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Introduction 
	

In recent years we have seen great achievements in the fields of computer vision with 

deep neural networks. Both supervised and unsupervised learning have had great 

success with tasks like image classification, natural language processing, voice 

recognition and even the creation of synthetic data. However, even with all these great 

leaps forward and successes, none of these algorithms have been able to generalize 
and thus cannot be considered a ‘general A.I.’. 

In this work we will be implementing a reinforcement learning method that will learn to 

play the First person shooter game “Doom” and the famous Atari game known as 

“Pacman”. We will implement a single reinforcement learning algorithm which we will 

then analyze on the various scenarios. Our algorithm will use state approximations via 

deep convolutional networks. Our simulated environment will produce states in the form 

of screen pixels, possible actions that we will be able to take and rewards we have 
received based on those decisions.  

Our screen pixels representing the current state of our environment will be input to our 

deep convolutional network which will then produce output determining the appropriate 

action we should take. The idea will be to update the parameters in the convolutional 

network in such a way that it will always output the correct action we should take based 

on the current state we are in; such that we maximize our overall reward. Unlike the 

well-known supervised and unsupervised learning algorithms, reinforcement learning 

lays somewhere in-between. We will use a form of learning where many tuples of the 

current state, taken action, next state and reward are saved into memory buffers which 

are then at specific time intervals used to draw uniform samples from and are fed to the 
convolutional network. 

This work will be broken up into four chapters. The first chapter will be a brief 

introduction into deep learning in general with a higher emphasis on deep convolutional 

networks. The second chapter of this work will focus primarily on reinforcement learning 
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and the current challenges it faces. The third chapter will have implementation details of 

the system implemented in this work. The fourth chapter will in detail show the carried 

out experiments and their results based on the model implemented in this work. Finally, 

a conclusion which will define the problems faced in this work and possibilities for future 
improvement. 

 

1. Deep Learning 
	

This chapter gives a brief introduction to convolutional networks and the ways these 

deep models are trained. Deep learning in general is a form of machine learning based 

on learning data representations rather than task-specific algorithms. Deep learning has 

been applied to fields such as computer vision, speech recognition, natural language 

processing, audio recognitions, bioinformatics and even drug design, where they have 
shown results sometimes even greater to that of human experts. 

 

1.1. Convolutional layer 
	

Convolutional neural networks are a specialized form of neural networks for processing 
data with a grid-like topology. 

The operation of convolution is defined with two real functions and outputs a third 

function which represents the amount of overlapping between the first and second 
function. 

The operation of convolution is widely used in areas such as quantum mechanics, 

statistics, signal processing and computer vision. We will focus only on the discrete form 

of convolution as it is the one used in computer vision. Discrete convolution can be 

viewed as multiplication by a matrix. 
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If we were to imagine performing a convolutional operation upon an image of size 
256x256 then we can supply the next formula: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑚𝑎𝑝 = 𝑖𝑛𝑝𝑢𝑡 ∗ 𝑘𝑒𝑟𝑛𝑒𝑙 = 	 𝑖𝑛𝑝𝑢𝑡 𝑥 − 𝑎, 𝑦 − 𝑏 𝑘𝑒𝑟𝑛𝑒𝑙(𝑥, 𝑦)
789

:;<

789

=;<

	 

In this formula our input will be an image with multiple different kernels which are also 

known as filters. What these kernels are attempting to do is feature engineering; or to 

learn what is relevant to the image which we can imagine as a filtering operation. In the 

context of convolutional neural networks instead of having fixed numbers in our kernels, 

we assign parameters to these kernels which will be trained of the data. So as we train 

our convolutional net, the kernel will get better at filtering a given image and extracting 
specific features. 

An example of a two-dimensional convolution can be viewed in the image below: 
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Figure 1: Sample of a convolution operation [2] 

 

Convolution is very useful to neural networks because it’s easy to integrate into a neural 

network and it has the property of being able to model local interactions and share 

parameters. Unlike fully connected layers inside a neural network where we have 

parameters for describing the interaction of each input and each output, Convolutional 

networks have sparse interactions; taking into account our kernel is usually smaller than 

the input image. The spatial extent of this connectivity is a hyper-parameter called the 

receptive field of the neuron. An example of an edge detecting convolutional kernel can 

be viewed in the next image: 
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Figure 2: Edge detecting kernel [6] 

 

Such layers require fewer parameters which speed’s up evaluation time and memory 

requirements. If there are m inputs and n outputs, then for a fully connected layer the 

runtime complexity is 𝑂(𝑚𝑥𝑛). If we limit each output to have k connections to the input 

then the runtime complexity becomes 𝑂(𝑘𝑥𝑛). 

Another advantage gained using convolutional layers can be viewed in the deeper 

layers. These deeper layers may indirectly interact with a larger portion of the input. 

This enables the network to describe complicated interactions that various parts of the 
input may have. 

Parameter sharing in convolutional networks can be accomplished via the kernel. Each 

member of the kernel is used at every position of the input. Rather than learning a 

separate set of parameters for every location, we learn only one set. In classical fully 

connected neural networks, a parameter from the output is bound to a specific position 

in the input making it less efficient in terms of memory consumption and evaluation 

speed. The final advantage to be noted that a convolutional layer has upon its fully 

connected counterpart is the property of equivariance to translation. Equivariance 

simply means that the output changes in the same way as its input changes. However, 

convolutional layers are not equivariant to transformations such as scale or rotation of 
an image. 
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1.2. Activation functions 
	

Activation functions are used for introducing nonlinearity into the neural network. 

