodology for retrieval and storage of such
information in distributed environment.

1. INTRODUCTION

Large number of companies is turning into new economy
enabled with the evolution of digital media. Several standards
for B2B (Business to Business) communication have been
pushed into market by leading software companies, supported
by big industrial companies or branched consortiums.

The problem space in such kind of implementation of
different ''private'' B2B models is obviously in
interoperability. Partner companies need to implement B2B
models established by industry leaders, so they are often
forced to change their own business models to conduct B2B
transactions. Complexity in implementing different business
models to comply with business models for each new partner
discourages companies, especially small and medium sized
ones, to transfer to B2B trading. Development costs, as result
of absence of standardized B2B model, are also a huge
problem.

B2B model has to be flexible, expandable, interoperable,
and above all standardized. EbXML (Electronic Business
using eXtensible Markup Language) is already perceived as
one of greatest global standards for B2B communication.
EbXML as a specification is a solution to a variety of
problems in business communication between trading
partners that emerge as a result of current systems
incompatibility. Section 2 of this paper gives ebXML basics,
insight of Registry/Repository layer and its role. Section 3

describes our implementation of Registry Information Model
with the description how new technologies such as Enterprise
Java Beans are used. Conclusion is given in section 4,
followed by a list of references.

2. EbXML BASICS

EbXML sponsored by UN/CEFACT and OASIS, is a
modular suite of specifications that enables enterprises of any
size and in any geographical location to conduct business
over the Internet. Using ebXML, companies now have a
standard method to exchange business messages, conduct
trading relationships, communicate data in common terms
and define and register business processes [1].

Figure 1. Presents technological view on ebXML standard.

ebXML
UML, UMM

XML Security, PKI, CA
Java, XML, SOAP

HTTP, SMTP
Internet

Figure 1. EbXML – technological view

As it can be seen, large number of technologies based on
Internet, provides solution to B2B transactions in ebXML.
XML (eXtensible Markup Language) [2], [3] is used for
document standardization and description of information
through ebXML. A eBTL (electronic Business Technology
Laboratory) [4] established at Faculty of Electrical
Engineering and Computing, University of Zagreb, Croatia is
conducting series of experimental projects regarding ebXML
and security solutions.

As a global framework for e-business data exchange,
ebXML [1] consists of five architectural components: TRP
(Transport, Routing and Packaging), Registry/Repository, TP
(Trading Partner), BP (Business Process) and CC (Core
Components). All ebXML components cooperate in
fulfillment of ebXML. For example, EbXML TRP uses
information’s defined in ebXML TP [5], while ebXML TP
can be stored through ebXML Registry [6]. EbXML BP is
implemented through ebXML TRP, TP and Registry. All
components have elements of transport and content security
implemented. We need to mention that, compared to others,
Core Components are still not completely defined part of
ebXML standard.

2.1. EbXML Registry/Repository

EbXML Registry can be described as ebXML brain, as it
stores all information that ebXML trading partners need
(e.g. information’s on trading partners and their
CPP – Collaboration Protocol Profile). Figure 2 describes
ebXML Registry/Repository architecture and its reference to
other objects and business or Internet services.

From the Figure 2 it is obvious that term Repository
describes mechanism for data storage, while Registry
describes interface services through which Repository objects
can be reached. Data in Repository is viewed, inserted, stored
and deleted through user requests on Registry. Repository
and Registry Services are separated so that one can use
repositories from multiple different clients through only one
Registry Interface.

Figure 2. EbXML Registry/Repository

Two specifications define Registry/Repository Service:

− Registry Information Model (RIM) describing objects
that can be stored in Repository, meta data on those
objects, and structure of Repository;

− Registry Service Specification (RS) describing detailed
view on interfaces for users, as well as functionality of
Registry Services in those interfaces.

High-level public view of Registry Information Model is
given in Figure 3, in form of a UML Class diagram. In this
case UML diagrams are used as a very powerful way to
concisely describe concepts. The Registry Information Model
provides a blueprint or high-level schema for the ebXML
Registry. Its primary value is for implementers of ebXML

Registries. It provides these implementers with information
on the type of metadata that is stored in the Registry as well
as the relationships among metadata Classes.

