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Abstract. The arterial pressure waveform consists of sicstand of diastolic
phases. Systolic phase includes blood ejection ftmneft ventricle into the aorta,
which lasts from the aortic valve opening to théveaclosing, when the diastolic
phase starts. During diastolic phase the aortarngpgying due to blood flow from
the aorta to the peripheral vascular beds. These pliases are separated by an
incisure in the pressure profile, which includeswualden pressure drop at the end of
systolic phase and a sudden pressure growth ab#ggnning of diastolic phase.
Today’s common believe is that the cause of theure is a water hammer caused
by the aortic valve closing. Further to this integation, we hypothesized in this
paper that the wall viscosity also contributes lte incisure appearance. Based on
the one-dimensional numerical model simulation lobd flow in the arterial tree,
we demonstrated that the incisure is deepenindnéyall viscosity increase.

1 Introduction

We investigate an incisure in the aortic pressuddilp. Incisure is a result of two
phenomena: a sudden pressure drop at the endtofesgad a sudden pressure increase
at the beginning of diastole. A water hammer phesrtar{1, 2, 3], as an incisure origin,
is widely accepted. By that, due to the aortic gallosing, there is a reverse blood flow
from the aortic root to the left ventricle. Thisveese blood flow stops suddenly when
the aortic valve closes, causing a sudden presgoreth Ap, defined by the Allievi

equationAp = pcAv (o is the blood density; is the wave speed arli/ is the change

of the reverse blood velocity during the leaflelssmg). Based on some theoretical
considerations, here we hypothesize that the altesll viscosity also contributes to
the appearance of the incisure. This additionalimentation could be useful in clinical
practice, since the depth of the incisure contaifigrmation about the arterial wall

viscosity. Although the pressure measurement inaibwic root requires an invasive
procedure, which is unacceptable in healthy subjdat to the health risks it brings, it
is still possible to observe the incisure non-imvely in the carotid artery by using

applanation tonometry.

In the following sections we will provide the math&tical model of one-
dimensional (1D) blood flow in the visco-elastidesiial tree, and define the numerical
method of characteristics (MOC) for its solving. te&f that we will explain the
hypothesis through a simplified theoretical analyand finally perform numerical
experiments by using the 1D model, which confirmslyypothesis.



2 TheHypothess

Here we explain the idea for the hypothesis. Fi plurpose, a simplified lumped
parameter (Windkessel) model of blood flow in tluetia root is used. In this model
arterial tree is modelled by one chamber in whiehgressure distribution is uniform as
well as the inlet and outlet flow distributionsgbire 1 shows schematically the aortic
root region (also known as the Valsalva sinus) whth definition of inlet flow rate (the
aortic valve flowQ,, ) and outlet flowQ toward the periphery. The continuity equation

for the aortic root is:

dvar - _
Gt O~ Q (1)

whereV,, is the volume of Valsalva sinus, which can be agjpnated by a cylinder of
volume Vv, = A L, where A, is the characteristic cross-sectional area &né the
equivalent length.
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Figure 1. Schematic view of the Valsalva sinus defihition of inlet and outlet flow rates

The aortic wall shows the viscoelastic propertyd here it is described by the Voigt
model which can be expressed in terA)s:

dv.
p= pe+f7%= pe+%f= p;%(Q.n- o (2)

where p, is the elastic part of the total pressure, gnds the viscous resistance of the
aortic wall. The elastic part of pressure can lfandd as:
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where A, is the reference cross-sectional area at theemeferpressurg,, and C is
the areal compliance. The differene¢t) =V, -V, can be calculated as

V)=V, ~V,= [ Sedt=[(Q,- Qdt (4)



and expression for the becomes:

p=p0+1
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If we assume that constants , C, /7, and L are known, and we take f&@ the

peripheral blood flow rate (in the first approxinoat it can be considered as the mean
value ofQ, ), than p is defined uniquely by the aortic valve blood fl@y . It is visible

from Equation (5) that folQ,, > Q the p is greater thanp,, and forQ, <Q, itis
smaller.

