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User’s location privacy concerns have been further raised by today’s Wi-Fi technology omnipresence. Preferred Network Lists
(PNLs) are a particularly interesting source of private location information, as devices are storing a list of previously used hotspots.
Privacy implications of a disclosed PNL have been covered by numerous papers, mostly focusing on passive monitoring attacks.
Nowadays, however, more and more devices no longer transmit their PNL in clear, thus mitigating passive attacks. Hidden PNLs
are still vulnerable against active attacks whereby an attacker mounts a fake SSID hotspot set to one likely contained within targeted
PNL. If the targeted device has this SSID in the corresponding PNL, it will automatically initiate a connection with the fake hotspot
thus disclosing this information to the attacker. By iterating through different SSIDs (from a predefined dictionary) the attacker
can eventually reveal a big part of the hidden PNL. Considering user mobility, executing active attacks usually has to be done
within a short opportunity window, while targeting nontrivial SSIDs from user’s PNL. The existing work on active attacks against
hidden PNLs often neglects both of these challenges. In this paper we propose a simple mathematical model for analyzing active
SSID dictionary attacks, allowing us to optimize the effectiveness of the attack under the above constraints (limited window of
opportunity and targeting nontrivial SSIDs). Additionally, we showcase an examplemethod for building an effective SSIDdictionary
using top-N recommender algorithm and validate our model through simulations and extensive real-life tests.

1. Introduction

Location privacy presents one of the most challenging prob-
lems in today’s mobile era. Modern mobile devices such as
smartphones, tablets, or smart watches collect information
from surrounding devices that can be used for Wi-Fi-based
positioning systems [1]. In a similar fashion, these devices
emit radio signals that can be used for localization and
tracking by using, for example, cell tower trilateration [2].
Furthermore, Wi-Fi information transmitted from mobile
devices can be used for indoor tracking and targeted services
[3–6]. Many of these solutions base their services upon col-
lecting a number of management frames (e.g., beacon, probe
request, and probe response frames,) that are transmitted by
devices, whosemain purpose is to establish a fast and efficient
connection during the authentication process.

A number of papers discuss various threats to user’s
privacy based upon collected probe requests containing an

Access Point’s (AP) Service Set Identifier-SSID [7–13]. Wi-
Fi-enabled devices using Active Service Discovery broadcast
these probe request frames aimed at the set of preferred APs
to increase the connection speed. Such probe request packet
contains an SSID of a previously associated AP stored in the
device’s preferred network list-PNL (a complete list of previ-
ously associated APs), theMAC address of themobile device,
and someother information. Simply by observing these probe
request packets, a potential attacker can learn a complete
PNL, which raises serious privacy threats. As an example,
we highlight SSID=Shelbourne Medical Clinic from a
large amount of Wi-Fi traffic that we passively collected
during a festival that attracts 50 000 people. This problem is
highlighted by the fact that SSIDs can also be geolocated (e.g.,
by using a WIGLE service [14]) thus violating user’s location
privacy.

To mitigate these privacy breaches made possible by
active scanning (AS), the devices could use passive scanning
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(PS) technique whereby devices transmit no probe request
packets but instead listen to beacon packets emitted from the
APs. Unfortunately, compared to active scanning, this tech-
nique accomplishes slower connection times [15]. Besides
direct probe mode, active scan also supports a broadcast
probemodewhere probe request packets hold an empty SSID
field. All neighboring APs (including the ones in the device’s
PNL) will answer the broadcast probe request. This mode is
widely used in most of today’s Android-based mobile devices
(Although a recent discovery showed that some Android
devices transmit their PNL while being in low-power state
with their screen turned off, it seems thatGooglewas unaware
of such vulnerability [16, 17]). Using this mode of operation,
the attacker cannot learn more information about the user’s
location history by simply observing broadcast probe request
packets.

However, the mentioned broadcast probe mode does not
protect the user from an active attack. One of the simplest
methods to verify whether a user was connected to an AP in
a specific location includes the creation of a rogue AP with
that specific name (SSID) and identifier, i.e., by mounting a
so-called Karma attack [18], verifying if the victim initiates a
connection to it. In the recent work where Karma attack was
performed, only a fraction of different SSIDswere considered,
by using a dictionary containing a small number of the most
popularAPs that are found in the surrounding area (a popular
café bar or a restaurant, etc.) [19]. Similarly, faking an AP
has also been used in [20] by performing a simple dictionary
attack on hidden SSID networks, using a Phyton library
Scapy. However, as opposed to static environments in which
users are at their homes and offices with laptops and desktop
PCs, users with smartphones are usually mobile with their
devices; hence the opportunity window for the attack can be
very time limited. In contrast to existing work, in this paper
we focus on greatly improving the attack’s performances.
We want to find methods and techniques that will allow
the attacker to query every SSID from as large as possible
dictionary within the given opportunity window against a
victim’s device. Moreover, we are interested in discovering
nontrivial SSIDs, thus increasing the importance of disclosed
SSIDs from user’s PNL.

Such form of a dictionary attack is universal to all devices
that implement IEEE 802.11 standard, regardless of the active
or passive scanning technique. The following contributions
have been made:

(i) We developed an analytical model for the SSID
dictionary attack;

(ii) We created a probing strategy that minimizes probing
time of the complete SSID dictionary;

(iii) We carried out extensive real-life tests and simula-
tions to validate our model.

Additionally, an example SSID dictionary building algo-
rithm is provided using a modified top-N recommendation
algorithm [21] to reflect victim’s PNL.

The rest of the paper is organized as follows: in Section 2
we are defining the general attack setup and describing device
behavior. Section 3 provides a comprehensive mathematical
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Figure 1: SSID Oracle attack basic setup.

model for the attack strategy followed by Section 4, which
provides an overview of the practical tests carried out on
multiple devices alongside performed simulation and an
example algorithm for building the dictionary. Finally, we
cover related work and conclude in Sections 5 and 6.

2. System and Attacker Model

Regardless of the type of scanning technique (Active Service
Discovery with or without an empty probe or Passive Ser-
vice Discovery), in our model we assume that devices are
periodically scanning for available APs as shown in Figure 1,
whereby the scanning period is significantly shorter than the
idle period when the device is not scanning for the available
networks. The scan period depends on the device model,
OS, settings controlled by the user, such as keeping Wi-Fi
on/off during sleep mode [22], location services, and also
general sensors’ activity (accelerometer, gyroscope), which
might change the state of the device. Other features that can
affect the periodic scanning behavior of Wi-Fi devices are
determined by the activity of various services, such as if cellu-
lar data is turned on, or if the smartphone is in maintenance
mode, or if the user is extensively using Internet. A compre-
hensive overview of measured scanning periods depending
on thementioned settings and scenarios can be found in [23].

2.1. Periodic Wi-Fi Scan Intervals. Scanning periods in prac-
tice do change in length, either in fixed increases or exponen-
tially. However, the scanning period tends towards repetition
in the same length intervals, as can be seen from [23, 24].The
authors have tested various Apple and Android devices and
the results have shown that all the devices end up scanning
for Wi-Fi networks in fixed intervals. Periodic behavior was
observed in various use cases for the victim (Wi-Fi settings
screen, other screens, and display off). The authors in [23]
have also concluded that these are fixed times depending on
the victim’s device and operating system, which has also been
observed in our tests. Furthermore, the periodical behavior
can be actively provoked, and the required scanning/idle
time durations can be measured by the attacker, as it will
be described in the following subsection. Increasing the
scanning frequency also increases the success rate of various
Wi-Fi attacks/data analysis and has been noted by others
before [25].

2.2. Increasing the Scanning Frequency. Although the model
presented in this paper optimizes the performances for any
given periodic scanning frequency, there are ways for the
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attacker to actively control the periodic behavior of Wi-Fi
scanning intervals. For example, in our tests with smartphone
devices, we showed that if the device is in sleep mode having
cellular data enabled (e.g., with EDGE/3G/4G), simply by
sending push notification to the victim (a WhatsApp/Viber
message) we can induce the device to wake up and initiate a
Wi-Fi scan.We have noticed that the device typically initiates
the scan within 5𝑠 from waking up. If cellular data is not
enabled, we can also send an SMS to force the device to wake
up from the sleep state.

