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Abstract

A fully quantum model describing the angular distribution of the bremsstrahlung photon emission ac-
companying the α-decay of a deformed nucleus is presented for the first time. An analytical dependence
of the bremsstrahlung probability on the quadrupole deformation parameter β2 of the decaying nucleus
has been found. Such a model and the detailed formalism allow us to calculate the stable spectra of the
bremsstrahlung emission probability for different values of the angle between the direction of the α-particle
motion and the symmetry axis of the decaying nucleus. We present the results of this new model by the
calculation of the photon emission probability accompanying the α-decay of the 226Ra nucleus which has
the nuclear deformation parameter β2 = 0.151. The results show by a clear way the role and the influence
of the nuclear deformation of the decaying nucleus on the bremsstrahlung photon spectrum.
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1. Introduction

In recent years many experimental [1–8] and theoretical [7–25] efforts have been made to
investigate on the nature of the bremsstrahlung emission in the α-decay of heavy nuclei, because
the feature of the energy spectrum of photons is strongly related to the dynamics of the α-decay
and alpha — nucleus potential. In some cases the energy spectrum of bremsstrahlung shows some
slight oscillations [7], in other case authors observed a minimum [2,3], in some experiments [6,
25] authors did not observe any structure. To understand the peculiarities of the bremsstrahlung
spectra and describe them accurately, it is necessary to develop a suitable model sensitive to
different characteristics of the α-decay in order to describe accurately the process of tunneling
of the α-particle through the Coulomb barrier.

If one compare the bremsstrahlung spectra relative to the α-decay of the 214Po and 226Ra
nuclei presented in Ref. [8], for which nuclei there are similar shapes of the alpha — nucleus po-
tential, one can see the relevant difference between them pointing out different photon emission
distributions and probabilities during the α-decay of the 214Po and 226Ra nuclei. An explanation
of such differences in the spectra can be found in the different Q-values for the α-decay of the
two mentioned nuclei. Have such two nuclei other characteristics with different values which
influence differently the photon emission? The Q-values for these two nuclei lead to different
tunneling regions in their barriers. One can suppose that such difference leads to different con-
tributions from the tunneling regions into the total photon spectra. This condition was confirmed
in Ref. [8]. Moreover, one can suppose that the acceleration of the α-particle emits photons most
strongly when it transits through the nuclear surface. From here, we naturally come to another
possible characteristic that is the nuclear deformation. By comparing the two studied nuclei, we
find different surface deformations for the two nuclei: while 214Po is practically a spherically
symmetric nucleus, 226Ra is really deformed. It is relevant the question: how the deformation
can influence the photon emission? Will such influence be small or large for the deformed nu-
clei? Will the photon emission from the region of the nuclear shape be essentially different for
strongly deformed nuclei?

By such a way, we come to a new and difficult problem: to take the nuclear deformation into
account in calculations of the bremsstrahlung spectra accompanying the α-decay. Such a question
was never studied before. The aim of the present paper is to improve our model [7,8,21,23] with
the inclusion of the deformation of the α-decaying nucleus.

2. Model of bremsstrahlung for deformed nuclei

We define the bremsstrahlung probability W(w) during the α-decay so (like Eq. (1) in
Ref. [23], also see Refs. [7,8,21]):

W(w) = N0w
∣∣p(w)

∣∣2
, ki,f = √

2mEi,f , w = Ei − Ef , (1)

where p(w) has the form of Eq. (4) in Ref. [23] and N0 is a normalization coefficient of the
calculation to the experimental data at low energy. In expression of p(w) the vector k repre-
sents an impulse of the photon, pointed out the direction of its propagation; the vector r is the
radius-vector, marking the position of the α-particle relatively to the center-of-mass of the nu-
clear system. One can write (see Eq. (9) in Ref. [23])

exp (−ikr) = exp (−ikr cos θα−γ ), k = |k|, r = |r| (2)
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and we obtain:

p(w) =
∑

μ=−1,1

hμξ∗
μ

+∞∫
0

r2 dr

∫
ψ∗

f (r)e−ikr cos θα−γ
∂

∂r
ψi(r) dΩ, (3)

