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Abstract. The arterial pressure waveform consists of systolic and of diastolic 
phases. Systolic phase includes blood ejection from the left ventricle into the aorta, 
which lasts from the aortic valve opening to the valve closing, when the diastolic 
phase starts. During diastolic phase the aorta is emptying due to blood flow from 
the aorta to the peripheral vascular beds. These two phases are separated by an 
incisure in the pressure profile, which includes a sudden pressure drop at the end of 
systolic phase and a sudden pressure growth at the beginning of diastolic phase. 
Today’s common believe is that the cause of the incisure is a water hammer caused 
by the aortic valve closing. Further to this interpretation, we hypothesized in this 
paper that the wall viscosity also contributes to the incisure appearance. Based on 
the one-dimensional numerical model simulation of blood flow in the arterial tree, 
we demonstrated that the incisure is deepening by the wall viscosity increase. 

 

1 Introduction 

We investigate an incisure in the aortic pressure profile. Incisure is a result of two 
phenomena: a sudden pressure drop at the end of systole and a sudden pressure increase 
at the beginning of diastole. A water hammer phenomena [1, 2, 3], as an incisure origin, 
is widely accepted. By that, due to the aortic valve closing, there is a reverse blood flow 
from the aortic root to the left ventricle. This reverse blood flow stops suddenly when 
the aortic valve closes, causing a sudden pressure growth p∆ , defined by the Allievi 
equation p c vρ∆ = ∆  ( ρ  is the blood density, c  is the wave speed and v∆  is the change 
of the reverse blood velocity during the leaflets closing). Based on some theoretical 
considerations, here we hypothesize that the arterial wall viscosity also contributes to 
the appearance of the incisure. This additional argumentation could be useful in clinical 
practice, since the depth of the incisure contains information about the arterial wall 
viscosity. Although the pressure measurement in the aortic root requires an invasive 
procedure, which is unacceptable in healthy subjects due to the health risks it brings, it 
is still possible to observe the incisure non-invasively in the carotid artery by using 
applanation tonometry. 

In the following sections we will provide the mathematical model of one-
dimensional (1D) blood flow in the visco-elastic arterial tree, and define the numerical 
method of characteristics (MOC) for its solving. After that we will explain the 
hypothesis through a simplified theoretical analysis and finally perform numerical 
experiments by using the 1D model, which confirms our hypothesis. 
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2 The Hypothesis 

Here we explain the idea for the hypothesis. For this purpose, a simplified lumped 
parameter (Windkessel) model of blood flow in the aortic root is used. In this model 
arterial tree is modelled by one chamber in which the pressure distribution is uniform as 
well as the inlet and outlet flow distributions. Figure 1 shows schematically the aortic 
root region (also known as the Valsalva sinus) with the definition of inlet flow rate (the 
aortic valve flow inQ ) and outlet flow Q toward the periphery. The continuity equation 
for the aortic root is: 

 ar
in

d

d

V
Q Q

t
= − ,        (1) 

where arV  is the volume of Valsalva sinus, which can be approximated by a cylinder of 

volume ar arV A L= , where arA  is the characteristic cross-sectional area and L is the 
equivalent length. 

 
Figure 1:  Schematic view of the Valsalva sinus and definition of inlet and outlet flow rates 

 

The aortic wall shows the viscoelastic property, and here it is described by the Voigt 
model which can be expressed in terms arA : 

 ( )ar ar
e e e in

d d

d d

A V
p p p p Q Q

t L t L

η ηη= + = + = + − ,    (2) 

where ep  is the elastic part of the total pressure, and η  is the viscous resistance of the 
aortic wall. The elastic part of pressure can be defined as: 

 e 0 ar 0 0 ar 0

1 1
( ) ( )p p A A p V V

C CL
= + − = + − ,    (3) 

where 0A  is the reference cross-sectional area at the reference pressure 0p , and C  is 
the areal compliance. The difference ar 0( )V t V V= −  can be calculated as  
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0 0

d
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t tV
V t V V t Q Q t

t
= − = = −∫ ∫ ,     (4) 
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and expression for the p  becomes: 

 ( ) ( )0 in in

0

1
d

t

p p Q Q t Q Q
CL L

η= + − + −∫ .     (5) 

If we assume that constants 0p , C , η , and L  are known, and we take for Q  the 
peripheral blood flow rate (in the first approximation it can be considered as the mean 
value of inQ ), than p  is defined uniquely by the aortic valve blood flow inQ . It is visible 
from Equation (5) that for inQ Q>  the p  is greater than ep , and for inQ Q< , it is 
smaller.  