We have observed that some devices, prior to going to
sleep mode, scan for the neighboring APs with time periods
that increase exponentially. Our initial brief analysis on
iPhone 6s plus has shown another method to minimize the
scan intervals for a device while being in sleep mode. By
assuming that the device is connected to a known AP and
continuously enabling iPhone to connect/force disconnect
from the AP (e.g., by jamming aWi-Fi channel), we can keep
the device in a 60𝑠 scan period, as opposed to double or triple
values otherwise.

2.3. Threat Model. As depicted in Figure 1, two different
timelines are present during the attack. The configuration
of the device timeline is unknown to the attacker, and the
attacker timeline is limited in length (the attack can be
performed only within the Wi-Fi vicinity of the victim). The
attacker is constantly faking APs using different SSIDs. The
goal is to test as many unique SSIDs within the available
time, using as much as possible of the match opportunity
time during the device scan period. If the attacker gets a
connection attempt from the device, for a fake AP, the attack
is considered a success.

Although the basic idea seems quite straightforward, the
attack presents a lot of different challenges. How does the
attacker know when the match opportunity occurs? What is
the scanning and idle period length? How good is the Wi-
Fi communication channel? Which SSIDs should be tested?
How do we maximize the number of unique SSIDs we can
test?

In the following section, we will answer these questions
and describe the SSID Oracle attack.

3. Modeling the Problem

This section introduces a comprehensive mathematical
model that depicts a general SSID attack. We begin with
modeling the problem, after which we introduce the SSID
Oracle attack accompanied by various attack variations and
optimization techniques.

The proposed general model depicts a simple question:
how can an adversary recover (at least one) SSID from the
user’s PNL and thus his previouswhereabouts.The theoretical
model comprises various SSID attacks scenarios, ranging
from well-known passive sniffing to active attacks in which
an adversary performs the attack with rogue access point or
even advanced brute force attacks to user’s PNL.

Before we pursue the detailed description of the attack, let
us denote the following notation used to describe the location
privacy game. First, we denote a targeted user’s preferred

network list (PNL)withP, unknownby the adversaryAprior
to the attack.D denotes a dictionary list of (nontrivial) SSIDs
prepared by A to be tested. A has a limited time period to
execute the attack, so D needs to contain SSIDs which are
highly likely to be present inP. A confirmation that an SSID
from D is successfully tested to be present in P is denoted
with a ℎ𝑖𝑡.A has a goal of achieving a ℎ𝑖𝑡, under assumption
thatP ∩D ̸= 0 holds.
Definition 1. We define success probability P𝐿−𝑝𝑟𝑖V𝑠𝑢𝑐𝑐 (A) as
the probability that the adversary A performs a successful
location privacy attack 𝐿 − 𝑝𝑟𝑖V and learns at least one SSID
fromP:

P
𝐿−𝑝𝑟𝑖V
𝑠𝑢𝑐𝑐 (A) ≜ P [P ∩D ̸= 0, ℎ𝑖𝑡]

= P [P ∩D ̸= 0] ⋅ P [ℎ𝑖𝑡 | P ∩D ̸= 0]
(1)

As can be seen, the success probability P𝐿−𝑝𝑟𝑖V𝑠𝑢𝑐𝑐 of the
attacker A can be denoted as a product of two probabilities.
Conditional probability P[ℎ𝑖𝑡 | P ∩ D ̸= 0] denotes the
probability in which A observes a hit (a successful query),
meaning that conditionP ∩D ̸= 0 holds. Probability P[P ∩
D ̸= 0] is responsible for building a good quality dictionary
for the targeted victim such that the condition P ∩ D ̸= 0
holds. Since the available opportunity window for A is time
limited, potential attack’s performances need to be optimized
alongside having a quality dictionary.

There is a wide range of different strategies for reveal-
ing user’s PNL (e.g., ranging from blind guessing to even
physically reading P off the user’s screen). Some devices in
Active Service Discoverymode are transmitting the complete
unencrypted PNL list to quickly establish a connection to a
previously associated APs [17]. ForA gathering unencrypted
probe request packets represents a trivial problem for reveal-
ingP and will not be discussed any further in our work. Our
model assumes that devices are periodically broadcasting
empty probe requests or are passively scanning for APs. Aswe
describe further in this paper, all Wi-Fi devices using active
or passive service discovery are vulnerable to our attack.

3.1. Defining SSID Oracle. Recall, to verify that the victim’s
device holds an 𝑆𝑆𝐼𝐷 within its preferred network list P,
that the adversaryA can mount a rogue access point holding
that specific SSID (i.e., by using the Karma tool [18].). If A
confirms that the user initiated a connection, he concludes
that the 𝑆𝑆𝐼𝐷 is a part of the victim’s PNL list (𝑆𝑆𝐼𝐷 ∈ P).

Definition 2 (SSID Oracle). We denote victim as a binary
response SSID Oracle O. When A fakes an 𝑆𝑆𝐼𝐷, he is
queryingO for a binary outcome. If 𝑆𝑆𝐼𝐷 ∈ 𝑃, thenO returns
a positive outcome; otherwiseO does not respond.We denote
the following notation:

O (𝑆𝑆𝐼𝐷) = {
{
{
1, 𝑖𝑓 𝑆𝑆𝐼𝐷 ∈ P

0, 𝑖𝑓 𝑆𝑆𝐼𝐷 ∉ P
(2)

In our attack O responds to queries only during the
scanning period (Figure 1, match opportunity) and will
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Figure 2: Conditional ℎ𝑖𝑡 chanceP[ℎ𝑖𝑡 | P∩D ̸= 0] and dictionary
quality P[P ∩D ̸= 0] in comparison to the size of dictionary |D|.

respond with a positive outcome only in the case that the
queried SSID is within its P. No response is considered to
be a negative outcome. However, the success rate of querying
O is subject to channel quality, which can potentially cause
false negatives. In case of a low channel quality, the attacker
cannot tell whether the cause for no response is 𝑆𝑆𝐼𝐷 ∉ P or
the victim did not receive the query.

IfOwould respond to every query and thematch opportu-
nity would span during the entire attack time uninterrupted,
our work would be much simpler, as we would only have
to manage the problem of building a good quality SSID
dictionary and test every SSID from that list one by one. A
similar approach has already been covered by many papers
describing dictionary or brute force attempts on password
cracking [19, 26].

Since in our model the attacker does not actually know
when that match opportunity period occurs (we assume
the worst case scenario in our model with passive scan, as
measured for iOS 10) and is subject to channel quality, it
is necessary to create a model/algorithm that will allow the
attacker to test every SSID at least once with as high proba-
bility as possible, within the match opportunity window.

3.2. SSID Oracle Attack. Independently of the type of scan-
ning technique (Active Service Discovery with or without
an empty probe request or Passive Service Discovery) in our
model the Wi-Fi scan occurs periodically every 𝑇𝐼 seconds
(idle period in between scans) and lasts only for a short
scanning period of 𝑇𝑆, such that 𝑇𝑆 ≪ 𝑇𝐼.

Figure 2 describes the general trade-offs thatwe facewhen
executing SSIDOracle attack. As mentioned at the beginning
of this section, to succeed in the location privacy game the
adversaryA would have to create a dictionary of (nontrivial)
SSIDs that hold at least one SSID fromP. A simplest solution
would be to increase the dictionary size so that the probability
P[P ∩D ̸= 0] of finding at least one SSID approaches 1. This
can be clearly seen fromFigure 2, where the shape of the curve
depends on different approaches to building D. Our goal is
to test SSIDs having a higher chance of being in P first, so
P[P ∩D ̸= 0] will grow faster for smallD with tendency of
becoming linear for largeD. One such example approach on
building dictionaries based on recommendation algorithm is
described in Section 3.5. However, dictionary size depends
on the opportunity window 𝑇𝐴, the time available for the
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Figure 3: Attacker and victim timelines.

attacker to execute the attack (Figure 1). If we take into
account the fact that adversaryA sends SSIDs (e.g., beacons)
at maximum rate 𝑟, we can denote with slot a discrete
time period in which one 𝑆𝑆𝐼𝐷 from D is sent to the
Oracle O (victim’s device) within 𝑇𝑆 period. Since 𝑇𝑆 is the
only valuable time period for A to conduct the attack, the
maximum available number of time slots for the attacker
within opportunity window 𝑇𝐴 equals (𝑇𝐴 ⋅ 𝑇𝑆)/(𝑇𝑆 + 𝑇𝐼) ⋅ 𝑟.
For this reason, the dictionary size tested on O satisfies the
following condition: |D| ≤ (𝑇𝐴 ⋅ 𝑇𝑆)/(𝑇𝑆 + 𝑇𝐼) ⋅ 𝑟. As the
dictionary size increases, the required time for the attacker
A to test all SSIDs increases, so the conditional probability
P[ℎ𝑖𝑡 | P ∩D ̸= 0] drastically decreases.

