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Abstract.  

A meshfree Optimal Transportation Method (OTM) is applied for modeling of 

gradient hyperelasticity using higher-order theory based on only one 

microstructural parameter. The OTM method is utilized for the purpose of structural 

behaviour modeling undergoing large deformation. The independent displacement 

variables are approximated using interpolating maximum-entropy functions. This 

enables the satisfaction of the boundary conditions in a simple and straightforward 

manner without the need for the calculation of additional parameters. Novel 

stabilization algorithm employing one material point is presented. The analysis of 

numerical performance of the proposed approach is demonstrated by a 

representative numerical benchmark example. The obtained results are commented 

and arisen numerical problems are disscussed. 

1 Introduction 

At the moment, a wide variety of different meshfree methods are being employed for 

modeling of various engineering problems. The reason behind this application are 

benefits and advantages in comparison with standard mesh-based methods, like Finite 

Element Method (FEM) [1]. The meshless numerical approaches are able to overcome 

problems such as element distortion and time-demanding mesh generation process. 

Nevertheless, the numerical integration and calculation of meshfree shape functions and 

its derivatives still represent a major task due to the associated high computational costs 

[2]. In the present contribution the OTM formulation [3] is adapted for modeling of 

deformation of homogeneous structures employing strain gradient elasticity theory [2]. 

In addition, the strain gradient elasticity based on the theory with only one 

microstructural parameter is considered. The gradient theory is utilized in order to more 

accurately capture the material behaviour, to remove discontinuities from strain and 

stress fields and to simulate the size effects. Size effects depend on the microstructure of 

the material and can be observed when the size of the specimen is sufficiently small, i.e. 

approximately the size of the microstructure. At this length scale, specimens with 

similar shape but different dimensions show different mechanical behaviors. The 

solution of fourth-order differential equations arising in considered theories requires a 

high-order continuity of approximation functions. Hence, using the FEM for solving this 
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type of problems is not a wise choice since standard formulations need to possess C
1
 

continuity, which leads to complicated shape functions with large number of nodal 

degrees of freedom [4], even if mixed elements are utilized [5]. In comparison, the 

required continuity in the meshfree methods is obtainable in a simple by adding more 

nodes within the approximation domain [6]. 

The applied OTM method is based on the combination of the optimal transportation 

theory [7] with material-point sampling using the max-entropy meshless approximation 

[8]. It enforces the mass transport and essential boundary conditions exactly and should 

be free from tension instabilities. Furthermore, the method conserves linear and angular 

momentum [3]. The investigated global domain is approximated with two different sets 

of points, the discretization nodes and material points. At the nodes the displacements as 

the primary variables are computed by solving the discretized equation of motion. On 

the other hand, at the material points data associated with material is determined. This 

includes density, strain, stress, second-order stress, etc. Furthermore, the material points 

are used as integration points. The algorithms are based on the explicit time integration. 

In every time step the position of discretization points and the material points is 

calculated using updated Lagrangian scheme. The OTM algorithm is combined with the 

standard meshfree search algorithm where an arbitrary number of nodes can be assigned 

to a material point. Thus, the shape functions can become highly nonlinear if a larger 

number of nodes are located within the approximation domain. For the integration of the 

governing equations only one material point is used as in the originally proposed paper 

[3] to lower the computational time effort. It has been observed that one point is enough 

when solving the problem using classical continuum theory [9], but not might be when 

non-local (higher-order) continuum equations is employed. Hence, currently the novel 

stabilization algorithm using penalty method similar to one in [9] is being developed 

that could alleviate the methods stability issues.  

The OTM framework for the modeling of deformation responses of homogeneous 

material using gradient elasticity is presented and explained at large in Section 2. 

Herein, the considered stabilization algorithm is also presented. In Section 3. the 

proposed stabilization algorithm is tested on a problem of the truss subjected to tensile 

test using uniform displacements at both ends. In Section 4 concluding remarks and 

further research guidelines are given. 

2 Optimal Transportation Method for Finite Gradient Elasticity 

2.1 Governing equations for a higher-order nonlinear continuum 

The three dimensional higher-order nonlinear continuum which occupies the global 

computational domain   surrounded by the global outer boundary   is considered. 

According to [10], the governing equation is the weak form of the dynamic equilibrium 

written as 

Div(Div )d Div d d d =0
V V V V

V V V V      η Q η P η b η φ , (1) 
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where   is the density and φ  defines the second-order time derivative of deformation 

map (position vector ( , )t φ X x in the current configuration) defined as 

 
1 1

2

2n n n

t

  




φ φ φ
φ .    (2) 

Furthermore, the displacement vector is defined and calculated as ( , ) ( , )t t u X φ X X . 