Figure 2, shows an example of calculated valuetheftotal and elastic part of
pressure. Curves in panel (a) show the input bftawd Q, through aortic valve (blue
line) and the blood flowQ to the peripheral vascular beds (red line), wiaichobtained
by digitization of data from [4]. The time interva+-D represents the filling phase of the
aorta @Q,, > Q) during which the cross-sectional area and volumeease. Outside this
interval, aorta is emptying and cross-sectionab amad volume decrease. Panel (b)
shows the net blood flow rate into the chamber, mtegrated time variation of the
chamber volume, according to Equation (4). Panesliows the calculated elastic part
of pressurep, (blue line), which is proportional witN/(t), and the total pressurg
(green line), calculated according to Equation §53an be seen that = p, at points B
and D, within the time interval B-Dp> p,, and outside the B-D interval, when
Q, <Q, and p< p,. The biggest positive difference- p, (the biggest viscous part of
pressure) is at point close to point C, when tliteince betweerQ, and Q is the
biggest, and the biggest negative differences taaepaint close to point F. It should be
noted that the curve of elastic part of the presssirsmooth, while the total pressure
curve shows an enclosure, due to changes in theussart of the pressure. During the
time interval D-E-F the differenc@, - Q is negative and it increases in magnitude, and
consequently the total pressure becomes much snihbe the elastic part of the
pressure. This pressure drop in the viscous pastedsure forms the left branch of the
incisure. During the time interval F-G the negatiliferenceQ,, —Q becomes smaller
in magnitude, and total pressure becomes clostretelastic part of pressure, forming
the right branch of the incisure. It is clear thia® bigger value of7 will cause the

deeper incisure.
In the following sections of the paper, we will ckehe influence of the arterial wall

viscosity on the depth of the incisure, by applythg one-dimensional mathematical
model to the simplified arterial tree, which cotsisf 37 large arteries.
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Figure 2: Filling and emptying phases of the aamtiot. Curves in the diagram (a) are the result
of data digitization from [4]

Mathematical M ode of One-Dimensional Blood Flow
The arterial tree composed of large arteries isidened, which starts at the aortic
root and ends at a certain level of branching i@derln large arteries blood flow is
assumed to be one-dimensional, and the periphasdwar bed is modelled by the

3



resistor. The non-linear one dimensional model roéreal flow in the impermeable
blood vessel is defined by:

a_A\+a_(g:0’ (6)
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where x is the space coordinaté,is the time coordinateA= A(x t) is the circular
cross-sectional area of the blood ves&t Q(x t) is the volume flow ratep = p(x t)

is the transmural pressure= Q/ A is the mean blood flow velocityy is the constant
blood density, f is the friction coefficient,p, = p,(A is the elastic part of transmural
pressure, angis the viscous resistance of the wall defined Qy [5

_2/mpo
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(9)

where ¢ is the wall viscosity,d is the arterial wall thickness, an4, is the reference
cross-sectional area at the reference presgyrerhe friction coefficientf is defined
by formula [6]:
{22+
pA

where u is the fluid viscosity and” is the velocity profile order (her&, =9).

(10)

The constitutive equation, which relates the etgstirt of pressure and the blood vessel
diameter [7] is:

1
.= Po+ —(VA-\[A) (11)
D
whereC, is defined by the formula:
3A
Cp = , 12
° 4JnEs (12)

where E is Young’'s modulus. From Equation (11) follows tltedation between the
areal complianc&€ =dA/dp,andCy :

C=2C,/A. (13)

By definition, the speed of sound is:



1
c= A = LA4 . (14)
VeC | 206G,
If E and¢ are constants, related to the Voigt model, therdettion time constant is:

—nc=2
r-/]C—E. (15)

4  Numerical Method

The arterial tree is discretized into a finite n@nbf elements, which are bounded by
the node on each side. Here, we consider treestikesture of the arterial tree: for the
considered node there is only one entering eleaxethizero, one, or more elements that
are exiting from the node. Figure 3 shows a typaament (denoted hy) of length
AXx, which is bounded by nodas and R. All unknown variablesQ, A, and p are
calculated at nodes. The node presspres the same for all elements that are connected
at the considered node. The cross-sectional arezan be eliminated from the set of
unknowns because it is related to pressure by EquéB). There are three unknowns
related to each elemenp;,Q;; and Qg .
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Figure 3: Typical discretized element of artetiak. Circles denote nodes at which the values of
variables are stored; squares denote the inteipolabints, and triangles the midpoints of
characteristics