Another observation shows just how big of an impact 𝑇𝐼
has on the attack. If we assume that idle time is zero (𝑇𝐼 = 0),
the victim’s device would be constantly scanning the Wi-Fi
channel. A can then create D such that the dictionary size
equals the maximum number of time slots available in 𝑇𝐴
(D = 𝑇𝐴 ⋅ 𝑟). A could easily test many more SSIDs from
the dictionary against the victim’s device within𝑇𝐴 (by taking
into account the fact that all queries arrive to the Oracle O
(there are no collisions in Wi-Fi channel) and that there are
no retransmissions.).

In our model, we do not know when 𝑇𝑆 or 𝑇𝐼 occurs,
just a measurement of their lengths. To be able to execute
the attack, despite not knowing when a new scanning period
starts, a logical solution (intuition) would be to create small
chunks of size 𝐿 testable slots, fill them with SSIDs from D,
and retransmit chunks for the duration of time period𝑇 until
we are convinced thatO received all 𝐿 queries from the chunk
at least once. After the chunk retransmission time 𝑇,A sends
the following chunk containing another 𝐿 slots.The proposed
method is described in detail in Figure 3.

The attacker strategy 𝑠 can be described by using the
following tripletD, 𝐿, and 𝑇:

𝑠 = (D, 𝐿, 𝑇) (3)

Our goal is to find the optimal strategy 𝑠∗ which will
result, given the available time period 𝑇𝐴 (opportunity
window), in the best SSID Oracle attack execution:

𝑠∗ = argmax
(D,𝐿,𝑇)

P [ℎ𝑖𝑡 | P ∩D ̸= 0] ⋅ P [P ∩D ̸= 0] (4)
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The following sections focus on defining 𝑠∗. We start by
discussing and defining 𝐿 and 𝑇 parameters which affect
the efficiency of attack execution. Later in Section 3.5 an
example method for defining and building a good qualityD
is presented.

3.3. Finding Optimal Parameters 𝐿∗ and 𝑇∗. As we men-
tioned in the previous section, chances of making Oracle
O respond to a query with a positive answer depend on
multiple parameters, out of which some are predetermined
by the Oracle (smartphone) implementation (i.e., periods
𝑇𝐼, 𝑇𝑆), while some are controlled by the adversary A (i.e.,
dictionaries D, 𝐿, and 𝑇). In this section, our goal is to find
the optimal parameters for the chunk size 𝐿∗ and chunk
retransmission time period 𝑇∗. Recall from Figure 3 that
it is necessary to find a strategy that guarantees (with high
probability) that every 𝑠𝑙𝑜𝑡 from the chunk of size 𝐿 hits the
scanning interval 𝑇𝑆.

Let us consider the scenario in which the attacker A
is omniscient; i.e., A knows the exact moment at which O
initiates the search for neighboring SSIDs. Since A knows
when scan initiates and also its duration 𝑇𝑆, he can adapt the
attack transmission start time 𝑇𝑠𝑡𝑎𝑟𝑡 towards O at maximum
rate 𝑟, as can be seen in Figure 4-I.Nowwe can easily conclude
that the maximum number of unique slots that can fit into 𝑇𝑆
equals to 𝑟 ⋅ 𝑇𝑆 (recall that 𝑟 denotes a rate at which chunks
are transmitted). Due to the fact that during the period 𝑇𝐼
the OracleO cannot receive any query fromA, we can denote
𝑟⋅𝑇𝑆 as a single chunkL𝑖, i.e., |L𝑖| = 𝐿 𝑖 = 𝑟⋅𝑇𝑆. Now, referring
back to our attacking model (Section 2),A is not omniscient
and cannot actually know when 𝑇𝑆 starts; therefore it is
necessary to find such a strategy that the complete L finds
𝑇𝑆 period.

Please observe from Figure 4 that since the 𝑇𝑆 + 𝑇𝐼
intervals are periodically repeating, the easiest solution for
A would be to retransmit chunks L𝑖 towards left and right
(Figure 4-II) and expand them until it reaches the expansion
of chunk L𝑖−1 on the left and chunk L𝑖+1 on the right

(Figure 4-III). How does this help the attacker? Figure 4-IV
shows that since chunk retransmission period equals 𝑇 =
𝑇𝑆+𝑇𝐼 and 𝐿 = 𝑟⋅𝑇𝑆, regardless of when𝑇𝑠𝑡𝑎𝑟𝑡 period actually
occurs, the complete chunk is still going to hit the appropriate
scanning period 𝑇𝑆, with 𝑇𝑠𝑡𝑎𝑟𝑡 ∈ [0, 𝑇𝑆 + 𝑇𝐼]. The zoomed
sections in Figure 4, A (in case of all-knowingO scenario) and
B (in case of any other scenario), show that the same unique
SSIDs contained inL chunkwill overlap the scanning period
𝑇𝑆 in both cases.

For this reason the optimal chunk size equals the number
of slots that can fit in the scanning period 𝑇𝑆:

𝐿∗ = 𝑟 ⋅ 𝑇𝑆, (5)

whereas the optimal time interval to retransmit 𝑖 − 𝑡ℎ
chunk equals the sum of 𝑇𝐼 and 𝑇𝑆:

𝑇∗ = 𝑇𝑆 + 𝑇𝐼. (6)

Given the attacker’s opportunity window 𝑇𝐴, we can
calculate the maximum number of unique testable slots𝑁𝑠𝑙𝑜𝑡
for our strategy 𝑠∗:

𝑁𝑠𝑙𝑜𝑡 = 𝑇𝐴
𝑇𝑆 + 𝑇𝐼 ⋅ 𝐿, (7)

We have shown that by using optimal 𝑇∗ we can achieve
the same number of slots𝑁𝑠𝑙𝑜𝑡 compared to the omniscientA
we started this discussion from, although the actual attacker
A cannot tell the exact moment at which O initiates 𝑇𝑆.

The following conclusion sums up our observations so
far: when defining 𝑠∗, execution of SSID Oracle attack with
parameters 𝐿∗ (5) and 𝑇∗ (6) will maximize the available
number of unique slots 𝑁𝑚𝑎𝑥.

However, in low channel quality conditions there is
always a chance that query sent fromA does not get to O. If
we have a hit (O responds to a query with positive outcome),
there is a chance that the response does not get toA, so we are
introducing a new parameter-probability 𝑝 that SSID Oracle
successfully receives and responds to a query.

For this reason it may not be optimal to fill all the slots
with unique SSIDs; thus the size of the dictionary might have
to decrease even further.

D𝑚𝑎𝑥 ≤ 𝑁𝑠𝑙𝑜𝑡. (8)

3.4. Matching Dictionary to Slots. In previous sections we
carried out the analysis of proposed model in good quality
channel environments (𝑝 ≈ 1). We have shown that the
optimal chunk retransmission time is the period𝑇∗ = 𝑇𝑆+𝑇𝐼,
while the chunk size equals the number of queries that can fit
the scan interval |L| = 𝐿∗ = 𝑟 ⋅ 𝑇𝑆. In this scenario, |D| was
equal to the maximum number of testable slots |D| = 𝑁𝑠𝑙𝑜𝑡
within 𝑇𝐴.

However, what can be done in scenarios of low quality
channel 𝑝 < 1? In such scenarios, not all slots that attackerA
sends within scan period 𝑇𝑆 will be received by O, the same
way the responses sent byO (in case we have a hit) will not be
received byA (all these parameters depend on attacker’s Wi-
Fi card quality, victim’s Wi-Fi card quality, channel quality,
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distance from the attacker and the victim, etc.). To be more
precise, in low quality channel conditions it could be better to
retransmit SSIDs that have a larger probability of occurrence
in the victim’s PNL list, rather than to transmit𝑁𝑠𝑙𝑜𝑡 different
SSIDs for a given 𝑇𝐴.