In relation (1) η  denotes the admissible test function, P  the Piola stress tensor and Q  

the double stress tensor. The tensors P  and Q  are defined as the partial derivatives of 

free energy density  P Q( )W W W F G . The free energy density is dependent on the 

first-order deformation gradient 
x

 F φ  and the second-order deformation gradient 

x x
  G φ . Thus, the second- and third-order stress tensors are computed as   

W



P
F

,  
W




Q
G

.   (3) 

The utilized free energy density function corresponds to the Neo-Hooke material used in 

[11] and is taken as 

     P 21 1
ln : 3 2ln

2 2
W J J    F F F , (4) 

  Q 2W lG G G ,    (5) 

where   and   denote the Lame`s constants, J  the determinant of F  and l  the 

parameter associated with the size of the microstructure of the higher-order continuum. 

In order to derive the appropriate equation to discretize the relation (1) is firstly 

integrated by parts (the first part two times), after that the divergence theorem is applied 

and the decomposition of the gradient operator is done to properly identify the higher-

order boundary conditions [10] associated with the used continuum leading to 

 P Qn( )d d d d d =0
x x x

V V V

V V V 
 

             Q η η t η t η b η φ , (6) 

where P
t  and Q

t  represent the standard traction vector and the higher-order traction 

vector, respectively. The weak form in (6) has to fulfill the essential boundary 

conditions 

  u u ,      (7) 

  
n n

x x u u ,     (8) 
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and natural boundary conditions 

 P P

x x=( Div ) ( ) : : ( ) ( ( ) ( )) :               t P Q N N I N N I Q N N Q N I N N I t

                                                    (9) 

   Q Q= :  t Q N N t ,    (10) 

outer boundary  . 

2.2 Optimal Transportation Meshfree algorithm 

In comparison to classical meshfree methods like Element Free Galerkin (EFG) [12] 

method not only the position of nodes but also the positions of material points are 

updated during calculation within the updated Lagrangian framework. In this 

contribution the OTM algorithm is derived using the central difference time integration 

scheme (2) in the presented weak form (6). Furthermore, the domain around each 

material point is defined as a support (integration) domain using the appropriate search 

algorithm. At every material point the test function η  and the deformation map φ  are 

approximated using the max-entropy shape functions [8] and nodal values 

 
sup

1

pnN

pn I pn I

I

N


η x η ,   
sup

1

pnN

pn I pn I

I

N


φ x φ .  (11) 

Herein sup

pnN  is the number of nodes in the current support domain for each material 

point. Using the approximations (11) equation (6) is transformed to an algebraic 

equation 

 n+1 P Q n

n n n n n n2 2

1 1

( ) ( )
I I

t t
       

 
M φ F G P P R φ .  (12) 

In relation (12) the increments used are defined as 
n+1 n+1 n  φ φ φ  and 

n n n-1  φ φ φ . The standard and higher-order forces at the outer boundary are given as 
P

nP  and 
Q

nP , equal to 

 

sup

P P

n

11

( )
mp pnn N

I pn pn

Ip

N v


  P x t ,   (13) 

 

sup

Q Q

n

11

( )
mp pnn N

I pn pn

Ip

N v


   P x N t ,   (14) 

while the global mass matrix 
nM  and residual vectors nR , 

nF  and 
nG  are   
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sup sup

n

1 11

( ) ( )
mp pn pnn N N

I pn J pn p

I Jp

N N m
 

   M x I x ,  (15) 

 

sup

n

11

( )
mp pnn N

I pn p

Ip

N m


  R x b ,   (16) 

 

sup

n

11

( )
mp pnn N

I pn pn

Ip

v


   F B x P ,   (17) 

 

sup

n

11

( ) :
mp pnn N

I pn pn

Ip

v


  G H x Q .   (18) 

In relations (13) - (18) the pm  represents the mass and pnv  the volume at each material 

point. The matrices IB  and IH  contain the first- and second-order derivatives of the 

shape functions of node I. By solving (12) the incremental position vector 
n+1

Iφ  is 

determined and the nodal position vector is updated 

 
n+1 n n+1

I I I φ φ φ .    (19) 

Furthermore, in order to reduce the computational time the lumped mass concept [13] 

within the OTM framework is utilized. 