where the angle θα−γ between the vectors k and r is the angle between the direction nr = r/r of
the motion (or tunneling) of the α-particle in the decaying nucleus and the direction nph = k/k of
propagation of the emitted photon. Here, m is the reduced mass of the system, Ei,f and ki,f are
the total energy and wave vector of the system in the initial i-state (i.e. the state before the photon
emission) or in the final f -state (i.e. the state after the photon emission), ψi(r) and ψf (r) are
the wave functions of the system in the initial i- and final f -state, w = k = ∣∣k∣∣ is the frequency
(energy) of the photon, ξ−1 and ξ+1 are the vectors of the circular polarization with opposite
directions of rotation (see Ref. [26, p. 42]). We use the Coulomb calibration and the system of
units where h̄ = 1 and c = 1.

To describe the interaction between the α-particle and daughter nucleus we use the α-nucleus
potential in the general form:

V (r, θ, l,Q) = vC(r, θ) + vN(r, θ,Q) + vl(r), (4)

where the Coulomb vC(r, θ), nuclear vN(r, θ,Q) and centrifugal vl(r) components are defined
as in Ref. [27] (see relations (6)–(10) of the cited paper). We assume that the parameter of de-
formation β2 used in the previous cited relations of Ref. [27], is enough small. Further, we shall
need in expansion of the nuclear component by powers of β2:

vN(r, θ,Q) = V0(A,Z,Q) · {vN0(r) + vN1(r) · β2Y20(θ)

+ minor terms
}
, (5)

where are

vN0(r) =
(

1 + exp
r − r0 − R

d

)−1

,

vN1(r) = R

d
v2
N0(r) exp

r − r0 − R

d
. (6)

For many heavy nuclei the deformation parameter β2 is sufficiently small. In such a case, we
can apply the spherically symmetric approximation for the α-nucleus potential (4). At β2 = 0
we have to know the wave functions (WFs) in the initial and final states (see formula (8) in
Ref. [8]). We use the following boundary conditions: the i-state of the system before the photon
emission is a pure decaying state, and therefore for its description we use WF for the α-decay;
after the photon emission the state of the system is changed and it is more convenient to use WF
as the scattering of the α-particle by the daughter nucleus for the description of the f -state (see
Refs. [7,8]).

We shall find the wave function for the deformed α-nucleus potential by the perturbation
theory. The small non-spherical correction to the spherical potential is

Ŵ = wC(r, θ) + wN(r, θ,Q), (7)

where are

wC(r, θ) =
⎧⎨
⎩

β2 · 6Ze2R2

5r3 · Y20(θ), for r � rm,

β2 · 6Ze2R2

3 (2 − r3

3 ) · Y20(θ), for r < rm
(8)
5rm rm
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and

wN(r, θ,Q) = V0(A,Z,Q) · {vN1(r) · β2Y20(θ) + minor terms
}
. (9)

For the determination of the unknown wave function ψ(r) as a solution of the Schrödinger equa-
tion with the deformed potential (4) it needs to define a set of known for us functions, on the
basis of which this function ψ(r) could be expanded (see Appendix A). We separate the wave
function ψ(r) into three terms:

ψ(r) = ψsph,l0m0(r) + 
rψsph(r) + 
θψsph(r), (10)

where ψsph,l0m0(r) is the spherically symmetric unperturbed wave function, 
rψsph(r) and

θψsph(r) are radial and angular corrections describing the radial and angular deformations of
this unperturbed wave function, having expressions:


rψsph(r) = β2 · 
rR̃sph,l0(r) · Yl0m0(θ,ϕ),


θψsph(r) =
∑

l,m �=l0,m0

{
Rsph,l(r) + β2 · 
rR̃sph,l(r)

} · Ylm(θ,ϕ), (11)

where are


rR̃sph,l(r) =
∫

θ ′ �=θsph

c̃
(1)
lm (θ ′)Rθ ′l (r) sin θ ′ dθ ′, (12)

c̃
(1)

l′m′(θ ′) = 1

E

∑
l

Im′
ll′

+∞∫
0

R∗
θ ′,l′(r)w

(1)(r)Rsph,l(r)r
2 dr. (13)

Here, Rθ ′,l′(r), c̃
(1)

l′m′(θ ′) and Im′
ll′ are defined in Appendix A.

