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The study of the bremsstrahlung photon emission accompanying fragments produced in the spontaneous fission
of heavy nuclei by a fully quantum approach is presented for the first time. This kind of problem requires the
knowledge of wave functions of the fissioning system leading to a wide distribution of couples of fragments that
are the products of fission. With the aim of obtaining these wave functions, the interaction potential between the
emitted fragment and residual nucleus is calculated by a standard approach. A new procedure was performed
that allows an increase in the accuracy of calculations of radial integrals in the far asymptotic region and the
achievement of the convenient convergence in calculations of the spectra. The total probability of the emitted
photons in the spontaneous fission of 252Cf was calculated in such a way. We obtained good agreement between
theory and experimental data up to 38 MeV for the bremsstrahlung spectrum of photons while the calculation
of the total probability of photon emission accompanying fragments was performed up to an energy of 60 MeV.
The analysis of contributions in the bremsstrahlung spectrum accompanying the emission of light, medium, and
heavy fragments in the fission of 252Cf is presented.
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I. INTRODUCTION

Although modern models of nuclear decays in the
determination of half-lives use semiclassical calculations
of barrier penetrability [1–4], a quantum approach for the
calculation of bremsstrahlung spectra accompanying such
decays does not require the application of any semiclassical
approximation. This advance opens an independent way (both
theoretical and experimental) of obtaining new information
on the decay and its dynamics. To achieve a satisfactory
description of the bremsstrahlung emission accompanying the
spontaneous fission of a heavy nucleus (for example, 252Cf)
where many kinds of fragments are involved, as a first step
of our study we consider the fission emitting light fragments
like 9Be, 12C, 24Mg, and particularly the α decay from 252Cf,
to compare this last bremsstrahlung spectrum with the photon
spectra found in the cases of 214Po and 226Ra nuclei.

In our previous paper [5], we studied the bremsstrahlung
photon emission accompanying the α decay of heavy nuclei,
and we found a relevant difference between the experimental
bremsstrahlung spectra for the 214Po and 226Ra nuclei
(Eα = 7.7 MeV for 214Po and Eα = 4.8 MeV for 226Ra);
nevertheless, the α decay of such nuclei leads to very similar
α-particle daughter nucleus potential (see Fig. 2 of Ref. [5]).
We concluded that the different slopes of the spectra were
connected with the different Q values of α decay for the two
considered nuclei and we confirmed that such a difference
gives different contributions of photon emission from the
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tunneling region into the total spectrum. Moreover, because
the photons are emitted more strongly when the α particle
transits through the nuclear shape, we naturally came to
the conclusion that the photon emission is also sensitive to the
deformation of the nucleus.

Moreover, in Ref. [6] we showed that the photon emission
probability during the α decay is sensitive to the direction
of outgoing α particles with respect to the orientation of the
symmetry axis of the deformed nucleus. So, we established a
connection between the nuclear deformation β2 = 0.151 and
the bremsstrahlung spectrum accompanying the α decay of
the 226Ra nucleus.

Following the method used in Ref. [6] for the α decay,
in the present article we develop a quantum approach to the
case of bremsstrahlung photons emitted during spontaneous
fission of a nucleus for which the bremsstrahlung spectrum
is composed of a wide distribution of emitted fragments and
daughter nuclei. In this case it is necessary to describe the
daughter nucleus fragment potential by an appropriate model
taking into account the different nuclear surface shapes of the
nucleus undergoing fission for each of these combinations.

In Sec. II we present the generalized model of the
bremsstrahlung spectrum of photons emitted during the
spontaneous fission, and in Sec. III we give the results of
the theoretical study for the 252Cf nucleus. In Sec. IV we
summarize the conclusions.

II. MODEL OF BREMSSTRAHLUNG EMISSION
ACCOMPANYING THE SPONTANEOUS FISSION

A. Shape of the nuclear system undergoing fission

In the fission process it is necessary to describe the sequence
of shapes of a fissioning nucleus from its ground state in a
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continuous way, through its saddle and scission configurations
to the separated fragments at infinity. In a study of ground-
state shapes, one has to be able to describe a sphere, oblate
and prolate spheroids, octupole deformations, and positive and
negative hexadecapole deformations. Because many questions
studied in the fission process do not sensitively depend upon
deviations from axial symmetry, we initially apply the model
to shapes of nuclear systems that are axially symmetric.