Let us useD󸀠 to denote the set of all SSIDs known byA,
whereas not all 𝑆𝑆𝐼𝐷s from D󸀠 have the same probability of
being part of the victim’s PNL listP. Our goal is to maximize
P𝐿−𝑝𝑟𝑖V𝑠𝑢𝑐𝑐 thus finding the optimal D ⊂ D󸀠 to be tested within
window of opportunity 𝑇𝐴. The event of a successful O test,
with a positive result, is denoted by ℎ𝑖, ∀𝑖 ∈ D󸀠. To find the
best D, A has to use different tools (such as the example
recommender system found in Section 3.5) to assign a chance
that an SSID contained inD󸀠 is also contained in the victim’s
PNL. For this purpose, we are introducing a new subjective
probability parameter 𝑝𝑖 assigned to every SSID in D󸀠 and
calculated byA.

𝑝𝑖 ∈ [0, 1] ∀𝑖 ∈ D
󸀠 (9)

Recall that we denote with slot a discrete time period in
which one 𝑆𝑆𝐼𝐷 is sent to the victim’s device within𝑇𝑆 period.
It is our goal to determine the number of slots every SSID in
D󸀠 should take:

𝑛𝑖 ∈ [0,𝑁𝑠𝑙𝑜𝑡] ∀𝑖 ∈ D
󸀠 (10)

In order to characterize 𝑛𝑖, we proceed as follows:

P
𝐿−𝑝𝑟𝑖V
𝑠𝑢𝑐𝑐 = P [P ∩D

󸀠 ̸= 0] ⋅ P [ℎ | P ∩D
󸀠 ̸= 0]

= P [P ∩D
󸀠 ̸= 0]

⋅ P [ℎ1 ∨ ⋅ ⋅ ⋅ ∨ ℎ|D󸀠| | P ∩D
󸀠 ̸= 0]

(11)

The dictionary quality equation part of (11) resolves to

P [P ∩D
󸀠 ̸= 0] ≜ ∑

𝑖∈𝐷󸀠

P [𝑖 ∈ P | P ∩D
󸀠 ̸= 0]

= ∑
𝑖∈𝐷󸀠

𝑝𝑖 ≤ 1,
(12)

Attack execution equation part of (11) resolves to

P [∨𝑖ℎ𝑖 | P ∩D
󸀠 ̸= 0] ≤ ∑

𝑖∈D󸀠

P [ℎ𝑖 | P ∩D
󸀠 ̸= 0]

(1)= ∑
𝑖∈D󸀠

P [ℎ𝑖, 𝑖 ∈ P | P ∩D
󸀠 ̸= 0]

= ∑
𝑖∈D󸀠

(P [ℎ𝑖 | 𝑖 ∈ P,P ∩D
󸀠 ̸= 0]

⋅ P [𝑖 ∈ P | P ∩D
󸀠 ̸= 0]) (2)= ∑

𝑖∈D󸀠

(1 − (1 − 𝑝)𝑛𝑖)

⋅ 𝑝𝑖

(13)

where (1) follows from P[𝐴 | 𝐵] = P[𝐴, 𝐶 | 𝐵] + P[𝐴,
¬𝐶 | 𝐵], whereas latter part of the equation in our case is

equal to 0 (𝑖 ∉ P) and (2) comes the under assumption that
Oracle queries are mutually independent of each other (sum
of probabilities). Please note that due to burst effects in Wi-
Fi channel [27] we may not always face such scenario, since
there is a chance that consecutive Wi-Fi packets are more
likely to fail to transmit if previous packets also failed. Given
the premises𝑁𝑠𝑙𝑜𝑡 ≫ 𝐿 and 𝑇 ≫ 𝑇𝑆 we can see that different
𝐿 slots are being tested couple of seconds apart, meaning that
different chunks are not subject to the same error burst. In
case of retransmitting SSIDs, we use interleaving to tackle the
error burstiness.

We are now ready to set the optimization problem, whose
solution will give A the required parameters 𝑛𝑖. Please note
that the SSID Oracle attack requires 𝑛𝑖 ∈ N0, but we are
using linear optimization to solve the optimization problem.
To execute an attack, it is required to round 𝑛𝑖 calculated from
our model, as will be shown in simulations later.

max
𝑛1,...,𝑛D󸀠

∑
𝑖∈D󸀠

(𝑝𝑖 − 𝑝𝑖 (1 − 𝑝)𝑛𝑖)

s.t. ∑
𝑖

𝑛𝑖 ≤ 𝑇𝐴𝑇𝑆
𝑇𝑆 + 𝑇𝐼 ⋅ 𝑟 = 𝑁𝑠𝑙𝑜𝑡

𝑛𝑖 ≥ 0
𝑝𝑖 ∈ [0, 1]
∑
𝑖

𝑝𝑖 ≤ 1

𝑝 ∈ [0, 1]

(14)

We approach the optimization problem (14) using
Lagrange multipliers method. Objective function has unique
solutions based on its concave nature.

Lemma 3. The relation between SSID subjective correctness
probability 𝑝𝑖, channel quality 𝑝, and number of testing
attempts 𝑛𝑖 for every SSID is

𝑛∗𝑖 − 𝑛∗𝑗 =
log (𝑝𝑗/𝑝𝑖)
log (1 − 𝑝) (15)

As can be seen from (15) and Figure 5, for good channel
(𝑝 > 0.95), the attacker does not significantly increase his
hit chance by retransmitting SSIDs with higher probability
of occurrence. On the other hand, a bad channel (𝑝 < 0.5)
brings up the importance of having a good SSID dictionary
generator algorithm.

Theorem 4. SSID Oracle attack execution strategy 𝑠∗ should
be achieved by picking 𝐿∗ = 𝑟⋅𝑇𝑆 and𝑇∗ = 𝑇𝑆+𝑇𝐼 parameters.
The optimal execution strategy 𝑠∗ maximizes the number of
unique testable slots 𝑁𝑠𝑙𝑜𝑡. When matching D to 𝑁𝑠𝑙𝑜𝑡, the
condition 𝑛𝑖 − 𝑛𝑗 = log(𝑝𝑗/𝑝𝑖)/ log(1 − 𝑝), ∀𝑖, 𝑗 ∈ D󸀠 must
be fulfilled to achieve the best attack performance in case of a
poor quality channel 𝑝.
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Figure 5: Transmission attempts difference 𝑛𝑖 − 𝑛𝑗 as a function of
channel and SSID quality (based on Lemma 3).

In the next subsection, we will introduce an example
dictionary creation method, based on top-N recommenda-
tion algorithm, which can provide us with the required SSID
importance parameters 𝑝𝑖.

3.5. Building a Dictionary. In this subsection we introduce an
example dictionary generation algorithm, based on a recom-
mendation algorithm.Wewill only briefly cover the approach
and later provide the experimental results in Section 4.3.
Please note that there can bemultiple different dictionary cre-
ation approaches, depending on the information the attacker
has on the potential victim. One goal could be to gather as
many pairs of Wi-Fi MAC address and SSID to do statistical
analysis of a crowd (similar work to many papers mentioned
in our related work). In that case, having a more general
dictionary is the best approach. Another goal could be the
deanonymization of a specific person or a group by linking
the victim to his MAC address. In that case, the dictionary
should be prepared for that specific scenario, containing
related SSIDs from victims neighborhood. Nevertheless, our
SSID Oracle attack strategy will maximize the potential
successful outcome for any provided dictionary.

In order for the attack to be successful, the dictionary has
to be

(i) compact: the size of the dictionaryD should be small
enough so that performing the attack is feasible in
reasonable time

(ii) precise: the dictionary should reflect victim’s PNL as
much as possible (contain as many SSIDs that are in
the user’s PNL as possible)

The method we used for building a dictionary for the
attack is based on collaborative filtering, namely, a modified

version of Item-based top-N recommendation algorithm as
seen in [21, 28]. It outputs a list of𝑁 recommended items that
user might prefer/consume/buy/visit based on the current
knowledge of user’s preferences/history and the knowledge of
preferences/history of other users (training dataset). Cosine
based similarity has shown to produce the best results.

After building a list of 𝑁 recommended SSIDs for each
test user, it is compared with the original PNL and the hit-
rate (HR) is calculated:
𝐻𝑅

= # of SSIDs recommended that are in users PNLs
# of SSIDs in users PNLs

(16)

An HR value of 1.0 indicates that the algorithm was
always able to recommend the hidden item, whereas an HR
value of 0.0 indicates that the algorithm was not able to
recommend any of the hidden items [21].