Using Equation (8) in combination with Equations) @nd (7) it follow two
compatibility equations containing total differexs of p and Q which hold along the



characteristic lines defined byé" =dx/dt=v+c and & =dx/dt=v-c. The
compatibility equations are:

1dQ* dp* 1 0°A 0°Q
——= —(v-c)—/—=-= fQ- Vp——+( v— , 16
car Vg = Vg gt 0t (16)
1dQ- dp” 1 0% A 0°Q
—= _(v+o) X =—-—10-V +| v+ ) 17
car Vre =g Vg (v gt (7

where, for example,dQ* /dt=0Q/dt+(vt c)dQ/dx, and dQ" and dQ are

discretized in the formdQ" =Q% - Q- and dQ =Q"-Q, (see notation in Figure 3,
overbar denotes interpolated values).

The blood flow rateQ,; toward the peripheral vascular bed is defined ty t
resistanceR; as shown in Figure 4, by the equation

= Pou = Ry Qy (18)

where p,,, is the peripheral pressure, which is defined adrdmsmural pressure.
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Figure 4: Model of blood flow rat®,; toward the peripheral vascular bed

In each node the continuity equation holds, fomepla, for the noder in Figure 4,
itis:

P, = Poy
Qr; = Q- (19)

i

After discretization of Equations (16) and (17),set of algebraic equations is
obtained. Due to non-linearity of the mathematioaldel, the solution procedure is an
iterative one. The iteration stops when differenagspressure in two successive
iterations become less than 0.0133 Pa, in all notldse arterial tree. In the input node
(denoting the exit from the aortic valve) it is pitBe to prescribe the pressure or flow
rate, and the initial conditions a@=0, A= A and p= p,. Since we are interested in

the periodic flow regime, the integration time sliobe long enough to diminish the
influence of initial conditions. Detailed descripti of the method can be found in [8].



5 Resultsand Discussion

In Ref. [8], the numerical method is carefully vied in a series of tests and the
mathematical model is validated by using experimengsults of a silicone model of the
arterial tree consisting of 37 large arteries [8]shown in Figure 5. Arterial wall is
viscoelastic: withE =1.2 MPa, and ¢ =3+ 0.3 kPdl:. All necessary data of this test are

provided in the Supplementary material of [9], diadble 1 reviews some of them. Here,
we use this problem to analyze the influence ofwh# viscosity on the enclosure. For
this purpose, we will calculate the blood flow hret37-element arterial tree with three
different retardation constants=nC=¢/E= 10, 30, and 50 ms (it is reasonable to

assume that a real arterial wall is more viscoum thilicone (the retardation time
constant of silicone ig =2.5+ 0.25 my). For the purpose of numerical procedure, we
discretized the arterial tree into 860 elementsth&t ends of arterial tree the outflow
boundary condition is defined by the resistor afisencer,, , as reported in Table 1.
The mathematical model was integrated for a sefficinumber of heart periods to

achieve beat-to-beat repeatability of the presguodile, and the results from the last
period are analyzed.
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Figure 5: Scheme of the 37-artery model. Blackleg denote inlet/output nodes. At the input
node (node 0), we prescribe the aortic valve bftma [9]. The segment number
corresponds to the number of its output node. Umdel red numbers denote the number of
segment divisions for the purpose of the numerivathod



Table 1: Some parameters of 37-artery model

Property

37-artery network

Input periodical blood flowQ, (m’/s)

[9]

Blood density,p (kg/nT) 1050
Blood viscosity,; (mPas) 2.5
Initial pressure,p, (kPa) 0
Retardation time constant, ég
r=nC=¢/E (MSs) =0
Outflow pressurep,, (Pa) 432.6
Velocity profile order,s 9
. Min 0.007
Arterial length (m) Max 0245
Segment radius at the reference Min 1.55
pressure (mm) Max 14.4
Speed of sound at the reference Min 4.84
pressure (m/s) Max 14.9
3 - Right carotid 2.67
6 - Right radial 3.92
7 - Right ulnar 3.24
9 - Left carotid 3.11
13 - Left radial 3.74
14 - Left ulnar 3.77
16 - Intercostals 2.59
Resistancer, in the Windkessel mod¢l 20 - Splenic 3.54
(GPas/nT) 21 - Gastric 4.24
22 - Hepatic 3.75
24 - Left renal 3.46
26 - Right renal 3.45
34 - Right anterior tibial 5.16
35 - Right posterior tibial 5.65
36 - Left posterior tibial 4.59
37 - Left anterior tibial 3.16