We chose to specify the nuclear shape in terms of smoothly
joined portions of three quadratic surfaces of revolution: two
spheroids connected by a hyperboloidal neck (see Fig. 3 of
Ref. [7]). In terms of the cylindrical coordinate system, we use
the equation for the drop’s surface written explicitly as [7]

ρ2 =

⎧⎪⎨
⎪⎩

a2
1 − (

a2
1/c

2
1

)
(z − l1)2, for l1 − c1 � z � z1,

a2
2 − (

a2
2/c

2
2

)
(z − l2)2, for z2 � z � l2 + c2,

a2
3 + (

a2
3/c

2
3

)
(z − l3)2, for z1 � z � z2.

(1)

Here, the quantity li specifies the position of the center of
the ith quadratic surface, ci is its symmetry axis, and ai is its
transverse semiaxis (i = 1, 2, 3). There are nine coordinates
in the specification of a nuclear shape. However, following the
description reported in the article of Bolsterli et al. [7], one
coordinate is eliminated by the assumption that the volume
of the nuclear system remains constant during its evolution,
and two other coordinates are eliminated by the requirement
that the middle surface join smoothly with both surfaces of
the forming fragments (at points denoted by z1 and z2). This
introduces three relations between the original nine degrees
of freedom and reduces the number to six. Elimination of the
center-of-mass coordinate finally reduces the number of shape
coordinates to five. As a demonstration of such a procedure
applied for calculation of shapes with continuous deformation,
in Fig. 1 we present the results of shapes obtained at different
distances r between the centers of the daughter nucleus and
the 12C fragment (considered here as an example) formed in
the process of fission of the 252Cf nucleus. We use radii of the
parent and daughter nuclei defined according to Ref. [8].
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FIG. 1. (Color online) Shapes of the nuclear surface for emission
of the 12C fragment calculated for different distances r between
centers of the daughter nucleus and the fragment during spontaneous
fission of the 252Cf nucleus [axes z and ρ are defined from Eq. (1)].

B. Interaction potential between the daughter nucleus
and fragment

Once the nuclear shape has been specified, the next step
is to generate an interaction potential between the daughter
nucleus and fragment with respect to the shape and the distance
between them. Over the years, considerable efforts were made
to calculate the fissioning nucleus energy as a function of its
neutron and proton numbers and its shape. If such a procedure
is useful in the general theory of fission, it has to be capable
of handling very deformed shapes and the evolution from one
parent nucleus to two final fragments (the daughter nucleus and
the related fission fragment). The interaction potential between
the daughter nucleus and the fragment could be written as

Vtotal(r) = VC(r) + VN (r). (2)

The Coulomb component VC(r) describes electromagnetic
interactions between daughter nucleus and fragment. We
define this component as the energy formed by charges filling
the volume of the fissioning system restricted by its shape (for
details, see Ref. [7]). However, we suppose that the charge
inside the volume of the fragment determines the energy
of self-interactions caused by the distribution of the charges
only inside this fragment and, so, it should not give its own
contribution to the Coulomb component VC(r). Therefore, we
can write the Coulomb component as

VC(r) = EC,nucleus(r) − EC,fragment, (3)

where

EC,nucleus(r) = λC

∫
V, r�=r′

dr′3

|r′ − r| ,
(4)

EC,fragment = λC

∫
Vf ,r �=0

dr3

|r| , λC = Zd Zf e2

Vp

.

Here, we define the Coulomb energy of nuclear system
EC,nucleus(r) like Eq. (3) in Ref. [7] but we use the generalized
factor λC for the daughter and fragment charges during the
spontaneous fission, where we take into account that the
parent nucleus can be deformed. The Coulomb component
of the fragment, EC,fragment, is defined by a similar mode;
however, we suppose that the shape and volume Vf of the
fragment are fixed. The two integrals are over the volume
V of the fissioning system (defined relative to the given
distance r between centers of the daughter nucleus and
fragment) and the volume Vf of the fragment, respectively;
Zd and Zf are charges of the daughter nucleus and fragment,
respectively. In Fig. 2(a), the Coulomb component (3) with
Eq. (4) and Coulomb component from Ref. [1] calculated in
the spherically symmetric approximation are presented for the
α decay of the 252Cf nucleus in comparison with the α decay
of the 214Po nucleus. As one can see, these two components are
very close at higher distances r , whereas there is an appreciable
difference at lower r values, for both considered systems.