Figure 2, shows an example of calculated values of the total and elastic part of 
pressure. Curves in panel (a) show the input blood flow inQ  through aortic valve (blue 
line) and the blood flow Q to the peripheral vascular beds (red line), which are obtained 
by digitization of data from [4]. The time interval B–D represents the filling phase of the 
aorta ( inQ Q> ) during which the cross-sectional area and volume increase. Outside this 
interval, aorta is emptying and cross-sectional area and volume decrease. Panel (b) 
shows the net blood flow rate into the chamber, and integrated time variation of the 
chamber volume, according to Equation (4). Panel (c) shows the calculated elastic part 
of pressure ep  (blue line), which is proportional with ( )V t , and the total pressure p  
(green line), calculated according to Equation (5). It can be seen that ep p=  at points B 
and D, within the time interval B–D ep p> , and outside the B–D interval, when 

inQ Q< , and ep p< . The biggest positive difference ep p−  (the biggest viscous part of 
pressure) is at point close to point C, when the difference between inQ  and Q is the 
biggest, and the biggest negative differences are at a point close to point F. It should be 
noted that the curve of elastic part of the pressure is smooth, while the total pressure 
curve shows an enclosure, due to changes in the viscous part of the pressure. During the 
time interval D-E-F the difference inQ Q−  is negative and it increases in magnitude, and 
consequently the total pressure becomes much smaller than the elastic part of the 
pressure. This pressure drop in the viscous part of pressure forms the left branch of the 
incisure. During the time interval F-G the negative difference inQ Q−  becomes smaller 
in magnitude, and total pressure becomes closer to the elastic part of pressure, forming 
the right branch of the incisure. It is clear that the bigger value of η  will cause the 
deeper incisure.  

In the following sections of the paper, we will check the influence of the arterial wall 
viscosity on the depth of the incisure, by applying the one-dimensional mathematical 
model to the simplified arterial tree, which consists of 37 large arteries. 
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Figure 2:  Filling and emptying phases of the aortic root. Curves in the diagram (a) are the result 

of data digitization from [4] 

 

3 Mathematical Model of One-Dimensional Blood Flow 

The arterial tree composed of large arteries is considered, which starts at the aortic 
root and ends at a certain level of branching arteries. In large arteries blood flow is 
assumed to be one-dimensional, and the peripheral vascular bed is modelled by the 
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resistor. The non-linear one dimensional model of arterial flow in the impermeable 
blood vessel is defined by:  

 0
A Q

t x

∂ ∂+ =
∂ ∂

,        (6) 

 
( )QvQ A p

fQ
t x xρ

∂∂ ∂+ + = −
∂ ∂ ∂

,      (7) 

 ( )e
A

p p A
t

η ∂= +
∂

,       (8) 

where x  is the space coordinate, t  is the time coordinate, ( , )A A x t=  is the circular 
cross-sectional area of the blood vessel, ( , )Q Q x t=  is the volume flow rate, ( , )p p x t=  
is the transmural pressure, /v Q A=  is the mean blood flow velocity, ρ  is the constant 
blood density, f  is the friction coefficient, e e( )p p A=  is the elastic part of transmural 
pressure, and η is the viscous resistance of the wall defined by [5]: 

 
0

2

3A A

πϕδη = ,        (9) 

where ϕ  is the wall viscosity, δ  is the arterial wall thickness, and 0A  is the reference 
cross-sectional area at the reference pressure 0p . The friction coefficient f  is defined 
by formula [6]: 

 
2( 2)

f
A

ζ πµ
ρ
+= ,        (10) 

where µ  is the fluid viscosity and ζ  is the velocity profile order (here, 9ζ = ). 

The constitutive equation, which relates the elastic part of pressure and the blood vessel 
diameter [7] is: 

 e 0 0
1

( )
D

p p A A
C

= + −       (11) 

where DC  is defined by the formula: 

 03

4
D

A
C

Eπ δ
= ,        (12) 

where E  is Young’s modulus. From Equation (11) follows the relation between the 
areal compliance ed / dC A p= and DC : 

 2 DC C A= .        (13) 

By definition, the speed of sound is: 
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If E  and ϕ  are constants, related to the Voigt model, the retardation time constant τ  is:  

 C
E

ϕτ η= = .        (15) 

4 Numerical Method 

The arterial tree is discretized into a finite number of elements, which are bounded by 
the node on each side. Here, we consider tree-like structure of the arterial tree: for the 
considered node there is only one entering element and zero, one, or more elements that 
are exiting from the node. Figure 3 shows a typical element (denoted byj ) of length 

x∆ , which is bounded by nodes L  and R . All unknown variables: Q, A , and p  are 
calculated at nodes. The node pressure p  is the same for all elements that are connected 
at the considered node. The cross-sectional area A  can be eliminated from the set of 
unknowns because it is related to pressure by Equation (8). There are three unknowns 
related to each element: jp , LjQ  and RjQ . 