The ebXML Registry architecture consists of an ebXML
Registry and ebXML Registry Clients. The Registry Client
interfaces may be local to the Registry or local to the user.
There are three possible topologies for Registry Client:
− Registry can provide a Web based “thin client”

application for accessing the Registry that is available to
the user using a common Web browser. In this scenario
the Registry Client interfaces reside across the Internet
and are local to the Registry from the user’s view.

− The user can also use a “fat client” Registry Browser
application to access the Registry. In this scenario the

Registry Client interfaces reside within the Registry
Browser tool and are local to the Registry from the user’s
view. The Registry Client interfaces communicate with
the Registry over the Internet in this scenario.

− A third topology made possible by the Registry
architecture is where the Registry Client interfaces reside
in a server side business component such as a Purchasing

business component. In this topology there may be no
direct user interface or user intervention involved.
Instead the Purchasing business component may access
the Registry in an automated manner to select possible
sellers or service providers based on current business
needs.

Figure 3. Registry Information Model (High level public view) in form of a UML Class diagram

3. IMPLEMENTATION OF EbXML RIM

Our implementation of Registry Information Model
conforms to specification of the Information Model for the
ebXML Registry version 2.0 [7]. The document defining
Information Model for the ebXML Registry is part of
developing specifications for interoperable XML registries
and repositories and is an approved Committee Specification
of the OASIS ebXML Registry Technical Committee.
Current status of this document is a DRAFT Specification.

The Registry provides a stable store where information
submitted by a Submitting Organization (organization that
provides data to the Registry) is made persistent. Such

information is used to facilitate ebXML-based B2B
partnerships and transactions.

Submitted content includes but is not limited to XML
schema and documents, process descriptions, ebXML Core
Components, context descriptions, UML models, information
about parties and even software components.

Metadata, used to describe the stored content, is defined in
the Registry Information Model. The Registry Information
Model defines what types of objects are stored and how
stored objects are organized in the Registry. It does not deal
with the actual content of the Repository. All Elements of the
information model represent metadata about the content and
not the content itself.