We define the nuclear component VN (r) as the difference
between the energy of the total nuclear system EN,nucleus(r) (at
a given distance r between the daughter nucleus and fragment)
and the nuclear energy EN,fragment of that fragment only as

VN (r) = EN,nucleus(r) − EN,fragment, (5)
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FIG. 2. Potential obtained in this article and spherically symmet-
ric potential proposed by Denisov and Ikezoe in Ref. [1] for the
α decay of the 252Cf nucleus (thick lines) in comparison with the
α decay of the 214Po nucleus [5] (thin lines) for (a) the Coulomb
components and (b) the nuclear components.

where EN,nucleus and EN,fragment can be written as

EN,nucleus(r) = −λN

∫
V

dr3

1 + exp(|r − r′|/a)
,

(6)

EN,fragment = −λN

∫
Vf

dr3

1 + exp(|r|/a)
.

The parameter λN = Mp/Vp (where Vp and Mp are the
volume and mass of the parent nucleus, respectively) prac-
tically gives a precise coincidence between the nuclear com-
ponent defined by Eq. (5) with Eqs. (6) and the nuclear compo-
nent obtained by the parametrization procedure proposed by
Denisov and Ikezoe in Ref. [1] for the α decay. In Fig. 2(b), one
can see that the nuclear components, studied for the α decay of
252Cf in comparison with the α decay of 214Po, are similar at
the bottom (for distances shorter than 4 fm) and at the top (for
distances longer than 10 fm) of the nuclear potential well, for
both the decaying nuclei considered. Now, if we pass from our
spherical symmetric approximation to the deformed variant
of the potential used in Ref. [1], the difference between the
two potentials becomes smaller. The analysis showed that the
Yukawa folding functions (see, for example, Eq. (2) in Ref. [7])
do not give such an accurate coincidence as our functions in

Eq. (6), and so we use them for further calculations. The total
potential depends on the difference between centers of the
daughter nucleus and the emitted fragment, and we use the
spherically symmetric approximation for further calculation
of the wave functions.

The Q value concerning each emitted fragment in fission is
calculated by standard procedure as

Q = Mp − Md − Mf , (7)

where Mp, Md , and Mf are the masses of the parent,
daughter, and specific fragment nuclei, respectively. For the
mass distribution of fragments we use the yields given in
Ref. [9] in our calculation.

C. Model of bremsstrahlung accompanying a nuclear system
decaying into two fragments

We define the photon emission probability caused by
emission of a fragment during fission of a heavy nucleus
in terms of the transition matrix elements for the composite
quantum system (the daughter nucleus and fragment) from
its state before the photon emission (initial state i) into its
state after the photon emission (final state f ). According to
Eqs. (1) and (4) in Ref. [10] (see also Refs. [5,11,12]), we can
write

dP (w,ϑf γ )

dEγ

= N0w|p(w,ϑf γ )|2, ki,f = √
2m Ei,f ,

(8)
w = Ei − Ef ,

where

p (w,ϑf γ ) =
∑

µ=−1,1

hµ ξ ∗
µ

∫ +∞

0
r2 dr

×
∫

ψ∗
f (r) e−ikr cos ϑf γ

∂

∂r
ψi(r) d
. (9)

Here, the vector k represents the photon impulse in the
direction of its propagation, the vector r is the radius vector
marking the position of the center of the emitted fragment
relative to the center of the daughter nucleus, and ϑf γ is the
angle between the direction n1 = r/r of the fragment motion
(or tunneling) and the propagation direction n2 = k/k of the
photon emitted, where k = |k| and r = |r|. Ei,f and ki,f are the
total energy and wave vector of the system in the initial state
i (i.e., the state before photon emission) or in the final state f

(i.e., the state after photon emission), ψi(r) and ψf (r) are the
wave functions of the system in the initial and final states i and
f , w = k = ∣∣k∣∣ is the photon frequency (energy), and ξ−1 and
ξ+1 are the vectors of the circular polarization with opposite
rotation directions. We use the Coulomb calibration, where the
polarization vectors e(α) for each photon are perpendicular to
its wave vector k. Moreover, we use the system of units where
h̄ = 1 and c = 1. Such notations are used in accordance with
Refs. [5,10–12]. N0 is a coefficient calculated by (see Ref. [13])

N0 = Z2
effe

2

(2π )4m
, (10)

where Zeff and m are the effective charge and reduced
mass of the daughter-fragment system, respectively, where
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Zeff = (Zf Ad − ZdAf )/(Af + Ad ) (symbols f and d

represent fragment and daughter, respectively).
In a spherically symmetric approximation of the fissioning

system, the matrix element (9) can be rewritten as

p(w,ϑ) = −
√

1

3

+∞∑
l=0

il(−1)l (2l + 1) Pl(cos ϑ)

×
∑

µ=−1,1

hµJmf
(l, w), (11)

h± = ∓ 1√
2

(1 ± i).