Without them, neural networks would not be able to find non-linear dependencies in the 

data. In deep convolutional networks the most common activations used are the ReLu 
(1.3), LeakyReLu (1.4), hyperbolic tangent (1.2) and the sigmoid function (1.1). 

 
𝑓 𝑥 =

1
1 + 𝑒A:

 
 

(1.1) 

 
𝑓 𝑥 = tanh 𝑥 =

1 − 𝑒A7:

1 + 𝑒A7:
 

 

(1.2) 

The Sigmoidal function was perhaps the first function ever used in neural networks in 

general. Sigmoidal units saturate across most of their domain. They saturate to +1 when 

the input is very large and 0 when the input is very negative and are only sensitive to 

their input when it varies near 0. This saturation make learning rather difficult because 

the gradients corresponding to very large inputs results in a gradient near 0 which 

makes the training of a neural network difficult. The hyperbolic tangent function is very 

similar to the sigmoidal function although it in general does perform better. It resembles 

the identity function more closely, in the sense that 𝑡𝑎𝑛ℎ 0 = 0. Because tanh is 

similar to the identity near 0, training a deep neural network resembles training a linear 

model. 

 

Figure 3: Sigmoid function 
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Figure 4: Hyperbolic tangent function 

 

 

Figure 5: ReLu function 

 

Figure 6: LeakyReLu function 

 

𝑓 𝑥 = max	(0, 𝑥) (1.3) 



8	
	

 
 

𝑓 𝑥 = max	(𝑥, 𝑎𝑥) 
 

(1.4) 

 

The ReLu activation function is the most used activation function today and a usual first 

choice.  They are easy to optimize as they are similar to linear units. This in turn means 

that it does not saturate as the sigmoidal function mentioned earlier. For very large 

inputs, the gradient also remains large. The only drawback to the ReLu activation is that 

it cannot learn via gradient based methods for which their activation is equal to or below 

zero. To solve this problem of the vanishing gradient for inputs below zero we can use 

the slightly modified ReLu known as LeakyReLu. The LeakyReLu has one parameter 

called alpha which is generally a very small number which is used for negative inputs 
which in turn gives a small gradient for the case of negative input. 

 

 

 

1.3. Optimization for training Convolutional neural 
networks 

	

When speaking of neural network optimization in general, our objective function is more 

often than not, the mean squared error function. Optimization then consists of finding 

the values of the weights in the neural network to minimize the objective function. 

Historically, the gradient based technique known as gradient descent has been the most 

popular and widely known. However, gradient descent has shown many problems in the 

field of deep learning due to one parameter known as the learning rate. Gradient 

descent would have a fixed learning rate which contradicts the nature of the objective 

function, for it is often highly sensitive to some directions in parameter space and less 

so in others. In this part we will examine two optimization methods with adaptive 
learning rates based on model parameters. 
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1.3.1. RMSProp 
	

RMSProp is an algorithm based on gradient descent with an adaptive learning rate 

which in turn speeds up convergence.  RMSProp has shown many advantages such as 

being a very robust optimizer which has pseudo curvature information. It can also deal 

with stochastic objectives very nicely, making it applicable to mini-batch learning. 

RMSProp uses the magnitude of recent gradients to normalize the current gradients. 

We keep running averages over the root mean squared gradients which we use to 

divide the current gradient. If we let	𝑓′(𝜃L) be the derivative of the objective function with 

respect to the parameters of the network at time t. given a step rate α, a decay rate 𝛾 , a 

running average over the root mean squared gradient 𝑣L and finally a momentum term 𝛽 

we have the following: 

𝑚LPQ = 𝛾𝑚L + 1 − 𝛾 𝑓R(𝜃L)7 

𝑣LPQ = 𝛽𝑣L −
𝛼𝑓′(𝜃L)
𝑚LPQ

7 + 𝜖
 

𝜃LPQ = 𝜃L + 𝑣LPQ 

Our normalizing factor 𝑚L with a properly adjusted decay rate takes into account more 

recent history of the gradients instead of keeping them all as do other algorithms prior to 

RMSProp making it much more adaptive to the objective function search space. G. 

Hinton, the author of the algorithm also proposes some values for these hyper-

parameters as a good starting point. The decay rate 𝛾 = 0.9 and a learning rate 𝛼 =

0.001. Finally, the parameter 𝜖 serves only for the purpose of numerical stability by 

avoiding dividing by 0. It is generally set to 10AW. 
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1.3.2. Adam 
	

The Adam method computes adaptive learning rates for all parameters based on 

estimates of the first and second moments of the gradients. Adam is composed of two 

other algorithms known as AdaGrad and RMSProp which was mentioned earlier.  