Figure 6 shows the aortic valve flow rai®, (), which is used as the inlet boundary

condition at the inlet node and the aortic roospuee-time variation obtained by different
values of the retardation time constant (i.e. diff¢ values of the arterial wall viscosity).
In addition, the definition of the incisure depthshown. It is visible that increase in the
arterial wall viscosity results in an increase e tdepth of the incisure, which is in
accordance with the hypothesis. Also, the incréasiee arterial wall viscosity results in

an increase in the slope of the pressure cundeedidginning of ejection, as well as in an
increase in the systolic pressure, which is wedhvkm in the clinical practice.
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Figure 6: Aortic valve flow rate and the aortiotgressure versus time for different arterial wall
viscosity

It is also known that the pressure shape changesy dhe aorta in a way that the
systolic pressure increases, while the diastolesgure remains constant or slightly
decreases. Figure 7 shows results for pressuréfatedt locations along the aorta,
obtained atr =30 ms. It is visible that systolic pressure increasethwistance from the
aortic root.
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Figure 7: Results for the pressure-time variatibdifferent location in the aorta, at= 30 ms
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It is also clear that the incisure depth decremstisthe distance from the aortic root,
and in the considered case of wall viscosity, ti@sure disappears at the level of the
abdominal aorta. Table 2 shows the incisure depthtife three values of the wall
viscosity and at five locations in the arterialetrdt is visible that in the case of low
arterial wall viscosity the incisure disappearshe Thoracic aorta, while in the case of
higher arterial wall viscosity the incisure depgtalso significant in the abdominal aorta.
The fact that the incisure depth increases withirtbeease of the wall viscosity can have
a potential value in clinical practise, providingat clinicians can estimate the aortic
wall viscosity from the incisure depth. This wile of interest only in case if we can
measure the incisure depth noninvasively, whichas possible for now in the aortic
root. The closest place to the aortic root, where @an measure the pressure
noninvasively, is the neck (the position of the tLeahd Right Carotid). The main
guestion is if the incisure depth is still sign#it at those positions. It is visible from
Table 2 that the incisure depth at those positiersomewhat reduced with respect to
the depth at the aortic root, but it seems it i significant for potential clinical
application.

Table 2: Depth of the incisure (see definitiorFigure 6) in mmHg, in case of the three
different wall viscosity and at five different Ia@ans in the arterial tree
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_ . . Right Thoracic Abdominal
r=¢/E (ms) Aortic Root | Left Carotid Carotid Aorta Aorta
10 2.0 1.5 2.1 0.0 0.0
30 4.2 2.7 3.2 0.9 0.1
50 6.2 45 5.0 2.8 1.3
120 n n
Right Carotid b (t=10 ms)
p (1=30 ms)

Figure 8: Right Carotid pressure versus time ftfeknt arterial wall viscosity
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Figure 8 illustrates the pressure profiles at thighRCarotid in case of different
values of the retardation time constant. The prsfdre very similar in shape to those at
the aortic root.

6 Conclusion

We simulated blood flow in a 37-artery network wéhviscoelastic wall (the Voigt
model), by using the one-dimensional mathematicadleh and numerical method of
characteristics. We investigated the depth of th@sure in the pressure profile at
different locations in the arterial tree with respé the three different values of the
arterial wall viscosity. Based on the obtained ltssue can conclude:

The increase of the arterial wall viscosity resintan increase in the incisure depth.
This fact presents a certain potential for cliniestimation of the arterial wall viscosity,
from the measurements of the incisure depth.

The incisure depth decreases with distance fromathwtic root, but it is still
significant at the positions of the Left and Rigdrotid, where non-invasive pressure
measurements can be performed.
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