 
Figure 3:  Typical discretized element of arterial tree. Circles denote nodes at which the values of 

variables are stored; squares denote the interpolation points, and triangles the midpoints of 
characteristics 

 

Using Equation (8) in combination with Equations (6) and (7) it follow two 
compatibility equations containing total differentials of p  and Q which hold along the 
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characteristic lines defined by d / dx t v cξ + = = +  and d / dx t v cξ − = = − . The 
compatibility equations are: 

 ( ) ( )
2 2

21 d d 1
 

d d

Q p A Q
v c fQ v v c

C t t C x t x t
η η

+ + ∂ ∂− − = − − + −
∂ ∂ ∂ ∂

,  (16) 

 ( ) ( )
2 2

21 d d 1
 

d d

Q p A Q
v c fQ v v c

C t t C x t x t
η η

− − ∂ ∂− + = − − + +
∂ ∂ ∂ ∂

,  (17) 

where, for example, ( )d / d / /Q t Q t v c Q x± = ∂ ∂ + ± ∂ ∂ , and dQ+  and dQ−  are 

discretized in the form: R FdQ nQ Q+ = −  and L BdQ nQ Q− = −  (see notation in Figure 3, 
overbar denotes interpolated values). 

The blood flow rate WjQ  toward the peripheral vascular bed is defined by the 

resistance WjR  as shown in Figure 4, by the equation 

 out W Wj j jp p R Q− = ,       (18) 

where outp  is the peripheral pressure, which is defined as the transmural pressure. 

 

Figure 4:  Model of blood flow rate WjQ  toward the peripheral vascular bed 

In each node the continuity equation holds, for example, for the node R in Figure 4, 
it is:  

 out
R L

W

j
j k

j

p p
Q Q

R

−
= + .       (19) 

After discretization of Equations (16) and (17), a set of algebraic equations is 
obtained. Due to non-linearity of the mathematical model, the solution procedure is an 
iterative one. The iteration stops when differences in pressure in two successive 
iterations become less than 0.0133 Pa, in all nodes of the arterial tree. In the input node 
(denoting the exit from the aortic valve) it is possible to prescribe the pressure or flow 
rate, and the initial conditions are 0Q = , 0A A=  and 0p p= . Since we are interested in 
the periodic flow regime, the integration time should be long enough to diminish the 
influence of initial conditions. Detailed description of the method can be found in [8]. 

R (k) ( j) (i) 

 j   k QRj QLk 

QWj 

RWj 

pout 
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5 Results and Discussion 

In Ref. [8], the numerical method is carefully verified in a series of tests and the 
mathematical model is validated by using experimental results of a silicone model of the 
arterial tree consisting of 37 large arteries [9] as shown in Figure 5. Arterial wall is 
viscoelastic: with 1.2 MPaE = , and 3 0.3 kPa sϕ = ± ⋅ . All necessary data of this test are 
provided in the Supplementary material of [9], and Table 1 reviews some of them. Here, 
we use this problem to analyze the influence of the wall viscosity on the enclosure. For 
this purpose, we will calculate the blood flow in the 37-element arterial tree with three 
different retardation constants /C Eτ η ϕ= = = 10, 30, and 50 ms (it is reasonable to 
assume that a real arterial wall is more viscous than silicone (the retardation time 
constant of silicone is 2.5 0.25 msτ = ± ). For the purpose of numerical procedure, we 
discretized the arterial tree into 860 elements. At the ends of arterial tree the outflow 
boundary condition is defined by the resistor of resistance WR , as reported in Table 1. 
The mathematical model was integrated for a sufficient number of heart periods to 
achieve beat-to-beat repeatability of the pressure profile, and the results from the last 
period are analyzed. 

 

 
Figure 5:  Scheme of the 37-artery model. Black circles denote inlet/output nodes. At the input 

node (node 0), we prescribe the aortic valve blood flow [9]. The segment number 
corresponds to the number of its output node. Underlined red numbers denote the number of 

segment divisions for the purpose of the numerical method 
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Table 1:  Some parameters of 37-artery model 

Property 37-artery network 
Input periodical blood flow, inQ  (m3/s) [9] 
Blood density, ρ  (kg/m3) 1050 
Blood viscosity, µ  (mPa·s) 2.5 
Initial pressure, 0p  (kPa) 0 

Retardation time constant, 
/C Eτ η ϕ= =  (ms) 