Unlike RMSProp which adapts learning rates for the parameters based on the first 

moment of the gradients, Adam utilizes the average of the second moment also. Adam 

therefor computes the exponential running average of both the first and second 

moments of the gradient and uses two hyper-parameters 𝛽Q and 𝛽7 which are there 

respective decay rates. The following formula shows how Adam is implemented: 

 

𝑚LPQ = 𝛾𝑚L + 1 − 𝛽Q 𝑓R(𝜃L)7 

𝑔LPQ = 𝛾𝑔L + 1 − 𝛽7 𝑓R(𝜃L) 

𝑚LPQ =
𝑚LPQ

1 − 𝛽Q
LPQ 

𝑔LPQ =
𝑔LPQ

1 − 𝛽7
LPQ 

𝜃LPQ = 𝜃L −
𝛼𝑔LPQ
𝑚LPQ + 𝜖

 

 

Some advantages of using Adam include its simplicity, computational efficiency, little 

memory requirements and invariance to the diagonal rescale of the gradients. It is well 

suited for large problems, non-stationary objectives and noisy or sparse gradients. The 

hyper-parameters of Adam are also very intuitive to interpret and require very little 

tuning. 
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1.4. Batch normalization 
	

Batch normalization is a technique used in deep learning for increasing the training 

speed and improvements in stability in neural networks. As normalizing the input has 

shown to be very useful in almost all machine learning and deep learning tasks; batch 

normalization simply replicates the task of normalization of inputs in each layer in such 

a way that they have a mean output of zero and unit variance. It’s called batch 

normalization because the normalization is performed based on the inputs from the 

batch instead of the entire training population. The mean and variance are separately 

calculated for each dimension of the input. The core problem that batch normalization 

tackles is what is known as Internal Covariate Shift. Internal Covariate Shift is the 

change in the distribution of network activations due to the change in network 

parameters during training. 

However normalizing each input of a layer may potentially change the layers 

representational power. Normalization of inputs that are later fed to the sigmoid 

activation would constrain it to a linear regime. To avoid this, we make sure that the 

inserted transformation can represent the identity transformation. To succeed in this 

task additional parameters are introduced 𝛾 and 𝛽 for each activation 𝑥 which scale and 

shift the normalized value. 



12	
	

 

Figure 7: Batch normalization algorithm [2] 

 

These parameters are learned for each dimension of the input and restore the 
representational power of the network. 

Batch normalization incurs many advantages: 

• Networks train faster  

• Allows the use of higher learning rates 

• Simpler weight initialization 

• Enables the use of activation functions such as sigmoid and hyperbolic tangent 

mentioned earlier 

• Simplification of constructing deeper networks 

• Provides slight regularization because of the added noise added during the 
obtaining of statistics based on the current batch being evaluated. 
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2. Reinforcement learning 
	

In this chapter we will go through the building blocks of reinforcement learning that will 

be needed in creating an algorithm that will be able to learn in a 3D environment of the 

First Person Shooter Doom and 2D environment in a simulation of the Pacman 

environment. Reinforcement learning was initially inspired by behavioral psychology and 

is viewed today as being one of the first steps towards a general AI algorithm. 

Reinforcement learning has been used in various places such as games, trading, robots 

and even autonomous driving cars. However, training reinforcement learning models is 
a slow and difficult task, taking models days to converge on rather simple problems. 

2.1. Elements of reinforcement learning 
	

At the highest level, a reinforcement learning algorithm consists of an agent and an 

environment. An agent interacts with the environment in such a way that is takes 

actions in its environment which then leads it into a new state in the environment and so 

on. The agent primarily wants to learn how to behave optimally in its environment or to 

maximize its future reward. There are four main sub-elements of a reinforcement 
learning system. 

A policy defines a learning agent’s way of behaving at a given time in a given state. A 

policy is a mapping from perceived states of the environment to actions to be taken 

when in those states. Policies may be simple look up tables, whereas in other cases 

they can be deep neural networks. The policy is the core of a reinforcement learning 

agent in the sense that it alone is sufficient to determine behavior. In general, policies 
may be stochastic. 

A reward signal defines the goal of the reinforcement learning algorithm. Based on the 

actions taken in specific states, the environment returns a reward to the agent. The 

agent’s primary goal is to maximize the reward in the long run. The policy mentioned 

earlier is changed based on the reward signal. Actions leading to small rewards may be 
altered so that another action may be selected to accumulate a higher reward. 
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A reward signal tells us what is good in an immediate sense, whereas a value function 
tells us what is good in the long run. The value of a state tells the agent what amount of 

reward the agent may expect to accumulate in the future. Where rewards determine the 

immediate desirability of states in an environment, values tell us the long run desirability 

of states in an environment. Some states may yield small immediate returns yet still be 

of greater value than all other states because it can yield a high long run return in 
reward. 

The final element of some reinforcement learning algorithms is a model of the 

environment. A model mimics the behavior of the environment and allows inferences to 

be made about how the environment will behave. Based on a state-action pair, the 

model can predict the resultant next state and received reward. Reinforcement learning 

problems that use models are called model-based methods as opposed to simpler 

model-free methods that are explicitly trial-and-error learners. 

 

 

Figure 8: A reinforcement learning system depicting the three main components: an agent, its 
environment and the couples interaction. [1] 
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2.2. Goals of reinforcement learning 
	

The purpose of an agent is formalized in terms of a special signal named the reward, 

which passes from the environment to the agent. At each time step, the reward is a 

simple number 𝑅L ∈ 𝑅. 

Instead of maximizing immediate reward, the agent maximizes the cumulative reward in 

the long run. The reward signal is not the place to impart to the agent prior knowledge 

about how to achieve its goal. We must not give rewards to agents for achieving sub-

goals as the agent could potentially learn how to maximize reward via achieving these 
sub-goals without being able to achieve its primary goal we set it to learn. 