On the basis of relation (10) we come to the same separation for the matrix element:

p(w) = psph(w) + 
rp(w) + 
θp(w), (14)

where the matrix element psph of the spherically symmetric α-decay and its radial correction

rp taking into account the radial deformation of the α-decay have the form:

psph(w) = δlf ,1

√
2

3

+∞∑
n=0

in+1(−1)n(2n + 1)Pn(cos θα−γ ) · J1(w;n),


rp(w) = δlf ,1β2 ·
√

2

3

+∞∑
n=0

in+1(−1)n(2n + 1)Pn(cos θα−γ ) · J2(w;n), (15)

where

J1(w;n) =
+∞∫
0

R∗
sph,lf =1(r)

∂Rsph,li=0(r)

∂r
jn(kr)r2 dr,

J2(w;n) =
+∞∫
0

{
R∗

sph,lf =1(r)
∂
rR̃sph,li=0(r)

∂r

+ 
rR̃
∗
sph,lf =1(r)

∂Rsph,li=0(r)
}
jn(kr)r2 dr (16)
∂r
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and Pl(θ) is the term of the Legendre’s polynomial of order l (for example, see Ref. [29, p. 752
(c.1)]). The angular correction 
θp(w) is defined on the basis of the angular deformation of the
wave function, but in the present calculations we do not use this correction because it gives a
smaller contribution in comparison with the radial correction. In obtaining Eq. (15) we choose
the selection rules for the quantum numbers of the final f -state (when the integral is non-zero):

li = 0, mi = 0 for the initial state,

lf = 1, mf = −μ = ±1 for the final state. (17)

Now the total matrix element (14) (without taking into account the angular correction) obtains
the form:

p(w) = δlf ,1 ·
√

2

3

+∞∑
n=0

in+1(−1)n(2n + 1)Pn(cos θα−γ ) · (J1(w;n) + β2J2(w;n)
)
. (18)

Using the expression (1) we find the probability Wl=0 in the first approximations at l = 0 and its
correction W(n=1) in the second approximation at l = 1:

Wl=0(w) = 2

3
N0kf w

∣∣J1(w;0) + β2J2(w;0)
∣∣2

,

W(n=1)(w, θα−γ ) = 6N0kf w
∣∣J1(w;1) + β2J2(w;1)

∣∣2 cos2 θα−γ . (19)

From here we obtain the total bremsstrahlung probability up to the second approximation at
l = 1:

Wl=1(w, θα−γ ) = Wl=0(w)
∣∣1 − N(w,β2) cos θα−γ

∣∣2
,

N(w,β2) = 3i
J1(w;1) + β2J2(w;1)

J1(w;0) + β2J2(w;0)
. (20)

3. Comparison between theory and experiment by the analysis of the bremsstrahlung
spectrum of the deformed 226Ra nucleus

The main question which can be asked to the development of the new formalism that includes
the deformation of the α-decaying nucleus into the model of the bremsstrahlung emission is
how much such a nuclear deformation influences the bremsstrahlung spectrum. We shall find the
bremsstrahlung spectrum for the 226Ra nucleus which has non-zero value of the β2 quadrupole
deformation parameter. At the present stage we shall take into account only the first important
radial correction of the wave function. We calculate the bremsstrahlung probability by Eq. (20)
and determine two radial integrals J1(w;n) and J2(w;n) by Eq. (16). The α-nucleus potential
is defined by Eq. (4) with parameters from Ref. [8]. The Q-value for the α-decay of 226Ra is
4.904 MeV (see Ref. [30]), and the β2 parameter is 0.151 (see Ref. [31]). For a concrete analysis
of the influence of the nuclear deformation on the shape of the bremsstrahlung spectrum, we
select the angle θα−γ between the direction of the α-particle motion (with possible tunneling)
and the one of the photon emission to be equal to 90◦ ± 25◦ because this was the configuration
of the detectors in the experiment Ref. [8], taking into account the angular resolution of the
detectors.