EMAIL_ADDRESS

PK EMAIL_ADDRESS_ID

FK1 REGISTRY_USER_ID
ADDRESS
EMAIL_TYPE

PRIVILEGE_ATTRIBUTE_TYPE

PK PRIVILEGE_ATTRIBUTE_TYPE
PK PRIVILEGE_ATTRIBUTE_VALUE

PERMISSION

PK PERMISSION_ID

FK1,U1 ACCESS_CONTROL_POLICY_ID
U1 METHOD

SERVICE

PK,FK1 ID

PRIVILEGE_PERMISSION

PK PRIVILEGE_PERMISSION_ID

FK2,U1 PRIVILEGE_ID
FK1,U1 PERMISSION_ID

EXTERNAL_IDENTIFIER

PK,FK1 ID

VALUE
IDENTIFICATION_SHEME_ID
REGISTRY_OBJECT_ID

SERVICE_BINDING

PK,FK1,FK3 ID

SERVICE_ID
FK2 TARGET_BINDING

ACCESS_URI

PERSON_NAME

PK PERSON_NAME_ID

FIRST_NAME
LAST_NAME
MIDDLE_NAME

REGISTRY_ENTRY

PK,FK1 ID

MAJOR_VERSION
MINOR_VERSION
STATUS
USER_VERSION
STABILITY
EXPIRATION_DATE

ACCESS_CONTROL_POLICY

PK ACCESS_CONTROL_POLICY_ID

SLOT

PK,FK1 ID
PK NAME

SLOT_TYPE

EXTERNAL_LINK

PK,FK1 ID

EXTERNAL_URI

ASSOCIATION

PK,FK1 ID

ASSOCIATION_TYPE
FK2 SOURCE_OBJECT
FK3 TARGET_OBJECT

POSTAL_ADDRESS

PK POSTAL_ADDRESS_ID

CITY
COUNTRY
POSTAL_CODE
STATE
STREET
STREET_NUMBER

EXTRINSIC_OBJECT

PK,FK1 ID

IS_OPAQUE
MIME_TYPE

SLOT_VALUE

PK,FK1 ID
PK,FK1 NAME
PK VALUE

AUDITABLE_EVENT

PK,FK1 ID

EVENT_TYPE
REGISTRY_OBJECT_ID
EVENT_TIMESTAMP
USER_ID

EXTRINSIC_OBJECT_CONTENT

PK,FK1 ID

BLOBDATA

SPECIFICATION_LINK

PK,FK2 ID

FK4 SERVICE_BINDING_ID
FK3 SPECIFICATION_OBJECT_ID
FK1 USAGE_DESCRIPTION_ID

REGISTRY_OBJECT

PK ID

FK4 OBJECT_TYPE_ID
FK3 NAME
FK2 DESCRIPTION
FK1 ACCESS_CONTROL_POLICY_ID

MODIFIED_BY
MODIFY_DATE

INTERNATIONAL_STRING

PK INTERNATIONAL_STRING_ID

PRINCIPAL

PK PRINCIPAL_ID

INTRINSIC_OBJECT

FK1 ID

PRINCIPAL_PRIV_ATTRIB

PK PRINCIPAL_PRIV_ATTRIB_ID

FK1,U1 PRINCIPAL_ID
FK2,U1 PRIVILEGE_ATTRIBUTE_ID

VALUE

LOCALIZED_STRING

PK,FK1 INTERNATIONAL_STRING_ID
PK CHARSET
PK LANG

VALUE

CLASSIFICATION

PK ID

FK2 CLASSIFIED_OBJECT_ID
CLASSIFICATION_SCHEME_ID

FK1 CLASSIFICATION_NODE_ID
NODE_REPRESENTATION

SPECIFICATION_LINK_PARAM

PK USAGE_PARAMETER_ID

FK1 SPECIFICATION_LINK_ID
USAGE_PARAMETER

REGISTRY_PACKAGE

PK,FK1 ID

TELEPHONE_NUMBER

PK,FK1 ID
PK TELEPHONE_NUMBER_ID

AREA_CODE
COUNTRY_CODE
EXTENSION
TELEPHONE_NUMBER
PHONE_TYPE

REGISTRY_PACKAGE_MEMBER

PK,FK2 ID
PK,FK1 PACKAGE_MEMBER_ID

PRIVILEGE

PK PRIVILEGE_ID

OBJECT_TYPE

PK ID

DESCRIPTION

CLASSIFICATION_NODE

PK,FK2 ID

FK1 PARENT
CODE

REGISTRY_USER

PK,FK4 ID

FK2 POSTAL_ADDRESS_ID
FK1 ORGANIZATION_ID
FK3 PERSON_NAME_ID

URL

PRIVILEGE_ATTRIBUTE

PK PRIVILEGE_ATTRIBUTE_ID

FK2 PRIVILEGE_ATTRIBUTE_TYPE
FK2 PRIVILEGE_ATTRIBUTE_VALUE
FK1 PRIVILEGE_ID

ORGANIZATION

PK,FK3 ID

FK2 POSTAL_ADDRESS_ID
FK4 PRIMARY_CONTACT_ID
FK1 PARENT_ORGANIZATION_ID

Figure 4: Tables in ebXML Repository

The Registry Information Model has been implemented
within an ebXML Registry in the form of a relational
database. Relation database model has been developed using
standard methodology (E-R modeling) and Oracle Designer
6i tool. Classes specified in Registry Information Model have
been mapped to relation database tables. Inheritance between
classes in the information model has been implemented as
relationships in database.

Database tier, founded on Oracle 8i technology, is used for
storing all submitted content and platform related data.
Figure 4 presents database tables and relations between
database tables as connections, with primary and foreign keys

as special marks. Although our implementation is located on
commercial database, our solution doesn’t use any of product
specific features provided by RDBMS. Thus, our solution can
be implemented using any of relation databases that conform
to ANSI SQL92 standard. Various rules assigned to specific
objects and attributes in information model that cannot be
implemented in data model without use of product specific
features are implemented in application layer in order to
provide product-independency of database layer.

EJB (Enterprise Java Beans) is relatively new server-side
component model developed within part of J2EE platform.
EJB infrastructure includes EJB classes that represent beans,

application server that manages beans and database that
ensures persistency.