2.2.1. Returns and episodes 
	

We have stated that the end goal of the agent is to maximize the cumulative reward it 

receives in the long run. We can define all rewards received after time step t as 

𝑅LPQ, 𝑅LP7, 𝑅LP[… etc. The sequence can be short or even infinite in size, therefor the 

natural question that arises is “what part of the future reward do we wish to maximize?”.  

In reinforcement learning we wish to maximize the expected return, where we denote 

the return 𝐺L. In its simplest form 𝐺L is simply defined: 

𝐺L = 𝑅LPQ + 𝑅LP7 + ⋯+ 𝑅^ 

Where T is the final time step. The approach is sensible where there is a notion of a 

final time step, that is, the agent-environment interaction breaks naturally into 

subsequences, which we call episodes, such as a round in the game of Doom or 

Pacman which we will explore shortly. Each episode ends in special state called the 

terminal state. Episodes may end differently, winning or losing, however the next 

episode starts independently of how the previous one ended. Thus we can state that the 

agent always finishes in the same terminal state with different rewards and outcomes. 
Tasks with episodes are called episodic tasks. 
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As we mentioned earlier, episodes could last infinitely long and therefor even a small 

reward accumulated through many time steps could lead to an infinite reward, allowing 

the agent then to learn a random policy. To counter this we will introduce the concept of 

discounting. According to this approach are agent tries to select actions so that the sum 

of the discounted rewards it receives is maximized. The discounted return can be 
formally stated as follows: 

𝐺L = 𝑅LPQ + 𝛾𝑅LP7 + 𝛾7𝑅LP[ + ⋯ = 𝛾_
`

_;<

𝑅LP_PQ 

Where 𝛾 is a parameter called the discount rate. Its value varies between 0 and 1. 

The discount rate determines the present value of future rewards: a reward received  𝑘 

time steps in the future is worth only 𝛾_AQ times what it would be worth if it were 

received immediately.  If 𝛾 = 0 the agent is referred to as myopic, concentrated only on 

maximizing immediate reward. As 𝛾 approaches 1, the agent takes future rewards more 

and more into account. 

2.3. Policies and value functions 
	

Value functions are almost universally used in all reinforcement learning algorithms; 

functions which determine how good it is being in a specific state (state-action pair) 

based on the expected return one may expect from it following the agents current 
policy. 

A policy is a mapping from states to probabilities of selecting each possible action at the 

disposal of the agent. If the agent is following the policy 𝜋 at time 𝑡, then 𝜋(𝑎|𝑠) is the 

probability of the agent selecting the action 𝑎 in state 𝑠. 

The value of a specific state 𝑠 under a policy 𝜋 is denoted 𝑉e(𝑠) which is understood as 

the expected return when starting in state 𝑠 following policy 𝜋 thereafter. We call this 

function the state-value function for policy 𝜋. We can formally define it as follows: 
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𝑉e 𝑠 = 𝐸e 𝐺L 𝑆L = 𝑠 = 𝐸e 𝛾_𝑅LP_PQ|𝑆L = 𝑠
`

_;<

, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑠 ∈ 𝑆 

In a similar fashion we can define the value of taking a specific  action 𝑎 in state 𝑠 under 
a policy 𝜋 which we denote as 𝑄e(𝑠, 𝑎) representing the expected return after taking 
action 𝑎 in state 𝑠 following policy 𝜋. 

We define this formally as follows: 

𝑄e 𝑠, 𝑎 = 𝐸e 𝐺L 𝐴L = 𝑎, 𝑆L = 𝑠 = 𝐸e 𝛾_𝑅LP_PQ|𝐴L = 𝑎, 𝑆L = 𝑠
`

_;<

 

We call 𝑄e the action-value function for policy 𝜋. 

2.3.1. The optimal policy and its value functions 
	

Solving reinforcement learning problems comes down to finding a policy which achieves 
the maximum amount of reward possible in the long run. 

A policy 𝜋 is deemed better than another 𝜋′ if its expected return is greater than or equal 

to that of 𝜋′ for all states or more formally 𝜋 ≥ 𝜋′ if and only if 𝑉e 𝑠 ≥ 𝑉el(𝑠) for all 𝑠 ∈ 𝑆. 

There may be more than one optimal policy which we will denote as 𝜋∗. Although many 

optimal policies may exist, they share the same state-value function, called the optimal 

state-value function, denoted 𝑉∗ and formally defined as: 

 

𝑉∗ 𝑠 = max
e
𝑉e 𝑠 , ∀𝑠 ∈ 𝑆 

As with optimal value-state functions, we can also define optimal action-state value 

functions, denoted 𝑄∗ and defined formally as: 

𝑄∗ = max
e
𝑄e 𝑠, 𝑎 , ∀𝑠 ∈ 𝑆	𝑎𝑛𝑑	∀𝑎 ∈ 𝐴(𝑠) 

The state-action pair 𝑠, 𝑎  gives the expected return for taking action 𝑎 in state 𝑠 and 

then continuing to follow an optimal policy 𝜋. The equation for the optimal action-state 

value function can be rewritten in terms of the optimal state-value function as follows: 
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𝑄∗ = 𝐸 𝑅LPQ + 𝛾𝑉∗ 𝑆LPQ 𝑆L = 𝑠, 𝐴L = 𝑎] 

