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Abstract. A second-order computational homogenization multiscale procedure for the 

damage analysis of quasi-brittle materials is presented. Higher-order continuum theory 

embedded into the two dimensional C1 continuity triangular finite element is employed 

at both micro- and macroscale. Microscale boundary value problem is based on solving 

the constitutive relations of gradient elasticity coupled with the isotropic damage law. 

Softening of an arbitrary heterogeneous material can be captured at the macroscale by 

the application of the second-order homogenization procedure on the damaged RVE. 

All the algorithms derived are implemented into the FE software ABAQUS via user 

subroutines. 

1 Introduction 

The mechanical response of heterogeneous materials, observed from a 

macrostructural level, is highly dependent on the microstructural characteristics, such as 

size, shape, spatial distribution, volume fraction and properties of the individual 

constituents. Modeling of the microstructure of such materials can be used to assess the 

overall or effective material properties, and also to predict the occurrence of failure 

which limits the operational use of many engineering structures. The most efficient way 

to model the heterogeneous materials with complex microstructure is shown to be via 

the multiscale methods, where the information is exchanged between different length 

scales, typically micro- and macroscale, by means of the computational homogenization 

(CH). There is no need to make any constitutive assumptions at the macroscale, as the 

response of the homogenized material is determined during the analysis by solving a 

microscale boundary value problem (BVP) associated with each macroscopic 

integration point. An important concept here is the representative volume element 

(RVE), which can be defined as a smallest sample statistically representative for the 

microstructure, as described in [1].  

Classical homogenization techniques are built upon the principle of separation of 

scales, where the uniform distribution of the macro-strain over the entire RVE domain is 

assumed. This, however, is violated when the first-order CH schemes, described in [2], 

are used with the problems where strain softening occurs at the microlevel, associated 

with the formation of the sharp strain localization zones. When there is no clear 

separation of scales, capturing of the propagation of the underlying rapidly fluctuating 

responses can be remedied to some extent by higher-order enrichment of the 

macroscopic continuum. Besides, standard continuum formulation at the macroscale 

cannot regularize the formation of the strain localization, which in addition leads to the 

ill-posedness of the macrostructural BVP. As an improvement to the first-order CH, 

second-order CH is proposed in [3],[4], which is shown to be successful in treating only 
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the mildly softening materials, specifically the materials not exhibiting the deformation 

beyond a quadratic nature in the displacements [5]. With the occurrence of the sharp 

strain localization, homogenized response stops being objective with the respect to the 

size of the RVE - by increasing the size of the micro-sample, the macroscopic structural 

response becomes more brittle. In that case RVE stops being statistically representative 

for the macroscopic material point and should be called a microstructural volume 

element (MVE) instead, as stated in [6]. Another class of multiscale methods which deal 

with the strain softening problems is based upon the enrichment of the macroscale 

continuum with a discontinuity, where the microscale strain localization band is lumped 

into a macroscale cohesive crack. Taking into account the techniques used for the 

extraction of the equivalent discontinuity and formation of the corresponding 

macrostructural effective constitutive relation, several different procedures can be found 

in the literature [7]-[11]. The existence of an RVE for softening materials undergoing 

localized damage has been confirmed in [12], where a new averaging technique based 

on extraction of the deformation of just a localization band is proposed. By using this 

technique, a CH scheme for discrete macroscopic crack modeling that is objective with 

respect to the size of the RVE is presented in [10] and [13]. In [14], a new second-order 

computational homogenization scheme is derived, where the C1 continuous finite 

elements are employed at both macro- and microlevel. Employment of the nonlocal 

theory at the microscale has shown better efficiency compared to available 

homogenization schemes, additionally offering an advanced frame for damage 

modeling. Recently, a new damage model employing the strain gradient theory 

embedded into C1 continuous finite elements is presented in authors’ previous work 

[15], where the exceptional regularization capabilities of such model are demonstrated. 

In the present paper, multiscale scheme based on the combination of work shown in 

[14] and [15] is realized by implementation of the new damage model at the microlevel. 

No objectivity issues related to the macroscale discretization are expected since the C1 

continuity should completely regularize the problem. As a starting point of this research 

conventional homogenization based on averaging over the whole micro-domain is 

considered, despite the aforementioned problems with the non-existence of the damaged 

MVE. Derivation of the appropriate homogenization model for the elimination of this 

unwanted behavior is still under investigation and will be included in authors’ following 

research. 

2 C1 continuity triangular finite element formulation 

In the presented research, the C1 continuity plane strain triangular finite element 

proposed in [16] is used for the discretization of both micro- and macrolevel BVP. The 

element is based on a small-strain second-gradient continuum theory for which more 

details can be found in [14]. As shown in Fig. 1, it consists of three nodes, each having 

12 degrees of freedom which are two displacements and their first- and second-order 

derivatives with respect to the Cartesian coordinates. The element displacement field is 

approximated by the fifth order polynomial. 
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Figure1: C1 triangular finite element 

The finite element equations for both scales are derived from the same form of the 

principle of virtual work given as 

      
1 1 2 2

δ d δ d δ d δ d δ grad d
T T

T T T

x x x x
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A A A s s       ε σ ε μ ε μ u t u T ,  (1) 

where A and s are area and perimeter of the element, respectively. First term on the left 

hand side of (1) is well known classical term consisting of the strain ε  and Cauchy 

stress σ . The higher-order terms contain the higher-order strain gradients 
1x

ε  and 
2xε  

and their work conjugates 
1x

μ  and 
2xμ , given for both directions of Cartesian 

coordinates 
1x  and 

2x . t  and T are the traction tensor and the double traction tensor, 

respectively.  