Here, Jmf
(l, w) is the radial integral independent of the

angle ϑ :

Jmf
(l, w) =

∫ +∞

0
r2R∗

f (r, Ef )
∂Ri(r, Ei)

∂r
jl(kr) dr, (12)

where Ri(r) and Rf (r) are the radial components of the total
wave functions ψi(r) and ψf (r) of the system in the initial state
i and final state f , respectively; jl(kr) is the spherical Bessel
function of order l; and Pl(θ ) is Legendre’s polynomial of
order l. We use such selection rules for the quantum numbers
l and m:

i state before emission: li = 0, mi = 0;

f state after emission: lf = 1, mf = −µ = ±1.
(13)

To obtain the bremsstrahlung spectrum, we have to know
wave functions (w.f.) in the initial and final states. We find
the radial components χi,f (r) numerically on the basis of the
given potential [here, χi,f (r) = rRi,f (r)], where the following
boundary conditions should be used: before photon emission,
we have the system with direct emission of the fragment, so the
w.f. of such a system in the i state equals the outgoing plane
wave at infinity; after photon emission, the state of the system
could be changed and it is more convenient for the description
of the f state to use w.f. for scattering of the fragment upon
the daughter nucleus. So, we impose the following boundary
conditions on the radial components χi,f (r):

initial state i: χi(r → +∞) → G(r) + iF (r),

final state f : χf (r = 0) = 0,
(14)

where F and G are the Coulomb functions as used in Ref. [1].

D. Calculation of the radial integrals in the far
asymptotic region

Masses of heavy fragments participating in spontaneous
fission of 252Cf and high energies of emitted photons require
that a large number of oscillations of integrand functions
be taken into account. Serious problems arise concerning
the fission in the bremsstrahlung spectra calculations. A
fairly precise convergence in bremsstrahlung calculations can
apparently be achieved with a determined mass region of
fragments and photon energies if we can separate the integrand
function forming the studied radial integral into different
harmonics in the asymptotic region Ras. Then we integrated
all these harmonics separately, and finally we reached the

total spectrum on the basis of such obtained integrals. So,
using Eq. (12) for the radial integral, in the asymptotic region
(starting from some value Ras) we have the following wave
functions of the α-decaying nuclear system in the initial state
i and final state f :

ψi(r) = Ri,l=0Y00
(
ni

r

) = Ni

Gi,l=0(r) + iFi,l=0(r)

r
,

ψf (r) = Rf,l=1

∑
m

Y1mf

(
nf

r

)
(15)

= Nf

Af Gf,l=1(r) + Bf Ff,l=1(r)

r

∑
mf

Y1mf

(
nf

r

)
,

where F (r) and G(r) are Coulomb functions, and we use the
normalization

Ni =
√

m

ki

, Nf = 2√
A2

f + B2
f

. (16)

So, the asymptotic part of integral (12) can be written as

Jas(n) = NiNf

∫ Rmax

Ras

[Af Gf (r) + Bf Ff (r)]
d

dr

× Gi(r) + iFi(r)

r
jn(kphr)r dr. (17)

After an appropriate elaboration of the formalism to obtain
accurate formulas for the Coulomb functions in the far
asymptotic region, we obtain the following expression for the
asymptotic part of integral (12):

Jas(n)

= NiNf

2

∫ Rmax

Ras

(
ki + i − ηi

r

)
[−(Af − iBf ) sin (θi + θf )

− (Af + iBf ) sin (θi − θf ) + i(Af − iBf ) cos (θi + θf )

+ i(Af + iBf ) cos (θi − θf )]jn(kphr) dr. (18)

For calculation of this integrand function see Appendix.