2.4. Dueling architecture 
	

Approximating Q-values is somewhat problematic in the sense that only the state which 

outputs the maximum Q-value is updated whereas the Q-values of remaining states 

remain unaltered. To avoid this we implement what is known as the dueling 

architecture. The dueling architecture separates the state values and the state-action 

advantages. The dueling architecture consists of two streams that represent the value 

and advantage functions, while sharing a common convolutional learning module.  The 

two streams are aggregated via a special aggregating layer to produce the final Q 

values. We first define the advantage function as follows: 

𝐴e 𝑠, 𝑎 = 𝑄e 𝑠, 𝑎 − 𝑉e(𝑠, 𝑎) 

This function gives us a sense of the importance of each action. 𝑉 measures the quality 

of a specific state whereas the 𝑄 measures the value of choosing a particular action 

when in a specific state. 

The key insight is that for many states it is not necessary to estimate the value of each 

action choice. The module that combines the two streams created from the 
convolutional output is as follows: 

𝑄 𝑠, 𝑎 = 𝑉 𝑠, 𝑎 + (𝐴 𝑠, 𝑎 −
1
|𝐴|

𝐴(𝑠, 𝑎′)
pR

) 

The advantage of this architecture is its ability in learning the state value function 

efficiently. With every Q value update, the value stream V is updated which contrasts 

the single stream architecture where only for one the actions is updated. The following 
image shows the structure of the defined dueling architecture. 
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Figure 9: The dueling architecture where instead of a fully connected layer outputting Q values directly; 
the convolutional output is broken up into two streams outputting the state value and action advantages. 
[7] 

 

2.5. Q learning 
	

Before we articulate Q learning we will comment on the two specific types of 
reinforcement learning methods called off-policy and on-policy methods. 

Off-policy methods evaluate or improve a policy different from that used to generate the 

data, whereas on-policy methods evaluate or improve the policy that is used to make 

decisions. 

Off-policy methods use two policies, one that is learned to become the optimal policy 

and one that is more exploratory and is used to generate behavior. The policy being 

learned is the target policy and the policy being used to generate behavior is called the 
behavior policy. 

Q-learning is an off-policy reinforcement learning algorithm which we formally define as: 

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
pR

𝑄(𝑠R, 𝑎′) 

𝑄 𝑆L, 𝐴L ← 𝑄 𝑆L, 𝐴L + 𝛼 𝑅LPQ + 𝛾maxp 𝑄 𝑆LPQ, 𝑎 − 𝑄(𝑆L, 𝐴L)  
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These definitions are also known as the Bellman equation. As we can see, with a 

learning rate set to 1, both become equivalent. With the update rule defined, the learned 

action-value function 𝑄, directly approximates 𝑄∗, the optimal action-value function, 

independent of the policy being followed. 

To give some intuition behind 𝑄(𝑠, 𝑎), we can think of it as the score we will receive at 

the end of the game after performing action 𝑎 in  state 𝑠. The main idea in Q-learning is 

that we can iteratively approximate the Q-function using the bellman equation. In its 
simplest form the Q function is implemented as a simple lookup table. 

The following image shows pseudo-code for the Q-learning reinforcement method: 

 

Figure 10: Pseudo code for implementing Q learning. [1] 

 

2.6. Value function approximation 
	

In many real world applications, the state space is far too large for tabular methods; 

therefore we must use good approximations using limited computational resources that 
we have. 

In many tasks with large state spaces, almost every state we encounter will have never 

been visited before. To be able to make quality decisions, it is necessary for the agent 
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to generalize from earlier encounters which may in some ways be similar to the current 
state at hand. 

Function approximation is an instance of supervised learning, because it takes 

instances from a desired function such as the value function or state-action value 

function and attempts to generalize from them to an approximation of this function. 

Formally we can define the approximation of the value functions mentioned earlier. The 
approximation of the value function is then denoted as: 

 

𝑉 𝑠,𝑤 ≈ 𝑉e(𝑠) 

Where 𝑤 are the parameters of the function in the form of a weight vector 𝑤 ∈ 𝑅t. 

We can also do the same for the action-state value function which we will denote with: 

𝑄 𝑠, 𝑎, 𝑤 ≈ 𝑄e	(𝑠, 𝑎) 

In general the number of weights is much less than the number of states and changing 
one weight results in the estimated values of many states. 

For function approximation to work let us examine an individual update with the notation 

𝑠 → 𝑢, where 𝑠 is the state updated and 𝑢 is the update target that 𝑠’s estimated value 

should be shifted toward. In simpleton terms, we are stating that 𝑠 should be more like 

𝑢. 

Machine learning methods that mimic input-output examples in this way are called 
supervised learning methods.  
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2.6.1. Q function approximation with neural networks 
	

In this work we will be approximating Q functions with deep neural networks which have 
shown great success in many reinforcement learning applications. 

What we could do is input raw screen pixels from our environment, representing the 

state and make a forward pass in our neural network to output all Q values based on 

the current state. However the current state cannot be defined based on only a single 

frame as it doesn’t give us information about moving or stationary targets or the speed 

of a target. A simple solution to this is to use multipal sequential frames and feed that as 

input to the neural network. As mentioned earlier, neural networks are incredibly 

powerful in coming up with good features for highly structured data. The next image 
demonstrates what we are trying to accomplish: 

 

Figure 11: Q value approximation done via a neural network with the current state as the input. [1] 
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Since Q values can be any real number, it makes it a regression task that can be 
optimized with a simple squared error loss. 