We found EJB to be very suitable for implementation of
RIM for several reasons:
- EJB technology is specially designed for scalable

distributed applications,
- EJB considers transaction management, security

mechanisms and data persistency as part of its
application server - these features are therefore
automatically managed.

Java environment ensures that software solution will be
open and applicable through different platforms. During the
starting implementation phases we decided to use relatively
new EJB 2.0 specification instead of EJB 1.1 specification
used in development of previous applications. Reasons for
such a decision were:
- New EJB 2.0 specification is not compatible with older

version and it can be assumed that future application
servers will be optimized for EJB 2.0 version (old EJB
1.1. version will be supported only for compatibility
reasons);

- EJB version 2.0 brings a new way of automatic
management of persistency, which enables faster
development time and ensures openness of our solution;

- One of new EJB features is automatic management of
references between entities, and this feature showed to
be very useful during development;

- A new kind of EJB beans, message-driven beans, serves
for asynchronous message transactions, gives a new
dimension to flexibility and modularity in light of
developing specifications for ebXML messaging.

We have selected BEA Weblogic Server for application
server as it is free (for developers), but also because it is very
well documented and globally accepted. All classes defined
in RIM are represented through entity beans whose
persistency is managed by Weblogic application server. RS
will be designed through session beans that will manage
entity beans in serving different demands from outside
Registry/Repository.

A set of Registry Services that provide access to Registry
content to clients of the Registry is defined in the ebXML
Registry Services Specification [8] and in this part of
description has not been taken into consideration.

4. CONCLUSION

EbXML is a specification for B2B e-commerce. EbXML

Registry can be described as ebXML brain, as it stores all
information that ebXML trading partners need.

The Registry Information Model (ebXML RIM) provides a
blueprint or high-level schema for the ebXML Registry. Its
primary value is for implementers of ebXML Registries.

To create modular and flexible implementation of ebXML
RIM we have decided to use EJB v.2.0, Weblogic application
container and Oracle 8i database. We found that many
features provided by these technologies (especially EJB)
were very useful during implementation of RIM and very
helpful during solving many of the perceived problems.

We found these technologies (especially EJB) to be able to
implement RIM and many of the perceived problems with
their features. Comparing this solution to several others
developed (or in development) in the world, we found it to be
more scalable and offer great expandability, which is crucial
in implementing future versions of specifications and
therefore adding new features. As there are only few open-
source or published Registry implementations in the world
(even from software vendors) we could not establish clear
vision on Registry/Repository implementation that would be
predominant in the future. We think that as long as the
specifications are strictly obeyed, different methodology in
constructing database and other layers will not stand in the
way of functionality and interoperability of our artifact.

We consider our implementation as a preparation of
implementation of RS, which should be done by the end of
2002. With Registry/Repository layer implemented, we can
start achieving our primary goal: implementation of a real
B2B communication between trading partners based on
ebXML specifications.

REFERENCES

[1] www.ebXML.org
[2] www.xml.org
[3] www.w3.org
[4] Marko Topolnik, Damir Pintar, Mihaela Sokić:
“Experimental Implementation of Emerging e-Business
Technologies: EbXML and PKI”, Proceedings of the
MIPRO2002 (Electronic Commerce), Opatija, May 2002,
p.p. 1-6.
[5] Ivan Magdalenić, Ivo Pejaković, Dražen Pranjić:
“Business documents presentation and interchange using
SOAP”, Proceedings of the MIPRO2002 (Electronic
Commerce), Opatija, May 2002, p.p. 13-17.
[6] Mihaela Vrhoci, Dubravka Đelmiš, Jarmila Maksimović:
“Collaboration Protocol Profile (CPP) and Collaboration-
Protocol Agreement (CPA) in B2B transactions”,
Proceedings of the MIPRO2002 (Electronic Commerce),
Opatija, May 2002, p.p. 45-50.
[7] UN/CEFACT-OASIS: “EbXML Registry Information
Model, v2.0”, December 2001.
[8] UN/CEFACT-OASIS: “EbXML Registry Services
Specification, v2.0”, December 2001.