III. RESULTS

We applied the above-described method to calculate the
spectrum of photons emitted during the spontaneous fission
of the 252Cf nucleus. To achieve this, we first needed to
estimate in the bremsstrahlung spectrum the contribution from
only one fragment (with the related daughter nucleus), with
arbitrary mass and charge numbers A and Z, that is produced
in the spontaneous fission process by a specific Q value.
Figure 3(a) shows the distribution of Q values for fragments
with mass number A included in the range 4–125 (more than
2000 fragments) in the spontaneous fission of 252Cf. All these
fragments cause specific emission of bremsstrahlung photons;
therefore, the problem of obtaining the total bremsstrahlung
spectrum in the spontaneous fission of a heavy nucleus is very
complex.
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FIG. 3. (Color online) Bremsstrahlung probabilities obtained
for light and medium fragments participating in fission of 252Cf:
(a) distribution of Q values relative to mass number A of frag-
ments, which are emitted during the fission of the 252Cf nucleus;
(b) bremsstrahlung spectrum for the α emission from 252Cf (solid
line, Q = 6.217 MeV), in comparison with the spectra accompanying
the α decay of 214Po (dashed line, Q = 7.7 MeV) and 226Ra (dash-
dotted line, Q = 4.8 MeV), given in Ref. [5]; (c) bremsstrahlung
spectra connected with the emission of 9Be (dotted line, Q =
6.927 MeV), 12C (dash-dotted line, Q = 23.318 MeV), and 24Mg
(dashed line, Q = 54.583 MeV) fragments from 252Cf, in comparison
with the bremsstrahlung spectrum for the α emission (solid line,
Q = 6.217 MeV) from the same 252Cf nucleus.

A. Emission caused by light and medium fragments
in fission of 252Cf

As a first step we selected this kind of fragment and
calculated the spectrum of photons that we already know,
as shown in the description of the bremsstrahlung emission
during the α decay of heavy nuclei [5,6]. Also, in the present
case of the 252Cf nucleus, we started our calculations for the
estimation of the bremsstrahlung spectrum accompanying the
α decay. Results of such calculations are presented in Fig. 3(b),
where we used ϑαγ = 90◦ and l = 0. For a comparison we
also included our previous results [5] for the α decay of
the 214Po and 226Ra nuclei in this figure. The bremsstrahlung
spectrum for the α emission from 252Cf is lower than the one
obtained for the α emission from 214Po because the barrier
for α emission is higher in the case of 252Cf [see Fig. 4(a)].
As already noted in Fig. 2 of Ref. [5], the slope of photon
emission is lower for the nucleus where the difference between
the energy Eα and the top of barrier in the tunneling region
is greater. As Fig. 4(a) shows, this also occurs for the α

emission from 252Cf. Moreover, in Fig. 3(c) we present the
calculated photon spectra for the medium fragments, 9Be,
12C, and 24Mg, in comparison with the photon spectrum
obtained for the α decay from the same nucleus. The photon
spectrum yield is higher for heavy fragments with higher
Q values and effective charge. For the case of a bremsstrahlung
spectrum connected with the emission of 9Be from 252Cf,
the spectrum yield is lower than the one for the α emission
because, in spite of the comparable Q values and effective
charges [Q(9Be) = 6.927 MeV, Q(4He) = 6.217 MeV, and
Zeff(9Be) = 0.5, Zeff(4He) = 0.444], the barrier for the 9Be
fragment in the tunneling region is larger than the one for the
α emission [see Fig. 4(b)]. This condition for the 9Be fragment
decreases the emission probability of photons in comparison
with the case of the α emission, as already observed in Ref. [5].
In the case of a heavier fragment, for example 24Mg, the
yield of the photon spectrum is higher than that for the lighter
fragments.

B. Emission caused by heavy fragments and total spectrum of
bremsstrahlung accompanying the spontaneous

fission of 252Cf

Calculations for photon emission accompanying heavy
fragments are more complex. Fragments with larger masses
determine fission events with larger Q values. To achieve stable
bremstrahlung spectra, we need to take a larger number of
integrand function oscillations into account in the integration
of the matrix element. High energies of emitted photons
(from several hundreds of keV to tens of MeV) reinforce this
difficulty. After explicit integration of the matrix element in
the far asymptotic region, we improved our code to allow
the achievement of the necessary stability for many heavy
fragments. The results of such calculations for heavy fragments
inside the region of masses A = 95–115 are presented in Fig. 5.