The calculated photon emission probabilities of the bremsstrahlung accompanying the α-
decay of 226Ra, at different values of the angle θα between the direction of the α-particle motion
and its tunneling in the barrier region and the direction of the symmetry axis of the decaying



S.P. Maydanyuk et al. / Nuclear Physics A 823 (2009) 38–46 43
226Ra nucleus, are presented in Fig. 1. As Fig. 1(a) shows, the result obtained at the angle
θα = 180◦ or 0◦ (dashed line) is higher than the one at θα = 90◦ (dash-dotted line). The dif-
ference between these two results is evident and stable in the whole energy region of the emitted
photons; it increases by increasing the photon energy Eγ . This fact theoretically confirms that
the shape of the bremsstrahlung spectrum is sensitive to the deformation of the nucleus in the
α-decay and such a result (obtained for the first time) is stable. Since in the experiment [7,8]
the α-detector cannot select a particular direction θα of the α-particle motion with respect to
the direction of the symmetry axis, the obtained probability has been integrated over the angle
θα from 0 to π , in order to take into account all possible orientations of the axial symmetry
axis of the deformed decaying nucleus in the center-of-mass system. This result which includes
the nuclear deformation β2 is presented in the figure by the full line and it well describes the
experimental results (Ref. [8]) also at higher photon energies Eγ > 350 keV. The result of the
bremsstrahlung spectrum calculation confirms the role and the sensitivity of the nuclear defor-
mation on the photon emission probability. The bremsstrahlung probability calculated for the
spherical and symmetric decay (at limit for β2 → 0) leads to a lower result as showed in the cited
Fig. 1(a) by the dash-double dotted line.

For a comparison we report in Fig. 1(b) the final result (full line) of the present model which
takes into account the nuclear deformation of the 226Ra nucleus together with the result (dotted
line) given in our previous paper [8]. For photons of high energies (Eγ > 350 keV) the inclusion
of the nuclear deformation in the model strongly improves the description of the bremsstrahlung
spectrum. Such an intuition was already suggested in conclusion of our previous paper [8].

4. Conclusions

We developed a fully quantum model to investigate the role and influence of the nuclear
deformation of the nucleus on the emitted bremsstrahlung spectrum. In this model we take into
account the α-nucleus potential for the deformed nucleus and the expansion of wave function
of the α-particle. For the determination of the matrix element of the photon emission at the
deformed α-nucleus potential we also take into account the corrections of the deformed wave
function. We studied the case of the 226Ra nucleus which is a deformed nucleus. The results
discussed in this paper and presented in the figure show by a clear way that the photon emission
probability accompanying the α-decay is sensitive to the angle θα of the α-emission with respect
to the symmetry axis of the deformed nucleus. The final results integrated over all values of θα

are in very good agreement with the experimental data, and also evidence the relevant effect due
to the nuclear deformation parameter β2. If we disregard the nuclear deformation in the model,
the calculation (dotted line in Fig. 1(b)) of the photon emission probability is lower than the
integrated calculation and experimental data at energies Eγ > 350 keV.
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Fig. 1. The bremsstrahlung photon emission probability in the α-decay of the 226Ra nucleus. (a) Dashed line is the
probability calculated with the new model for θα = 180◦; full circles are the experimental data given in Ref. [8]; full line
is the total probability integrated over all θα angles; dash-dotted line is the probability calculated with the new model for
θα = 90◦; dash-double dotted line is the probability calculated for the spherically symmetric decay (at limit for β2 → 0).
(b) Full circles are the experimental data given in panel (a); full line is the total probability given in panel (a); dotted line
is the previous total probability given in Ref. [8].