𝐿 =
1
2
𝑟 + 𝛾max

pR
𝑄 𝑠R, 𝑎R − 𝑄(𝑠, 𝑎)

7
 

Given a transition which consists of the current state, action taken, reward received and 
next state the sequence of events for training such a network is as follows: 

1. Attain Q values from feeding the current state 𝑠 and making a forward pass in the 

neural network. 

2. Do a forward pass in the network with the next state 𝑠′ and select the action that 

gives the maximum Q value. 

3. We set the Q value target for action 𝑎 to 𝑟 + 𝛾max
pR

𝑄 𝑠R, 𝑎R . For all the other 

actions, the Q value is not changed. 

4. Update the weights using backpropagation. 

 

2.7. Experience replay 
	

Training deep neural networks is almost universally done with the supervised learning 

method. If we were to train our Q learning algorithm with classical supervised learning, 

we would introduce a higher variance in our update because successive updates are 

highly correlated with one another. 

Experience replay is a method which stores the agent’s experiences at each time step 

in memory that is then later accessed to perform training and updates to the network. 

Each instance in the replay memory is consisted of a tuple representing the starting 
state, action taken, reward received and next state or more formally: 

(𝑆L, 𝐴L, 𝑅LPQ, 𝑆LPQ) 

After the accumulation of many such experiences, sequential updates can then be 

made to the network with mini-batches with a batch uniformly sampled from the replay 
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memory. This method has been shown to reduce the variance of the updates which in 
turn makes the algorithm more stable during training. 

 

2.8. Exploration vs. Exploitation 
	

As we have been able to observe, Q learning in its essence tries to assign values to 
actions based on state and it does so by propagating rewards back in time. 

In the beginning we know nothing. Our Q values are random as our weights are 

randomly initialized. If we were to have a greedy algorithm, it would always be 

selecting the action with the maximum Q value, which would probably be a wrong 

selection. Our network hasn’t been given a chance to explore its possibilities and to 

find out which action truly is the greatest selection based on its current state. In 
Reinforcement learning this is known as the Exploration-Exploitation dilemma.  

Thus what we want is for our algorithm during the very beginning of its training to 

explore as much as possible and as it slowly converges to start exploiting these Q 

values it has learned. There are many ways of tackling this problem, we will discuss 
only two such algorithms which will later be implemented. 

The first of such algorithms we will analyze is the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 algorithm. With 

probability 𝜖 choose a random action is selected, otherwise we go with the greedy 

action or the action that gives the highest Q value based on the current state. We 

usually start with a very high 𝜖 which we then as time goes by, decrease to a very 

small number such as 0.01. 

The second algorithm is the Boltzmann exploration. The Boltzmann exploration 

utilizes the information in the estimated Q values produced by our network. Instead 

of taking either the optimal or a random action, this method involves taking an action 

with weighted probabilities. 

To accomplish this we use the softmax over the networks estimates of values for 

each action. This way the best action has the highest probability of being chosen but 
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it is not guaranteed. The Boltzmann methods main advantage over the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 

method mentioned earlier is that the value of the other functions can also be taken 

into account. This method has then the ability to entirely ignore sub-optimal actions 

but give a chance to very promising actions. The following images demonstrate both 

the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 and the 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 methods. 

 

 

Figure 12: Probability distribution based on the epsilon-greedy algorithm where the action with the largest 
Q value has a probability of being selected 1-epsilon, whereas the rest are evenly distributed. 
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Figure 13: Probability distribution based on the Boltzmann method where an actions probability of being 
selected is based on its Q value which passes through the softmax function. 
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3. Implementation 
	

In this work, we will develop a deep Q recurrent network in the Python 3.6 programming 

language. We will also use specialized libraries for deep learning and matrix 

manipulation such as Tensorflow and Numpy. Tensorflow is an open-source software 

library for dataflow programming across a range of tasks. It’s a symbolic math library, 

and is also used for machine learning applications such as neural networks. It can be 

used both for research and production. The Numpy framework is used for efficient 

computations over multidimensional arrays. 

 

3.1. Model environment 
	

For our environment we will be using a platform called ViZDoom and OpenAI. ViZDoom 

is a Doom-based AI research platform for reinforcement learning from raw visual 

information. It allows developing AI bots that play Doom using only the screen buffer. 

ViZDoom is primarily intended for research in machine visual learning, and deep 

reinforcement learning, in particular. In our specific case, we will be using 2 different 

scenarios from ViZDoom. We will start of by using the basic scenario and finally the 

“defend the center“ scenario. OpenAI is similar to VizDoom in the sense that it provides 

a much richer toolkit and environments for training reinforcement learning agents. From 

the OpenAI gym we will be using the Pacman environment. All of our environments are 

episodic tasks. 