The total spectrum of photons emitted during the sponta-
neous fission of the 252Cf nucleus is obtained by averaging the
probabilities of photon emission from all separated fragments.
The contribution of the photon emission caused by each
fragment in the total bremsstrahlung spectrum is calculated by
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FIG. 4. (Color online) (a) The α nucleus barriers for the α decay from 252Cf (dashed line) and 214Po solid line): dotted lines represent the
energy Eα = 6.217 MeV for the α emission from 252Cf, and the energy Eα = 6.7 MeV for the α emission from 214Po. (b) Barriers for the
α emission (dashed line) from 252Cf and the 9Be fragment emission (solid line) from 252Cf: dotted lines represent the energy Eα = 6.217 MeV
for the α emission from the 252Cf, and the energy E9Be = 6.927 MeV for the 9Be emission from the same nucleus. In both panels, the respective
barriers are also indicated.

taking into account the fission probability of the 252Cf nucleus
for each fragment. So, we calculate the total bremsstrahlung
spectrum by the formula

dP (w,ϑ)

dEγ

=
∑

i

ai

dPi(w,ϑ)

dEγ

(
with the condition

∑
i

ai = 1

)
,

(19)

where ai is the weight amplitude for the fission process
emitting fragment with number i, and summation is performed

over the involved region of masses. To find interesting
weight amplitudes for different fragments, we used the mass
distribution yields for the 252Cf nucleus given in Ref. [14] in
comparison with the experimental data [15]. Because the main
region of the fragment distribution is contributed by fragments
of spontaneous fission included in the 95–115 mass range
(with daughter nuclei included in the complementary 137–
157 range), we limited our calculation of the bremsstrahlung
emission within this fragment range. As an example, in
Fig. 5(a) we present the comparison of the bremsstrahlung
probability related to the photon emission accompanying the
spontaneous fission of 252Cf by seven fragments (from 95Zr to
115Rh) with masses included in the above-mentioned region.
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FIG. 5. (Color online) (a) Calculation of bremsstrahlung photon emission probabilities caused by heavy fragments included in mass region
A = 95–115 during the spontaneous fission of the 252Cf nucleus (solid line, 95Zr fragment: Q = 202.36 MeV, Zeff = 3.055; dashed line, 97Nb:
Q = 200.43 MeV, Zeff = 3.277; dash-dotted line, 100Mo: Q = 204.81 MeV, Zeff = 3.111; dashed double-dotted line, 103Tc: Q = 204.47 MeV,
Zeff = 2.944; short dotted line, 105Ru: Q = 205.22 MeV, Zeff = 3.166; thin solid line, 110Rh: Q = 214.53 MeV, Zeff = 2.222; dotted line,
115Rh: Q = 226.74 MeV, Zeff = 0.277). (b) Total bremsstrahlung photon probability in the spontaneous fission of the 252Cf nucleus: calculation
of the spectrum (solid line) obtained by averaging the spectra for contributions of all fragments; sets of experimental data given by squares [16],
triangles [17], diamonds [18], stars [19], and circles [20].
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The different contributions of bremsstrahlung probability of
various fragments are sensitive to the effective charge Zeff

and the Q value of each decay fragment. While for many
considered fragments the Q values and Zeff are substantially
comparable and the contributions of photon emission are
comparable too, for the case of the 115Rh fragment, Zeff is
very low (0.277) and the bremsstrahlung spectrum contribution
is lower than the others. Figure 5(b) shows the average
total spectrum (solid line) of the photon emission probability
calculated by formula (19). In Fig. 5(b) we also include as
a comparison the experimental data given in various papers
[16–19] and Ref. [20]. Our calculations were obtained in the
framework of a fully quantum approach and agree well with the
experimental data in the literature concerning bremsstrahlung
photon emission in the spontaneous fission of 252Cf in the Eγ

energy range up to about 20 MeV. In the 20–38-MeV range,
however, the calculations agree only with the experimental
data of Eremin et al. [20].

At the conclusion of this section we briefly discuss the
possibility of investigating the influence on the bremsstrahlung
spectrum of photon emission during spontaneous fission
if one includes in the liquid drop model (i) variations due
to the charge distribution inside the nuclear system and its
motion during the dynamics of the fissioning process and
(ii) the effects of the shell corrections on the density inside
the nuclear system and the fission barrier.