10 
30 
50 

Outflow pressure, outp  (Pa) 432.6 
Velocity profile order, ζ  9 

Arterial length (m) 
Min 0.007 
Max 0.245 

Segment radius at the reference 
pressure (mm) 

Min 1.55 
Max 14.4 

Speed of sound at the reference 
pressure (m/s) 

Min 4.84 
Max 14.9 

Resistance WR in the Windkessel model 
(GPa·s/m3) 

3 - Right carotid 2.67 
6 - Right radial 3.92 
7 - Right ulnar 3.24 
9 - Left carotid 3.11 
13 -  Left radial 3.74 
14 - Left ulnar 3.77 
16 - Intercostals 2.59 
20 - Splenic 3.54 
21 - Gastric 4.24 
22 - Hepatic 3.75 
24 - Left renal 3.46 
26 - Right renal 3.45 
34 - Right anterior tibial 5.16 
35 - Right posterior tibial 5.65 
36 - Left posterior tibial 4.59 
37 - Left anterior tibial 3.16 

 
Figure 6 shows the aortic valve flow rate (inQ ), which is used as the inlet boundary 

condition at the inlet node and the aortic root pressure-time variation obtained by different 
values of the retardation time constant (i.e. different values of the arterial wall viscosity). 
In addition, the definition of the incisure depth is shown. It is visible that increase in the 
arterial wall viscosity results in an increase in the depth of the incisure, which is in 
accordance with the hypothesis. Also, the increase in the arterial wall viscosity results in 
an increase in the slope of the pressure curve at the beginning of ejection, as well as in an 
increase in the systolic pressure, which is well known in the clinical practice. 
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Figure 6:  Aortic valve flow rate and the aortic root pressure versus time for different arterial wall 
viscosity 

 

It is also known that the pressure shape changes along the aorta in a way that the 
systolic pressure increases, while the diastolic pressure remains constant or slightly 
decreases. Figure 7 shows results for pressure at different locations along the aorta, 
obtained at 30 msτ = . It is visible that systolic pressure increases with distance from the 
aortic root. 
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Figure 7:  Results for the pressure-time variation at different location in the aorta, at 30 msτ =  
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It is also clear that the incisure depth decreases with the distance from the aortic root, 
and in the considered case of wall viscosity, the incisure disappears at the level of the 
abdominal aorta. Table 2 shows the incisure depth for the three values of the wall 
viscosity and at five locations in the arterial tree. It is visible that in the case of low 
arterial wall viscosity the incisure disappears in the Thoracic aorta, while in the case of 
higher arterial wall viscosity the incisure depth is also significant in the abdominal aorta. 
The fact that the incisure depth increases with the increase of the wall viscosity can have 
a potential value in clinical practise, providing that clinicians can estimate the aortic 
wall viscosity from the incisure depth. This will be of interest only in case if we can 
measure the incisure depth noninvasively, which is not possible for now in the aortic 
root. The closest place to the aortic root, where we can measure the pressure 
noninvasively, is the neck (the position of the Left and Right Carotid). The main 
question is if the incisure depth is still significant at those positions. It is visible from 
Table 2 that the incisure depth at those positions is somewhat reduced with respect to 
the depth at the aortic root, but it seems it is still significant for potential clinical 
application. 

 

Table 2:  Depth of the incisure (see definition in Figure 6) in mmHg, in case of the three 
different wall viscosity and at five different locations in the arterial tree 

 Position 

/Eτ ϕ=  (ms) Aortic Root Left Carotid 
Right 

Carotid 
Thoracic 

Aorta 
Abdominal 

Aorta 
10 2.0 1.5 2.1 0.0 0.0 
30 4.2 2.7 3.2 0.9 0.1 
50 6.2 4.5 5.0 2.8 1.3 
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Figure 8:  Right Carotid pressure versus time for different arterial wall viscosity 
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Figure 8 illustrates the pressure profiles at the Right Carotid in case of different 
values of the retardation time constant. The profiles are very similar in shape to those at 
the aortic root. 

 

6 Conclusion 

We simulated blood flow in a 37-artery network with a viscoelastic wall (the Voigt 
model), by using the one-dimensional mathematical model and numerical method of 
characteristics. We investigated the depth of the incisure in the pressure profile at 
different locations in the arterial tree with respect to the three different values of the 
arterial wall viscosity. Based on the obtained results we can conclude: 

The increase of the arterial wall viscosity results in an increase in the incisure depth. 
This fact presents a certain potential for clinical estimation of the arterial wall viscosity, 
from the measurements of the incisure depth. 

The incisure depth decreases with distance from the aortic root, but it is still 
significant at the positions of the Left and Right Carotid, where non-invasive pressure 
measurements can be performed. 
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