Our algorithm uses two parameters which affect the
effectiveness of the modified recommender system. The
number of similar SSIDs we want to store for each SSID in
the learning process is denoted by 𝑘 ∈ N. The growth of
the exponential equation used for calculating the importance
of SSID repetition in the training set data is controlled by
parameter 𝐴 ∈ R.

In the next section we will perform various SSID Oracle
attacks using our setup.

4. Practical Tests and Simulations

In this section we present the performed practical tests,
simulations, and an example dictionary creation algorithm
based on top-N recommendation algorithm. The achieved
results have been compared with the appropriate parts of our
model.

4.1. Experimental Analysis of Chunk Size 𝐿 and Retransmission
Time 𝑇. Extensive tests have been carried out to show the
effectiveness of SSID Oracle attack and correctness of chunk
size 𝐿∗ and retransmission time period 𝑇∗ optimal parame-
ters on tests with real devices and in real-world scenarios. To
be more precise, our tests were based on a modified Airbase-
ng tool on Ubuntu machine equipped with D-Link DWA-
556Wireless N PCI-E Desktop Adapter placed in monitoring
mode used to “. . . encourage clients to associate with the
fake AP”[29]. We slightly modified Airbase-ng in a way that
sends beacon packets from a predefined chunk of fixed size 𝐿,
while it does not reply to any authentication request packets
(nor probe request packets). Beacon packets were sent only
on a single Wi-Fi channel (Wi-Fi channel 1 on 2.4 𝐺𝐻𝑧 in
our scenario). To accomplish focusing on a specific Wi-Fi
channel, in parallel with Airbase-ng we used Airodump-ng
tool. On the other hand, to capture authentication requests,
we also ran tshark, filtering out sought authentication request
packets. Every test chunk L holds one SSID from P, i.e.,
|L ∩ P| = 1. For different chunk sizes L (𝐿 ∈ {50, 60, 80,
100}) performed in our tests we transmit beacon packets from
chunk L for 𝑇 consecutive seconds (𝑇 ∈ {2, 3, 4, . . . , 10}).
Interestingly, a similar test with multiple APs was imple-
mented using Airbase-ng tool in [19], but the authors had
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Figure 6: Model comparison with test results for different devices and chunk sizes, using 𝑟 = 500(𝑆𝑆𝐼𝐷𝑠/𝑠𝑒𝑐).

problems with handling large number of SSIDs, so they
limited their attack to a smaller number of SSIDs, i.e., 5
SSIDs, which is significantly smaller than our SSID Oracle
attack with chunk sizes up to 100 APs (and even more).
We repeated this test 100 times for each fixed period 𝑇 and
chunk size 𝐿. It is also important to note that since 𝑇𝑠𝑡𝑎𝑟𝑡
can appear uniformly at random within 𝑇𝐼 + 𝑇𝑆 (Figure 3),
a random delay between two consecutive tests was induced.
To enable shorter periodic scanning behavior (periods 𝑇𝑆 +𝑇𝐼), smartphone’s screen is powered ON and the default Wi-
Fi finder program is opened in every test. This was done
solely for practical reasons since running experiments for
higher scanning intervals, e.g., “Display off” as mentioned in
Section 2.1, would take too long (Figure 7 experiments alone
had been running for a month).

Figure 6 shows the test results were carried out at
Samsung Galaxy 3, Sony Xperia X8, LG P350, and Samsung
S5 Mini devices. The dotted lines present success rate of

response reception to query for various parameters of chunk
retransmission period 𝑇 and a fixed chunk size 𝐿. It is
interesting to observe that for small transmission periods
𝑇 there is a small chance that the Oracle responds with a
success (a ℎ𝑖𝑡). Since idle period 𝑇𝐼 is larger than 𝑇 and given
that the start of transmission period 𝑇𝑠𝑡𝑎𝑟𝑡 starts uniformly at
random within [0, . . . , 𝑇𝑆 + T𝐼], for small 𝑇 there is a high
probability that attacker transmits a query within idle period.
By increasing the chunk retransmission period 𝑇 the success
rate increases rapidly up to a point 𝑇𝑆 + 𝑇𝐼. Note that this
period is not equal for all devices; i.e., for Samsung Galaxy
3 it was 7𝑠 and for Sony Xperia X8 it was approximately 6𝑠,
while LG P350 was 7𝑠. Indeed, in an additional study the time
period between two consecutive probe packets corresponded
to these intervals (in Active Service Discovery, when devices
initiate the scan for neighboring APs on a specific Wi-Fi
channel, they send a burst of probe request packets [30]).
Moreover, it is important to note that chunksLwere sent on a
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Figure 7: Comparison of our model with experimental results on
Sony Xperia miro for 𝐿 = 60.

Table 1: Scanning and idle intervals for test devices.

Device 𝑇𝑆 𝑇𝐼 + 𝑇𝑆 𝑝
1. Samsung Galaxy 3 150 ms 7 s 0.97
2. Sony Xperia X8 120 ms 6.2 s 0.95
3. LG 120 ms 7 s 0.95
4. Samsung S5 Mini 180 ms 10 s 0.95
5. Sony Xperia Miro 100 ms 10.1 s 0.95

singleWi-Fi channel (Wi-Fi channel 1 in our case).Therefore,
the effective scanning interval𝑇𝑆 corresponds to the scanning
interval of a single channel (if we eliminate the possibility
of capturing communication on non-overlapping channels),
which approximates to 0.1 − 0.12𝑠. Interestingly, we can see
in Figure 6 that the best results for success rate were indeed
achieved for chunks sizes of 𝐿 ≤ 60. Please note that since in
our tests every beacon packet was sent approximately every
2 𝑚𝑠 (𝑟 ≈ 500𝑠−1), sending the complete chunk𝐿will take the
exact amount of time that corresponds to the scan interval of
𝑇𝑆 ≈ 0.12𝑠 of a smartphone device (𝐿/𝑟 ≈ 0.12𝑠). We can also
observe the impact of imperfect Wi-Fi channel where Oracle
does not reply to all queries successfully, although 𝑇𝑆 = 𝐿/𝑟
and 𝑇 = 𝑇𝑆 + 𝑇𝐼; i.e., the success rate is not 1 but instead
approximates to 𝑝 ≈ 0.98. In Table 1 we give detailed results
for periods 𝑇𝑆, 𝑇𝐼 + 𝑇𝑆, and the probability 𝑝 for every tested
device.

To verify the correctness of experimental results we
also developed a mathematical model depicting the hitting
probability P[ℎ𝑖𝑡] for SSID Oracle attack—the probability
that the attacker A observes a ℎ𝑖𝑡, given that the observed
chunk holds at least one 𝑆𝑆𝐼𝐷 from P (L𝑖 ∩ P ̸= 0).
We evaluate this probability as a function of parameters
𝑇 and 𝐿 and rate 𝑟 controlled by the A, and parameters
𝑇𝑆 and 𝑇𝐼 given by Oracle’s specification, as well as the
channel quality 𝑝. Our model also assumes that the chunk
transmission time 𝑇𝑠𝑡𝑎𝑟𝑡 starts uniformly at random within
the period [0, . . . , 𝑇𝑆 + 𝑇𝐼] and that the sought 𝑆𝑆𝐼𝐷 is also
placed uniformly at random within the observed chunk L.
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Figure 8: Achieved results for channel quality 𝑝 ≈ 1.

In our analysis (see Appendix A) we obtain the expression
for probability P[ℎ𝑖𝑡] which is solved numerically.

The experimental results, along with the numerical ones,
are shown in Figure 6. As we can see from the figure, the
model quite accurately predicts the probability for parameters
given in Table 1. We also carried out extensive tests with Sony
Xperia miro device and presented them with 95% confidence
interval. For every chunk transmission period 𝑇 we carried
out 10000 tests, while the chunk size was |L| = 60. The
experiments give us the values for𝑇𝑆 = 100𝑚𝑠, while𝑇𝑆+𝑇𝐼 ≈10.01𝑠. By plugging these values into our model (Appendix)
we can see that our model quite accurately predicts the
probability P[ℎ𝑖𝑡] (Figure 7).

As mentioned before, our experiments were conducted
in an area where other Wi-Fi devices were also transmitting,
so there has been some interference present. To try to get
almost perfect Wi-Fi conditions (𝑝 = 1) we did another test
in a controlled and clean environment with no other devices
transmitting inWi-Fi band.The success rate of almost a 100%
has been achieved on the device for 𝑇𝐼 + 𝑇𝑆 = 10𝑠, as can be
seen from Figure 8.