3.1.1.  Basic Scenario 
	

The basic scenario is our most simple environment. Each episode lasts for 300 tics (35 

tics in a second) or when the monster gets killed. Each action will also produce a 

reward; -6 for shooting and missing which will incentivize our agent not to waste 

ammunition, 100 for killing the monster and -1 otherwise. As we can see, the 

environment is a Markov Decision Process where states will be the raw screen pixels. 
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Our preprocessing will be only remove the roof as it garners no relevant information and 

then each image will be resized to 84x84x1 and also converted to greyscale. The 

actions that can be taken in this scenario are moving left, moving right and shooting. 

Our agent has only 50 bullets at his disposal and one bullet is sufficient in eliminating 
his opponent. 

 

 

Figure 14: A frame from the basic environment in the VizDoom simulation. 
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Figure 15: Preprocessed frame from the basic environment. Each frame is down 
sampled to a size of 84x84x1 with the roof removed as it contains no relevant 
information. 

	

3.1.2. Defend the center 
 

The purpose of this scenario is to teach the agent that killing the monsters is good and 

monsters killing you are bad. In addition, wasting ammunition is not very good either. In 

the original scenario the agent was rewarded only for killing the monster and the rest 

was left to the agent to figure out. However, in order to speed up training, we altered the 

game in such a way as to produce negative 3 reward for firing a shot and missing and a 

positive 55 reward for eliminating an enemy and left the death reward unaltered in an 

attempt to produce better results. Altering the game system is beyond the scope of this 

work; however I recommend using the Doom editor tool known as “Slade” for anyone 

interested. The map is a large circle. The player is spawned in the exact center. 5 

melee-only, monsters are spawned along the wall. Monsters are killed after a single 

shot. After dying each monster is respawned after some time. Episodes end when the 

player dies (it's inevitable because of limited ammo). This scenario is also much more 
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complex because of the fact that this is a partially observable Markov decision process. 

The raw pixels as input is not our entire state, hence our agent doesn’t know what’s 

going on behind him or to his sides. Our preprocessing task will be exactly the same as 

was explained earlier for the basic scenario. The actions that are available to us in this 

scenario are turning left, right and attacking. We also have limited ammunition of only 
26 bullets at our disposal.  

 

 

Figure 16: A frame from the defend the center environment 
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Figure 17: Preprocessed frame from the defend the center scenario. The roof is removed and frame is 
converted to greyscale. 

	

3.1.3. Pacman 
	

In this environment, the observation is an RGB image of the screen, which is of shape 

210x160x3. Each action is repeatedly performed for a duration of 𝑘 frames, where 𝑘 is 

uniformly sampled from {2, 3, 4}. The environment has 9 possible actions which 

represent the 9 possible positions of the joystick: center, up, right, left, down, upper-

right, upper-left, lower-right, and lower-left. The goal in this environment is to achieve as 

high as a reward as possible by collecting the cherries whilst avoiding being eaten by 

the ghosts. The Pacman has three lives and the maximum score achievable to him is an 
integer value of 2800. 
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Figure 18: Frame from the pacman environment. 
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Figure 19: Preprocessed frame of the pacman environment. The image is down sampled to a size of 
84x84x1. 

 

3.2. The Agent 
	

Our agent consists of a deep convolutional network that it uses to extract features from 

the input and outputs Q values which in turn determine our choice of action. Our agent’s 

deep convolutional network consists primarily of only 4 convolutional layers with the 

amount of filters per layer growing from 32 in our first convolutional layer, to 512 in our 

fourth convolutional layer. Each convolutional layer uses batch normalization except for 

our fourth and final convolutional layer. Our filter sizes range from 8x8 in our first 

convolutional layer, 4x4 for the second, 3x3 for the third and 7x7 for the fourth 

respectively. Strides decrease linearly from a 4x4 to a 1x1 stride in the fourth 

convolutional layer.  Our output from the fourth convolutional layer is 1x1x512 which we 

flatten into a vector of size 1x512. For our agent to get a sense of motion and speed, 

inputting one frame will not be enough. We have two possibilities in solving this 
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problem, stacking multiple frames to represent a state or using a single frame but 

having a recurrent neural network in our model. We will choose the latter and the output 

from the fourth convolutional layer will be the input to our recurrent neural network 

(LSTM). Based on the input size, our recurrent network will have 512 neurons. Instead 

of directly outputting Q values, we will break the output of our recurrent network into two 

equally sized streams and connect each stream to a fully connected layer with no 

activation function. Our first stream will have outputs corresponding to the amount of 

actions we have at our disposal while the second will have only one output representing 

the state value function. These outputs are finally combined as mentioned earlier 

abiding by the dueling architecture formula. This agent is used in all environments and 
is trained from scratch each time. 
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Table 1. The architecture of the neural network used for all the environments. 

Input 84x84x1 raw image 

1. Layer Convolutional layer with stride 4x4, 32 
filters and filter size 8x8 

Output 20x20x32 

2. Layer Convolutional layer with stride 2x2, 64 
filters and filter size 4x4 and added 
batch normalization 

Output 9x9x64 
3. Layer Convolutional layer with stride 1x1, 64 

filters and filter size 3x3 and added 
batch normalization 

Output 7x7x64 

4. Layer Convolutional layer with stride 1x1, 512 
filters and filter size 7x7 

Output 1x1x512 

5. Layer LSTM recurrent network with 512 
neurons 

Output 1x512 

6. Layer Two fully connected layers without 
activation each taking half of the 
previous input 

Output 1xaction_size and 1x1 
7. Layer Combining previous outputs via dueling 

architecture 

Output 1xaction_size 
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4. Results 
	

The implemented model was evaluated on the environments defined in the previous 

chapter. The evaluation of reinforcement learning models is extremely difficult, more so 

in my case with limited resources and no GPU’s. Our evaluations will primarily focus on 

the reward per episode that our agent is able to attain. The agent was trained with the 

help of Microsoft Azure’s servers. The configuration of the server is 32GB of RAM with 4 
cores. 