Such aspects can constitute an interesting prospective
of investigating eventual relevant modifications of the
bremsstrahlung spectra, because the inclusion of the men-
tioned details should be reflected in some modifications of
the interaction potential between the daughter nucleus and the
emitted fragment, which could appear in the bremsstrahlung
spectrum. At the present status of our proposed model, the in-
fluence of such proposed modifications to the bremsstrahlung
spectra seems to be smaller than the present achieved accuracy
of the calculated spectra. For example, if we shift the boundary
of the asymptotic region Ras to smaller values, where we apply
the approach presented in Sec. II D and Appendix, the error
that appears after such a shift is smaller than the error that we
have in direct calculation of the matrix element based on the
wave functions obtained separately by our more accurate and
nonasymptotic method. Moreover, the considered boundary is
in the external region of Coulomb forces, where the emission
seems to be stronger, while aspects of the liquid drop model
take place in the nuclear region. So, if we want to study the
effects caused by peculiarities of the liquid drop model, at
first we have to solve the above-mentioned technical problems
to obtain convergent spectra. In any case, in spite of the
difficulty in teh form of complex and long calculation times, the
modification of the interaction potential including variations of
the nuclear density in the framework of the modern liquid drop
model and shell corrections (see, for example, Refs. [21–24])
is an interesting prospective task.

IV. CONCLUSIONS

In this article we presented a new development of our model
concerning the study of the bremsstrahlung photon emission
accompanying the spontaneous fission of heavy nuclei, for

example, 252Cf. We studied the fissioning process in a fully
quantum approach using the spherical wave approximation
for the description of a photon wave function (see Ref. [25]).
We applied our method to the spontaneous fission of the
252Cf nucleus and checked the model and calculation by
experimental data [16–20] for the fission of 252Cf. Our results
on the total bremsstrahlung spectrum probability calculated
up to about Eγ = 60 MeV of photon emission accompanying
the spontaneous fission of 252Cf were in good agreement
with the experimental data of Eremin et al. [20] given up
to about Eγ = 38 MeV, whereas in the Eγ = 20–38 MeV
energy range the data of van der Ploeg et al. [16] differed
on average by a factor of 10 in comparison with our results
and the data of Ref. [20]. We analyzed the photon spectra
for light, medium, and heavy fragments produced in the
252Cf fission and we observed the connection between the
yield of the bremsstrahlung spectrum due to each fragment,
the related Q value, and the effective charge Zeff , which
determine the wave functions of the fissioning system and
the bremsstrahlung emission probability. To obtain these
wave functions, we used the interaction potential between the
emitted fragment and residual (daughter) nucleus calculated
by a standard approach. One of the main problems was
the calculation of the radial integrals that form the matrix
elements of emission. We performed a new procedure which
allows us to essentially increase the accuracy of wave-function
calculation in far asymptotic regions. Such a new procedure
has provided the possibility to study for the first time the
bremsstrahlung photon emission in the fission problem in
the fully quantum approach and to calculate the γ -spectrum
probability up to Eγ = 60 MeV for the 252Cf spontaneous
fission.

Moreover, we think that the inclusion of more details in the
liquid drop model to study its effects on the bremsstrahlung
spectra of photon emission, in spite of the difficulties
of complex and long calculation times, is an interesting
prospective task.

APPENDIX: CALCULATION OF THE INTEGRAND
FUNCTION

In Fig. 6(a) we present the calculation of the integrand
function by formula (18). As one can see, this function appears
to be quite complicated and has a harmonic structure. By
analyzing its behavior in more detail we find that this function
has a huge number of oscillations. In Fig. 6(b), we report the
concrete calculation obtained for the range of radius r of 1 fm
(from 890 to 891 fm) in the case of the 115Rh fragment emitted
from the fission of 252Cf, and for photons in a 300-keV energy
range. The function has about 8 oscillations in this range of
1 fm, whereas inside the 25–2225 fm region it has 17 600
oscillations.

However, integral (18) can be separated explicitly into
integrals based on different harmonics:

Jas(n) = NiNf ki

2
[−(Af − iBf )J+

1 − (Af + iBf )J−
1

+ i(Af − iBf )J+
2 + i(Af + iBf )J−

2 ]
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FIG. 6. (Color online) (a) Real part of the integrand function of
the radial integral (17) for the 115Rh fragment emitted during spon-
taneous fission of the 252Cf nucleus; (b) shape of this function inside
1 fm (from 890 up to 891 fm), where one can see that this function
has about eight oscillations; (c) integrand function of integral (A3),
representing the harmonic approximation of original integral (18).