4.2. Retransmission Simulations for Low Quality Channel
Conditions (𝑝 < 1). In order to show the effectiveness of
SSID Oracle attack in low quality channel conditions (𝑝 <
1), we implemented a simulator in MATLAB. The simulator
gives us a good understanding about SSID retransmissions
(testings) under low quality channel conditions, thus allow-
ing us to manipulate various parameters, from the quality
of the dictionary (the probability of every 𝑆𝑆𝐼𝐷 being part
of victim’s PNL list), up to the number of testings 𝑛𝑖 of a
single SSID (SSID retransmissions in different chunks). For
the purpose of our simulator we used the following variables:
𝑇𝐴 = 1212𝑠, 𝑇𝐼 = 10𝑠, 𝑇𝑆 = 100𝑚𝑠, 𝐿 = 50, and 𝑟 = 500−1𝑠.
Every point in the results was simulated 200 000 times.

Example 5. In this example we verify the effect of retrans-
mitting (testing) SSIDs multiple times. By retesting an SSID
multiple times, 𝑖−th SSID from D fits more than one slot
(has more than one chance of a ℎ𝑖𝑡) within the Oracle’s
𝑇𝐴 period. Since the number of available 𝑁𝑠𝑙𝑜𝑡 is limited
in 𝑇𝐴, this also means that testing one SSID more than
once results in not having available slots intended to test
all SSIDs in D. Simulator test dictionary D contains SSIDs
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Figure 9: Cumulative probability distribution in test dictionary.
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Figure 10: Success rate for different channel quality 𝑝 when
swapping SSIDs in test dictionary.

assigned with corresponding probabilities contained within
user’s PNL list 𝑝𝑖 = P[𝑖 ∈ P | P ∩ D ̸= 0], ∀𝑖 ∈ D
(normalized to [0, 1]). Please note that SSIDs inD are ordered
according to the descending probabilities (𝑝𝑖 ≥ 𝑝𝑖+1, ∀𝑖), such
that SSID with higher probability will be tested first. In our
example, dictionary contains 6000 SSIDs. Figure 9 shows the
cumulative probability distribution of SSIDs within D. We
can observe that ∑1000𝑖=1 𝑝𝑖 = 0.62, whereas if we observe the
complete dictionary of 6000 SSIDwewill have∑6000𝑖=1 𝑝𝑖 = 0.8.
Therefore, with a quality dictionary, in scenarios with low
channel quality, an attackerA will test those SSIDs having a
higher probability of occurrence inP at the cost of not testing
SSIDs having a lower probability of occurrence.

Figure 10 presents the achieved test success rate for
various channel qualities 𝑝. The available transmission time
𝑇𝐴 = 1212𝑠 allows us to attempt tests for 6000 slots (𝑁𝑠𝑙𝑜𝑡 =6000). Simulation will test the first 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 SSIDs twice (𝑛𝑖 =2, ∀𝑖 ∈ {1, . . . , |D| − 𝑁𝑟𝑒𝑝𝑒𝑎𝑡}, s.t. 𝑝𝑖 ≥ 𝑝𝑖+1), which have
a higher probability of occurrence in P, at the cost of not
testing the least significant 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 SSIDs. The goal is to

Table 2: Achieved increases in Simulation 1.

𝑝 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 succ. rate increase to 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 = 0
0.5 500 0.5426 35.07%
0.7 500 0.6742 20.29%
0.9 250 0.7602 5.49%
0.98 125 0.7868 2.8%

Table 3: Optimal 𝑛 values for Simulation 2.

𝑝 𝑛𝑜𝑝𝑡1−125 test 𝑛𝑜𝑝𝑡1−125 model increase to 𝑛1−125 = 1
0.5 5 4.9069 32.15%
0.7 3 2.8250 12.9%
0.9 2 1.4771 2.63%
0.98 1 0.8694 0%

observe how this exchange affects the overall hit success rate
for different channel qualities. The following holds:

𝑛𝑖 =
{{{{
{{{{
{

2, ∀𝑖 ∈ [1,𝑁𝑟𝑒𝑝𝑒𝑎𝑡]
0, ∀𝑖 ∈ [|D| − 𝑁𝑟𝑒𝑝𝑒𝑎𝑡, |D|]
1, ∀𝑖 ∈ (𝑁𝑟𝑒𝑝𝑒𝑎𝑡, |D| − 𝑁𝑟𝑒𝑝𝑒𝑎𝑡)

(17)

The importance of finding a method/algorithm for build-
ing a quality dictionary for targeted users was pointed out in
Figure 10 and Table 2, especially in the scenarios with low
channel quality. More precisely, by reducing the dictionary
by 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 = 500 and giving the opportunity to (re)test first
𝑁𝑟𝑒𝑝𝑒𝑎𝑡 SSIDs twice (𝑛𝑖 = 2), we achieve an overall increase
in probability of hit of up to 35.07% and 20.29% for channel
qualities𝑝 = 0.5 and𝑝 = 0.7, respectively. On the other hand,
by incrementing𝑁𝑟𝑒𝑝𝑒𝑎𝑡 for good quality channels, the overall
success rate decreases, since the actual dictionary to be tested
now decreases to the size of |D| − 𝑁𝑟𝑒𝑝𝑒𝑎𝑡, thus not giving an
opportunity to test SSIDs with lower probability within the
initial dictionaryD.

Example 6. In the following example we verify, both through
simulations and theoretically, the optimal number of slots
assigned to the first 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 SSIDs in scenarios with different
channel quality 𝑝 that would maximize the probability of
hit. We use the following properties for our model: |D| =
6000, 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 = 125, ∑𝑝𝑖 = 0.8, and 𝑝𝑖\𝑝𝑗 = 30, ∀𝑖 ∈
{1, 2, . . . , 125}, ∀𝑗 ∈ {D \ 𝑖}. Simulation is performed for
𝑛𝑖 ∈ {1, . . . , 11} values.

The results can be found in Figure 11 and Table 3. Indeed,
from the results we can see that the estimated maximum
number of slots assigned to the first 𝑁𝑟𝑒𝑝𝑒𝑎𝑡 SSIDs corre-
sponds to the ones obtained through simulations. We also
show that it pays off for A to re-test SSIDs with high
probability of occurrence at the expense of not testing the
ones with low probability of occurrence. As expected, the
highest increase in the hit probability will be obtained during
the lowest channel quality 𝑝.

In the next section, we approach the problemof building a
good quality dictionary for the targeted user, i.e., a dictionary
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Figure 11: Success rate for different channel quality 𝑝 and SSID
repetitions 𝑛.

in which a probability of occurrence of the first𝑁𝑟𝑒𝑝𝑒𝑎𝑡 SSIDs
within victim’s PNL list will be high.

4.3. Dictionary Creation Results. In this section we will
present the achieved results based on the top-N recom-
mender system algorithm we discussed in Section 3.5. For
testing the performance of the system we collected users’
PNLs from Apple devices, mainly from the visitors of a big
music festival in our country. 4426 users (different MAC
addresses) were collected and 15095 SSIDs, with total of
23701MAC-SSID pairs (average PNL size of 5.35). Another
interesting starting dataset is also provided by the authors
of [31] where SSIDs were gathered on multiple locations in
Rome, Italy.

To getmore accurate and statistically valid results, instead
of doing one test experiment, a 10-fold cross-validation
method is used where the dataset is divided into 10 partitions
and in each of 10 folds (reruns of the experiment) one parti-
tion is used as test set and the rest as training set.The final hit-
rate (HR) is calculated as the average of hit-rates for all folds.

It is also possible to optimize the performance of the
system by running cross-validation with different parameters
of the system and pick the set of parameters which produce
the best result [32]. Different similarity functions are also
tested (cosine based or conditional probability based). The
results are shown in Table 4.

We see that the best results can be obtained by setting
𝐴 = 100 and 𝑘 = 20, even though the system is quite stable
on parameters variations. To show how well the system per-
forms on our dataset in comparison with other (benchmark)
datasets, we have compared the results of our experiments
with the ones done in [21] (which are modified to fit the
classical recommender scenario), and showed the results in
Table 5.

Clearly the performance is comparablewith datasets from
the classical scenario of recommender system usage (despite
the fact that the density of our dataset is quite low), which jus-
tifies its application here as well. There are other possibilities

of making and improving dictionary which can be taken into
consideration in future work, like including human knowl-
edge, categorizing people by their preferences/life habits, or
applying additional rules for specific scenarios.