 

4.1. Basic Scenario 
	

We first use the basic map for evaluation. Being a much simpler map, our agent’s task 

is to eliminate its opponent (Monster). The agent has 50 bullets of ammunition; each 

missed shot in turn gives a negative reward of negative 5, eliminating the monster gives 

a positive reward of 100. The episode has a max duration of 300 tics.  In the following 
graph we can see the agent’s progress per episode upon received reward. 

 

Figure 20: The graph depicts the convergence of the reinforcement agent as the training goes on for 
longer. 
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As we can see in the preceding graph, the agent’s policy converges in this scenario 

rather quickly in turn giving maximum reward. Training time took around 2 hours with 
the earlier mentioned configuration. 

4.2. Defend the center 
	

This scenario proves much more difficult than the former. The maximum reward that 

can be achieved in this scenario is positive 1351, whereas the least amount of reward to 

be achieved is negative 79. The agent has a limited 26 bullets of ammunition. The 
following graph demonstrates the achieved results per episode.  

 

 

Figure 21: Graph depicting the slow convergence of the “defend the center“ scenario. 
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The graph in the beginning shows a very low reward due to the fact that the agent has 

5000 iterations of pure random action selection to help in the exploration of Q values. 

As the randomness dissipates and the agent becomes greedier we observe a growth in 

reward per episode with peaks at around 1200. Although it should be noted that even 

with a relatively good score, there are still high oscillations which could be a result of a 

lack of training or perhaps the model itself has a lesser capacity than is needed for 

solving the task. Training of this model lasted for about a week. We would have to 

restart training due to a memory leak in the VizDoom environment. 
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4.3. Pacman 
	

This environments complexity lies between the basic and defend the center scenarios. 

As it is a Markov decision process, the image input is a complete representation of the 

state. The model was trained for 6 days until acceptable results were achieved. The 
following graph will show the increase in reward per episode. 

 

Figure 22: Graph depicting the convergence of the Pacman scenario. 

 

 

 

The x-axis represents the episodes while the y-axis represents the received reward. It is 

also worth noting that the maximum Q value per episode grows slowly from a mean 

value of 0 and is bounded by an upper value of around 250. Showing that as training 
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progresses the model is more certain about the actions that it takes. Viewing a replay of 

the gameplay shows that the agent in some scenarios gets stuck in certain positions 
which is probably a result of a lack of training. 
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5. Conclusion 
	

The field of reinforcement learning is gaining significantly more attention with the slow 

cool down of other field in artificial intelligence. Reinforcement learning shows the ability 

to generalize as has been shown in this work. The focus of this work was to explore 

reinforcement learning and that very capability of generalization which other forms of 

deep learning have not been able to deliver. The scope of reinforcement learning is 

much larger than was shown in this work. From object detection in images to self-

autonomous driving cars.  In the scope of this work we implemented a deep recurrent 

reinforcement learning agent using Tensorflow. The model was evaluated in two 

different Doom scenarios and Pacman. The models show some good results whilst 
taking into account the lack of resources at hand. 

In future work it would be interesting to see GAN’s implemented with a reinforcement 

agent thereby inserting some form of intuition to the agent; similar to what us humans 

have. Being able to follow a “gut feeling” as humans would say rather than just following 

what is always learned to be correct could perhaps result in much greater performance. 

Results could also be much greater in scale if the model was trained for longer and with 

better resources. Better resources would enable better hyperparameter searches, faster 

training. 
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Summary 
Reinforcement learning in simulated systems 

In this thesis we focused on implementing a reinforcement agent that was able to 

generalize to various simulated systems and in doing so; showing the ability of the 

reinforcement learning algorithm to adapt. Fundamentals of deep learning were also 

described. Using Tensorflow, a reinforcement learning agent was implemented. The 

agent was evaluated on three different scenarios: Pacman from the Atari 2600 games 

and two different scenarios of the game Doom. The evaluation results were shown via 
graphs. 

 

Key words: Reinforcement learning, agent, environment, deep neural networks, Q 
values, state values, experience replay, recurrent networks. 
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Sažetak 
Primjena podržanog učenja u simuliranim sustavima 

U ovome radu smo se fokusirali na implementaciji podržanoga agenta koji je bio 

sposoban se adaptirati u razne simulirane sustave i tim putem predstavili kapacitet i 

moć podržanog učenja. Osnove dubokog učenja su objašnjene u ovome radu. Koristeći 

se tensorflow-om smo implementirali podržanoga agenta. Agent je evaluiran kroz tri 

različita simulirana scenarija. Pacman iz Atari 2600 i dva scenarija iz igrice zvane 

"Doom". Sve evaluacije su grafički prikazane. 

 

Ključne riječi: Podržano učenje, agent, okruženje, duboko učenje, Q vrijednosti, 
vrijednosti stanja, ponavljanje iskustva, povratne mreže. 

 