+ NiNf (i − ηi)

2
[−(Af − iBf )J+

3 − (Af + iBf )J−
3

+ i(Af − iBf )J+
4 + i(Af + iBf )J−

4 ], (A1)

where

J±
1 (n) =

∫ rmax

ras

sin (θi ± θf )jn(kphr) dr,

J±
2 (n) =

∫ rmax

ras

cos (θi ± θf )jn(kphr) dr,

J±
3 (n) =

∫ rmax

ras

sin (θi ± θf )
jn(kphr)

r
dr,

J±
4 (n) =

∫ rmax

ras

cos (θi ± θf )
jn(kphr)

r
dr. (A2)

With the aim of finding integrals with the largest period
of oscillations of the integrand functions, we should use
harmonics with the smallest argument; that is, we obtain
θi − θf and the J−

1 , J−
2 , J−

3 , J−
4 integrals. The integrand

functions in J−
3 and J−

4 decrease more strongly at increasing
r in comparison with the ones in J−

1 and J−
2 . So, J−

3 and J−
4

have smaller contributions in the total integral (A1). Therefore,
formula (A1) can be written in a simplified form:

J−
as (n) ∼= NiNf ki

2
(Af + iBf )[−J−

1 (n) + iJ−
2 (n)]. (A3)

In Fig. 6(c), we present the integrand function of this integral.
Comparing it with the integrand function of the total integral
presented in Fig. 6(a) we conclude that the integrand function
of J−

as tends to the original function, but already without
oscillations, which seriously decreases its convergence. So,
integral (A3) can be considered an acceptable approximation
of the previous integral. In particular, inside the considered
region from r = 25 fm up to r = 2225 fm, we obtain only 6
oscillations for the integral J−

as (0), in comparison with 17 600
oscillations for the previous integral, Jas(0). The two integrals
J+

3 and J+
4 seem to give further corrections to the total integral.

Therefore, we define the following integral as

J+
as (n) ∼= NiNf ki

2
(Af − iBf )[−J+

1 (n) + iJ+
2 (n)]. (A4)

Moreover, as a last correction, taking into account the greater
decreasing speed of the integrand function at increasing r , we
can write the following:

J (r)
as (n) ∼= NiNf ki

2
{(Af + iBf )[−J−

3 (n) + iJ−
4 (n)]

+ (Af − iBf )[−J+
3 (n) + iJ+

4 (n)]}. (A5)

Of course, the summation of these integrals gives the initial
integral (A3) exactly. Our calculations of the bremsstrahlung
spectra for different heavy fragments showed that corrections
on the basis of J+

as (n) and J (r)
as (n) are practically small, so the

leading approximation provides very good accuracy.
If we want to include the contribution at r > rmax in our

consideration, we should further improve calculations of
the total radial integrals. To this aim, we use the following
approximated formulas:∫ +∞

rmax

cos αr dr

r
= sin αr

αr

∣∣∣∣
+∞

rmax

+
∫ +∞

rmax

sin αr dr

αr2


 − sin αrmax

αrmax
+ O

(
r−2

max

)
,

(A6)∫ +∞

rmax

sin αr dr

r
= −cos αr

αr

∣∣∣∣
+∞

rmax

−
∫ +∞

rmax

cos αr dr

αr2


 cos αrmax

αrmax
+ O

(
r−2

max

)
,
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which have an accuracy up to r−2
max. For the first n = 0, we

obtain

J−
1,rest(0) 
 NiNf ki

4kph

[
(Af + iBf )

sin (θi − θf − kphr)

(ki − kf − kph)r

− (Af + iBf )
sin (θi − θf + kphr)

(ki − kf + kph)r

+ (Bf − iAf )
cos (θi − θf − kphr)

(ki − kf − kph)r

− (Bf − iAf )
cos (θi − θf + kphr)

(ki − kf + kph)r

] ∣∣∣∣
r=rmax

+O
(
r−2

max

)
. (A7)

Other integrals for the next n can be calculated in this way.
However, our estimations show a negligibly small role of all
such integrals J±

i,rest(n), if the leading integral J−
as is calculated

by formula (A3) correctly and the value of rmax is selected in
an appropriate way.
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