5. Related Work

A lot of work covers the location privacy problem for devices
disclosing their PNL. Numerous papers focus on the IEEE
802.11 connection scanning and initialization protocols: AS,
AS with broadcast, or PS [16, 24, 33, 34]. Those papers are
relevant for our research as it covers scanning and idle times
and showcases the tendency for the periodical Wi-Fi scans.
LAPWiN proposes a location based protectionmechanism to
protect one from privacy leaks [30]. Such protection mecha-
nismwould directlymitigate the kind of privacy attack we are
attempting; however that standard has not been implemented
by the Wi-Fi card manufacturers yet. The authors in [23]
are using Wi-Fi behavior to do aerial search and rescue
operations.The authors aremonitoring probe request packets
using equipment mounted on drones in order to detect the
location of a user during the search and rescue operation.

Others focus on making conclusions about a user from
their PNL. Signals from the crowd [7] uses gathered SSIDs to
discover user’s country of origin, device manufacturer, and
other, as is [8, 9, 35]. SSIDs in the Wild [36] are mapping
SSIDs to real-world locations, and [10] finds social relation
between users by matching PNL. WiFiPi [11] tracks user
movement at mass events using a combination of MAC
address and SSIDs, using a deployed sensor network.

Linking a MAC address gathered from a Wi-Fi packet
to an actual person (MAC de-anonymization) appears to be
challenging. Reference [26] uses beacon reply attack and fakes
user’s known SSIDs to trigger his phone to connect, thus
doing aMAC address matching. Beamme up, Scotty [37] has
an interesting approach to Wi-Fi assisted geo location where
they fake an AP from another location causing services like
Twitter to display the fake location as the origin of a tweet.
The authors in [38, 39] showcase an entire network of sensors
doing location privacy attack in the city of London gathering
data on users movements and whereabouts.

To complicate tracking and privacy leaks, user equipment
manufacturers have started using MAC address random-
ization. However, the authors in [19, 40, 41] showed that
randomizing MAC address does not increase privacy, as the
devices are sending probe requests that contain APs from the
PNL, proving that privacy protection is indeed a considerate
issue for the manufacturers.

The related work mentioned in this section so far focuses
on passive monitoring of probe requests and various conclu-
sions one can deduce from gathered PNLs.The devices using
active scanning with broadcast packets or passive scanning
are not vulnerable to passive monitoring, so an active attack
is needed.

The attempt at actively faking an AP and thus revealing
user’s PNL has not been researched in detail, to the best
of our knowledge. Active attacks on user’s PNL have been
mentioned in some previous work [19, 26] where the authors
aremounting fakeAPs containing user’s known SSID in order
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Table 4: Cross-validation hit-rate for different parameters for𝑁 = 1000.
Cosine based Conditional probability based

𝑘 = 10 𝑘 = 20 𝑘 = 40 𝑘 = 60 𝑘 = 10 𝑘 = 20 𝑘 = 40 𝑘 = 60
𝐴 = 5 32.69% 32.43% 32.40% 32.37% 32.74% 32.50% 32.55% 32.57%
𝐴 = 10 32.65% 32.47% 32.41% 32.34% 32.68% 32.74% 32.77% 32.64%
𝐴 = 20 32.62% 32.43% 32.37% 32.37% 32.75% 32.80% 32.73% 32.84%
𝐴 = 100 32.75% 32.72% 32.69% 32.67% 32.73% 32.89% 32.86% 32.76%

Table 5: Performance comparison with other datasets.

Dataset 𝑛 𝑚 # of records Density Average #
items/user

HR for
experiment

ctlg1 58565 502 209715 0.71% 3.58 41.5%
ctlg2 23480 55879 1924122 0.15% 81.95 15.4%
ctlg3 58565 39080 453219 0.02% 7.74 54.0%
ccard 42629 68793 398619 0.01% 9.35 17.6%
ecmrc 6667 17491 91222 0.08% 13.68 17.4%
em 8002 1648 769311 5.83% 96.14 40.5%
ml 943 1682 100000 6.31% 106.04 27.2%
skill 4374 2125 82612 0.89% 18.89 37.3%
ssids 4426 15095 23701 0.04% 5.35 32.7%∗

to provoke connection initiation from the victim with the
goal of revealing their real MAC address. Considering that
such active attack was not the main focus of their work,
the authors have concluded from their experiments that in
practice one can test only a small number of different SSIDs.
Our work however was focused on optimizing the active
attack, where we have shown that depending on scanning and
idle periods of the Wi-Fi enabled device and the size of the
opportunity window, it is possible to test dictionaries more
than 10 times bigger in size.

6. Conclusion

In this paper we propose an attacking strategy to extract
victim’s preferred network list from amobile device while the
device is in Active Service Discovery mode with broadcast
scan, or passive scan mode. We introduced the SSID Oracle
attack that queries a set of SSIDs from a dictionary against
the victim’s device by faking APs. We calculated the optimal
parameters for the attack execution and proposed a detailed
mathematical model depicting the attack.

The model has been confirmed by running extensive
tests on different smartphone devices. Furthermore, we also
created a simulator to cover more complex attack scenarios
with lowWi-Fi channel quality.

Since users are mobile with their devices, the attacker’s
opportunity window is quite small and the attack depends
on having SSIDs which are highly likely to be present in
victim’s PNL. For that reason we also proposed an example
recommender system based algorithm for building a high

quality dictionary. We have concluded that by choosing the
right dictionary and by executing the attack using our model,
it is possible to achieve high probability of success when
attempting to disclose an SSID from victim’s PNL.

For future work we plan to work on finding solutions that
can protect against SSID Oracle attacks. One solution would
be to use Geofencing technique in which the device will
only respond to probes for APs which are both known and
geographically nearby. We plan to further research dynamic
tracking and other aspects of Wi-Fi network traffic.

Appendix

A. Mathematical Excerpt

A.1. Hit Chance as a Function of 𝑇 and 𝐿. The goal of this
subsection is to find a mathematical model describing P[ℎ𝑖𝑡]
in order to compare it with performed tests, given that the
observed chunk holds at least one 𝑆𝑆𝐼𝐷 from P. We will be
breaking the chunk retrasmission interval 𝑇 ∈ [0, 2𝑇𝑆 + 2𝑇𝐼]
to multiple smaller intervals and each of those intervals to
multiple smaller intervals 𝜏 so that they are easily solvable.
Dictated by the fact 𝑇𝑆 ≪ 𝑇𝐼, parts of the equation can then
be ignored.

Separate interval solutions follow the general expression
for a negated probability that none of 𝑛 tracked SSID’s
transmitted during 𝑇𝑆 period is caught: 1 − (1 − 𝑝)⌊𝑛⌋(1 −
𝑝(𝑛 − ⌊𝑛⌋)). Since one chunk contains one tracked SSID, 𝑛
also corresponds to the number of fully transmitted chunks
during active scanning.
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For each 𝑇 interval the following holds:

P [ℎ𝑖𝑡] = ∑
𝜏𝑖

P [ℎ𝑖𝑡 | 𝑡 ∈ 𝜏𝑖] ⋅ P [𝑡 ∈ 𝜏𝑖]

P [𝑡 ∈ 𝜏𝑖] =
󵄨󵄨󵄨󵄨𝜏𝑖󵄨󵄨󵄨󵄨

𝑇𝐼 + 𝑇𝑆
P [ℎ𝑖𝑡 | 𝑡 ∈ 𝜏𝑖] = ∫

𝜏𝑖

P [ℎ𝑖𝑡 | 𝑡] ⋅ 𝑝 (𝑡) d𝑡

= ∫
𝜏𝑖

P [ℎ𝑖𝑡 | 𝑡] ⋅ 1󵄨󵄨󵄨󵄨𝜏𝑖󵄨󵄨󵄨󵄨
d𝑡

P [ℎ𝑖𝑡 | 𝑡] = 1 − (1 − 𝑝)⌊𝑛𝑖⌋ (1 − 𝑝 (𝑛𝑖 − ⌊𝑛𝑖⌋))

(A.1)

Note that having 𝑛 = 0 means that during the 𝜏 interval
no slots will be tested. Also note that having |𝜏𝑖| ≪ (𝑇𝑆 + 𝑇𝐼)
means that P[𝑡 ∈ 𝜏𝑖] ≈ 0. We will now move to solving each
interval:

(1) 𝑇 ≤ 𝑇𝑆
𝜏1 ∈ [0, 𝑇𝑆 − 𝑇] 󵄨󵄨󵄨󵄨𝜏1󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝜏2 ∈ [𝑇𝑆 − 𝑇, 𝑇𝑆] 󵄨󵄨󵄨󵄨𝜏2󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆

𝜏3 ∈ [𝑇𝑆, 𝑇𝐼 + 𝑇𝑆 − 𝑇] 󵄨󵄨󵄨󵄨𝜏3󵄨󵄨󵄨󵄨 ≈ 𝑇𝐼
𝜏4 ∈ [𝑇𝐼 + 𝑇𝑆 − 𝑇, 𝑇𝐼 + 𝑇𝑆] 󵄨󵄨󵄨󵄨𝜏4󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆

𝑛1 = 𝑟𝑇
𝐿

𝑛2 = 𝑟 (𝑇𝑆 − 𝑡)
𝐿

𝑛3 = 0

𝑛4 = 𝑟 (𝑇 + 𝑡 − 𝑇𝑆 − 𝑇𝐼)
𝐿

(A.2)

= (P[ℎit | t ∈ 1] + P[ℎit | t ∈ 2] + P[ℎit | t ∈ 4])

≈ 0

≈ 0 0

·
TS

TS + TI

+ P [ℎit | t ∈ 3] ·
TI

TI + TS

P[ℎit] = ∑


P[ℎit | t ∈ i] · P[t ∈ i]

(A.3)

(2) 𝑇𝑆 ≤ 𝑇 ≤ 𝑇𝐼
𝜏1 ∈ [0, 𝑇𝑆] 󵄨󵄨󵄨󵄨𝜏1󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝜏2 ∈ [𝑇𝑆, 𝑇𝑆 + 𝑇𝐼 − 𝑇]
𝜏3 ∈ [𝑇𝑆 + 𝑇𝐼 − 𝑇, 2𝑇𝑆 + 𝑇𝐼 − 𝑇] 󵄨󵄨󵄨󵄨𝜏3󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝜏4 ∈ [2𝑇𝑆 + 𝑇𝐼 − 𝑇, 𝑇𝑆 + 𝑇𝐼] 󵄨󵄨󵄨󵄨𝜏4󵄨󵄨󵄨󵄨 = 𝑇 − 𝑇𝑆
𝑛4 = 𝑟𝑇𝑆

𝐿

(A.4)

P [ℎ𝑖𝑡] ≈ P [ℎ𝑖𝑡 | 𝑡 ∈ 𝜏4] ⋅ 𝑇 − 𝑇𝑆𝑇𝑆 + 𝑇𝐼
(1)= (1 − (1 − 𝑝)⌊𝑛4⌋ (1 − 𝑝 (𝑛4 − ⌊𝑛4⌋))) ⋅ 𝑇 − 𝑇𝑆

𝑇𝑆 + 𝑇𝐼
(A.5)

(3) 𝑇𝐼 ≤ 𝑇 ≤ 𝑇𝑆 + 𝑇𝐼
𝜏1 ∈ [0, 𝑇𝑆 + 𝑇𝐼 − 𝑇] 󵄨󵄨󵄨󵄨𝜏1󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝜏2 ∈ [𝑇𝑆 + 𝑇𝐼 − 𝑇, 𝑇𝑆] 󵄨󵄨󵄨󵄨𝜏2󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝜏3 ∈ [𝑇𝑆, 2𝑇𝑆 + 𝑇𝐼 − 𝑇] 󵄨󵄨󵄨󵄨𝜏3󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝜏4 ∈ [2𝑇𝑆 + 𝑇𝐼 − 𝑇, 𝑇𝑆 + 𝑇𝐼] 󵄨󵄨󵄨󵄨𝜏4󵄨󵄨󵄨󵄨 = 𝑇𝐼 − 𝑇𝑆
𝑛4 = 𝑟𝑇𝑆

𝐿

(A.6)

P [ℎ𝑖𝑡] ≈ P [ℎ𝑖𝑡 | 𝑡 ∈ 𝜏4] ⋅ 𝑇𝐼 − 𝑇𝑆𝑇𝑆 + 𝑇𝐼
(1)= (1 − (1 − 𝑝)⌊𝑛4⌋ (1 − 𝑝 (𝑛4 − ⌊𝑛4⌋)))

⋅ 𝑇𝐼 − 𝑇𝑆𝑇𝑆 + 𝑇𝐼

(A.7)

(4) 𝑇𝑆 + 𝑇𝐼 ≤ 𝑇 ≤ 2𝑇𝑆 + 𝑇𝐼
𝜏1 ∈ [0, 2𝑇𝑆 + 𝑇𝐼 − 𝑇] 󵄨󵄨󵄨󵄨𝜏1󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝜏2 ∈ [2𝑇𝑆 + 𝑇𝐼 − 𝑇, 𝑇𝑆] 󵄨󵄨󵄨󵄨𝜏2󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝜏3 ∈ [𝑇𝑆, 2𝑇𝑆 + 2𝑇𝐼 − 𝑇] 󵄨󵄨󵄨󵄨𝜏3󵄨󵄨󵄨󵄨 ≈ 𝑇𝐼
𝜏4 ∈ [2𝑇𝑆 + 2𝑇𝐼 − 𝑇, 𝑇𝑆 + 𝑇𝐼] 󵄨󵄨󵄨󵄨𝜏4󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝑛3 = 𝑟𝑇𝑆

𝐿

(A.8)

P [ℎ𝑖𝑡] ≈ P [ℎ𝑖𝑡 | 𝑡 ∈ 𝜏4] ⋅ 𝑇𝑆 + 2𝑇𝐼 − 𝑇𝑇𝑆 + 𝑇𝐼
(1)= (1 − (1 − 𝑝)⌊𝑛3⌋ (1 − 𝑝 (𝑛3 − ⌊𝑛3⌋)))

⋅ 𝑇𝑆 + 2𝑇𝐼 − 𝑇𝑇𝑆 + 𝑇𝐼

(A.9)

(5) 2𝑇𝑆 + 𝑇𝐼 ≤ 𝑇 ≤ 𝑇𝑆 + 2𝑇𝐼
𝜏1 ∈ [0, 𝑇𝑆] 󵄨󵄨󵄨󵄨𝜏1󵄨󵄨󵄨󵄨 ≤ 𝑇𝑆
𝜏2 ∈ [𝑇𝑆, 𝑇𝑆 + 2𝑇𝐼 − 𝑇] 󵄨󵄨󵄨󵄨𝜏2󵄨󵄨󵄨󵄨 ∈ [0, 𝑇𝐼 − 2𝑇𝑆]
𝜏3 ∈ [𝑇𝑆 + 2𝑇𝐼 − 𝑇, 3𝑇𝑆 + 2𝑇𝐼 − 𝑇]

󵄨󵄨󵄨󵄨𝜏3󵄨󵄨󵄨󵄨 ≈ 2𝑇𝑆
𝜏4 ∈ [3𝑇𝑆 + 2𝑇𝐼 − 𝑇, 𝑇𝑆 + 𝑇𝐼] 󵄨󵄨󵄨󵄨𝜏4󵄨󵄨󵄨󵄨 ∈ [0, 𝑇𝐼]

𝑛2 = 𝑟𝑇𝑆
𝐿

𝑛4 = 2𝑟𝑇𝑆𝐿

(A.10)
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P [ℎ𝑖𝑡] ≈ P [ℎ𝑖𝑡 | 𝑡 ∈ 𝜏4] ⋅ 𝑇 − 𝑇𝐼 − 2𝑇𝑆
𝑇𝑆 + 𝑇𝐼

(1)= (1 − (1 − 𝑝)⌊𝑛2⌋ (1 − 𝑝 (𝑛2 − ⌊𝑛2⌋)))

⋅ 2𝑇𝐼 − 𝑇𝑇𝑆 + 𝑇𝐼
+ (1 − (1 − 𝑝)⌊𝑛4⌋ (1 − 𝑝 (𝑛4 − ⌊𝑛4⌋)))

⋅ 𝑇 − 𝑇𝐼 − 2𝑇𝑆𝑇𝑆 + 𝑇𝐼

(A.11)

Data Availability

In the manuscript, we have described the algorithms as well
as the methods we used for collecting and testing the dataset.
However, the collected data would violate the privacy of end
users and should not be made publicly available.
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