2.3 Stabilization procedure 

For the purpose of preserving the same computational time and increasing the 

accuracy of the method the novel stabilization procedure is proposed. The procedure is 

based on method of penalizing the negative effects resulting from underintegration [14]. 

The developed stabilization algorithm is based on the assumption of only quadratic 

distribution of displacements within the influence domain. This is done by computing 

the normalized error at every material point inside the influence domain. The calculated 

error is then multiplied with the appropriate penalty parameter   and subtracted from 

the nodal residual vector 
Ir  assembled analogously using the vectors nR , 

nF  and 
nG  

but utilizing the material points within the domain of influence. The normalized error 

criterion for every point p within the influence domain of the node I is 

 
   

1 1

d d
=

d

In pn In pn

Ip

I n p n 

  




x x x xx x
e

X X X
,  (20) 

where the distance vectors calculated from the OTM method are defined as 
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      1 1 1 1 1 1:In pn pn I n pn pn I n pn I n pn     
       
 

x x F X X G X X X X .

       (21) 

In order to enforce the error to be zero the penalty method is applied and the stabilized 

nodal residual vector is computed as 

  
inf

stab

1

IN

In In In pn Ipn

p

N


  r r x e .   (22) 

3 Numerical example 

3.1 Truss subjected to large displacements 

A three-dimensional truss subjected to mixed boundary conditions as shown in 

Figure 2 is considered. The truss in subjected to large displacements at the front and 

back side, while the other components of boundary conditions are the standard tractions 

and higher-order transction which are taken as zero. The geometry of the truss is defined 

by the length 1L  . For the analysis of deformation the benchmark material properties 

of the truss are taken as 61 10E   , 0.3   and  
61 10   . The large density is chosen 

here in order to compute the example faster in a quasi-static case to test the stabilization 

algorithm for the higher-order continuum. For the purpose of comparing the solutions, 

firstly the deformation of the geometrically identical truss under the assumpsion of the 

classical continnum without any microstructural effects included is computed. In 

Figures 3 and 5, the deformed shapes of the truss with the contours of the displacements 

in the z direction and the Von Mises stress are shown. As seen from the deformed shape 

in Figure 3, the truss at both ends reached the final values of the displacement boundary 

conditions. 

 

Figure1: Truss with boundary conditions 

Secondly, a higher-order continuum with a very small value of the microstructural 

parameter of / 0.05l L   is applied in computations. Here it should be mentioned that 

by introducing the higher-order continuum and within that the calculation of second-



 7 

order derivatives, no solution can be achieved without the application of stabilization 

procedure. Hence, the under integration of the weak form has a very large effect on the 

deformation of the structure, numerical calculations can not be performed because of 

very large errors arising during computation process.  

 

 

Figure2: Truss – classical continuum – 

distribution of displacement 
zu   

 

Figure3: Truss – higher-order continuum – 

distribution of displacement 
zu  

 

Figure4: Truss – classical continuum – 

distribution of Von Mises stress  

 

Figure5: Truss – higher-order continuum – 

distribution of Von Mises stress

In Figures 3 and 5, the obtained deformed shapes of the higher-order continuum with 

very high value of the stabilization parameter are portrayed. By the final positions of the 

nodes, it is clear that the application of the presented stabilization procedure causes the 

destruction of the displacement boundary conditions and deformed continuum forms 

which are not accurate. Hence, here additional numerical studies are neccesary in order 

to determine why the mentioned problems persist. Furthermore, as an alternative to 

max-entropy approximation functions different more robust approximation functions 

should be taken in consideration and the obtained results should be compared. 

4 Conclusion 

The meshfree OTM formulation has been applied for the modeling of deformation of 

the homogeneous structure. The influence of the material microstructure is taken into 

account using one parameter within the free energy density of the utilized higher-order 

continuum. Furthermore, as a remedy to the methods stability issues connected to 

underintegration of the weak form novel stabilization procedure is employed. The OTM 

algorithm is tested on one benchmark truss example. Using the presented stabilization 

algorithm, solutions can be obtained, however some problems have been identified. The 

first problem is the determination of the value of the penalty parameter if higher-order 
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continuum is computed. It is really hard to choose the value of the penalty due to the 

incorrect integration of the second-order derivatives of the max-entropy shape functions 

that are complex and their values is not easy to control. The second problem observed is 

that the stabilization procedure destroys the essential boundary conditions. In further 

research the mentioned issues should be addressed. The change to the more robust 

approximation functions should be considered. This could improve the smoothness of 

second-order derivatives and more accurate calculations should be carried out. 
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