Appendix A

(1) We shall expand the unknown function ψ(r) over basis of functions ψθ :

ψ(r) =
∫

c(θ)ψθ (r) dθ, ψθ (r) = Rθ,l(r) · Ylm(nr ), (A.1)
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where the function ψθ is a solution of the Schrödinger equation with potential V (r, θ) for a fixed
angle θ . In particular, at θsph = arccos 1/

√
3 the potential V (r, θsph) coincides with Eq. (4) at

β2 = 0. Substituting expansion (A.1) into the Schrödinger equation with potential (4), we obtain:

E

∫
c(θ)ψθ dθ − Ec(θsph)ψθsph =

∫
c(θ)Ŵψθ dθ. (A.2)

Multiplying this equality from the left by ψ∗
θ ′,l′,m′ , then integrating it over the volume dr, we

find:

E
[
c(θ ′) − c(θsph)δ(θ

′ − θsph)
] =

∫
dθ c(θ)

∫
ψ∗

θ ′,l′,m′Ŵψθ dr. (A.3)

We shall find coefficients c(θ) in the form c(θ) = c(0)(θ) + c(1)(θ) + c(2)(θ) + · · · where
the value c(1)(θ) is of the same order of the perturbation Ŵ . We shall find corrections to the
wave function ψsph at θsph of the spherically symmetric decay, according to which we assume:
c(0)(θsph) = 1, and c(0)(θ) = 0 at θ �= θsph. In order to obtain the first approximation, we substi-
tute c(θ) = c(0)(θ) + c(1)(θ) into Eq. (A.3) taking into account values of the first order only. At
θ �= θsph we have:

c
(1)

l′,m′(θ) = 1

E

∫
ψ∗

θ,l′,m′Ŵψsph dr. (A.4)

Using the found solution (7)–(9) of the operator Ŵ and taking into account the property expressed
in Eq. (4) of Ref. [28] (see p. 131), we obtain:

c
(1)

l′m′(θ) = β2 · c̃(1)

l′m′(θ),

c̃
(1)

l′m′(θ) = 1

E

∑
l

Im′
ll′

+∞∫
0

R∗
θ,l′(r)w

(1)(r)Rsph,l(r)r
2 dr, (A.5)

where is

Im′
ll′ =

√
5 · (2l + 1)

4π(2l′ + 1)
Cl′0

l020C
l′m′
lm′20. (A.6)

(2) Assuming that in the initial i-state the system has numbers l = m = 0, and using the
gradient formula (2.56) of Ref. [26], we obtain the gradient from the undeformed wave function,
the gradient from the radial correction of the wave function

∂

∂r
ψsph,li=0(r) = −

√
1

3

dRsph,li=0(r)

dr

∑
μ′=−1,1

Y1,−μ′
(
ni

r

)
ξμ′,

∂

∂r

rψsph,li=0(r) = −β2 ·

√
1

3

d
rR̃sph,l0=0(r)

dr

∑
μ′=−1,1

Y1,−μ′
(
ni

r

)
ξμ′, (A.7)

and the gradient from the angular corrections of the wave function at l = 1

∂

∂r

θψ(r)

=
√

1
(

dRsph,l=1(r) + 2
Rsph,l=1(r) + β2

d
rR̃sph,l=1(r) + β2
2

rR̃sph,l=1(r)

)

3 dr r dr r
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×
∑

μ=−1,1

(0,1,1 | 0,μ,μ)ξμ

−
√

2

3

(
dRsph,l=1(r)

dr
− 1

r
Rsph,l=1(r) + β2

d
rR̃sph,l=1(r)

dr
− β2

1

r

rR̃sph,l=1(r)

)

×
∑

m=−1,0,1

∑
μ=−1,1

(2,1,1 | m − μ,μ,m)Y2,m−μ(nr )ξμ. (A.8)

Here, (l1j | m − μμm) are Clebsch–Gordan’s coefficients (see Table I in Ref. [26, p. 317]),
and Y1,μ(ni,f

r ) are normalized spherical functions (see Eq. (28.7) of Ref. [29, pp. 118–121, and
pp. 752–755]).
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