2.1 Macrolevel finite element formulation 

The stress and the second-order stress increments at the macrolevel, σ  and μ , are 

computed by the generalized incremental constitutive relations [14] defined as 
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  (2) 

where the nine different macroscopic constitutive tangents, denoted with C  and 

appropriate subscripts, are necessary for the description of the arbitrary heterogeneous 

microstructure. After the homogenization of the damaged microstructure, reduction of 

the element values of the constitutive tangent matrices leads to the softening of the 

material at the macrolevel. Finite element equation can easily be obtained by the 

insertion of (2) into linearized and discretized form of (1), with more details provided in 

[14]. 

2.2 Microlevel finite element formulation 

After the application of the isotropic damage law, described in [15], to the 

constitutive relations of the gradient elasticity which can be found in [14], following 

relations are obtained 
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Here, l represent the parameter of nonlocality, while C  is the classical elasticity matrix 

which is sufficient for the description of the stiffness behavior of the homogeneous 

material assumed at the RVE level. D is the damage variable ranging from zero to one, 

by which the undamaged and fully damaged material are described, respectively. Stress 

and higher-order stress gradient increments are computed from the values of the last 

converged equilibrium state (i–1). By using the same procedure as described earlier, 

finite element equations for the softening analysis of the RVE can be written in the 

following form 

  
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with the particular element stiffness matrices defined as 
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B ,  
1x

B  and 
2xB  in the upper relations contain the first and second derivatives of the 

finite element interpolation functions, and v  is the nodal displacement increment 

vector. Definition of the external and internal nodal forces eF  and iF , as well as the 

detailed information about the higher-order damage model can be found in [15]. 

3 Scheme of C1-C1 second-order CH multiscale algorithm 

3.1 Macro-to-micro scale transition 

Herein, basic relations of the second-order CH scheme with the non-local theory 

included at the microscale are provided. Discretization of both levels is made by the 

above described C1 triangular finite elements. Considering the subscripts “M” or “m”, 

quantities in the following relations refer to the macrolevel or micolevel, respectively. 

RVE boundary displacement field is defined according to [14] by 

  m M M

1

2
         u ε x x ε x r , (6) 
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where x is a spatial coordinate of the RVE boundary, r the microstructural fluctuation 

field, and Mε  and Mε  represent the macrolevel strain and strain gradient, 

respectively. Microlevel strain and strain gradient can be directly derived from (6) by 

application of the gradient operators, from where the following relations can be 

formulated 
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  (7) 

Integral constraints (7) are satisfied through appropriate choice of boundary conditions, 

in this case gradient generalized periodic boundary conditions which are imposed along 

the boundaries of the RVE, shown in Fig. 2.  

 

Figure2: Representative volume element [14] 

Displacements are imposed on the corner nodes of the RVE boundary as 

        
1 2M 1 2

M M
, 2, 3, 4T T T

i i x xi i
i u = D ε + H ε + H ε , (8) 

where D , 1H  and 2H  are coordinate matrices, described in more detail in [14]. In (8), 

displacement of the corner node 1 is suppressed in order to eliminate the rigid body 

movements. Due to periodicity, remaining boundary nodes are kinematically related in 

the following way 
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The periodicity relations for the available nodal degrees of freedom are then derived by 

using (6), (8) and (9), in form of 
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3.2 Micro-to-macro scale transition 

Once the microstructural BVP is solved, the homogenization of the macrostructural 

stress tensors and constitutive matrix has to be performed. The starting point for the 

derivation of the required relations for the homogenized stresses is Hill-Mandel energy 

equivalence condition, defined for the non-local continuum theory on both structural 

levels as 

     3 3

m m m m m M M M M

1
:δ δ d :δ δ

V

V
V

      σ ε μ ε σ ε μ ε . (11) 

Following the procedure given in more detail in [14], the stresses are obtained as 
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Based on the generalized Aifantis macroscopic constitutive relations assumption, nine 

different constitutive tangents are introduced to describe the microstructural effects that 

occur on the RVE. Derivation of the tangents is performed by using the static 

condensation procedure, resulting in their dependency on the condensed stiffness matrix 

bbK  and appropriate combination of coordinate matrices, as shown in [14]. 

4 Conclusions and following steps 

Multiscale scheme with the non-local continuum theory implemented at both macro- 

and microscale is extended to the consideration of the softening behavior of quasi-brittle 

materials. The non-local continuum theory in form of the gradient elasticity is embedded 

into the C1 three node triangular plane strain finite element. Additionally, isotropic 

damage law is introduced in the RVE finite element formulation, providing in this way a 

complete regularization of the microstructural boundary value problem. 

Homogenization over the whole domain of the RVE is considered in this paper and will 

be used in a numerical example as the first step of the following research, together with 

a completely homogeneous microstructure. In this way, comparison with the results of 

the one-scale damage model could be made due to the fact that a moderate localization 

is expected at the microscale, for which the existence of the RVE can be proven. By 

using the standard heterogeneous RVE, formation of the sharp localization zones is 

anticipated and the existence of the RVE comes into question when a described 

homogenization is used. Therefore, an enhancement of the proposed homogenization 

model has to be derived for the elimination of this non-physical problem, which will be 

the topic of authors’ further research. 
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