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Abstract. In this contribution, the application of lattice models for the application of piezoelectric 

solids is investigated. Trusses are employed as lattice elements in order to model cohesion forces 

in the material. The regular triangular lattice with equal hexagonal unit cells is considered. In this 

work only the material without damage is analyzed as the first step in developing a suitable lattice 

model for predicting the failure behavior of the materials with strong electromechanical coupling. 

Appropriate techniques for defining the parameters of truss elements are derived and the influence 

of the parameters on the model performance is investigated. The efficiency of the proposed 

strategies will be demonstrated by suitable numerical example.   

1 Introduction 

The failure of the engineering component made of typical (passive) materials depends 

strongly on the microstructure of the material. In order to properly describe phenomena 

depending on material behavior at lower scales (e. g. microscale), like capturing the finite 

size of fracture process zone, modeling multiple cracks, fragmenting, etc., we can either 

(i) implement rather complicated procedures in the numerical continuum models [1,2], or 

(ii) apply numerical lattice models [1,3,4]. 

In the lattice models, a solid continuum is represented by a number of rigid particles, 

which interact through rheological elements (e.g. springs) that are used to model cohesive 

forces between the particles. In the numerical implementation, such connections are 

modelled by one-dimensional (1D) finite elements (trusses or beams) [3]. The evolution 

of damage inside the material is described explicitly by the breaking of the bonds between 

the particles. We note here that in the lattice models cohesive elements model behavior of 

the underlying solid while the particles serve only for the physical interpretation. Material 

parameters of the lattice elements are computed from the lattice geometry and the 

condition that the enthalpy of the lattice should be equal to the enthalpy of the underlying 

continuum model [3, 4]. 

With respect to the lattice topology, two types of lattices can be distinguished: regular 

and irregular (see [4]). The simplest examples are square and triangular lattices shown in 

Figure 1. a) and b). Due to the symmetry and periodicity all lattice elements have equal 

geometry and material parameters (cross section area, moment of inertia, Young’s 

modulus, etc.). In irregular lattices, the grids are unstructured, and in general all lattice 

elements have different geometries, as shown on Figure 1c).    The regular lattices are able 

to represent uniform straining exactly, while in the irregular lattices, this cannot be 

achieved unless different parameters are defined for each lattice element, which is not a 

trivial task [5]. Despite that, irregular lattices are better suited for capturing the direction 
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of crack propagation correctly and to describe the material heterogeneity at lower scales 

[3,4].  

 

 
Figure 1: a) square regular lattice, b) triangular regular lattice, c) irregular lattice 

 

In this work, we are focusing on the piezoelectric materials. Piezoelectrics have the 

ability to transform mechanical to electrical energy (direct piezoelectric effect) and vice 

versa (inverse piezoelectric effect) [6] and are, thus, mostly used as sensors and actuators. 

It should be noted that, to the knowledge of the authors, this is the first attempt of 

modeling the piezoelectric materials by the numerical lattice models. At the moment the 

majority of piezoelectric materials of practical importance are brittle, thus, for the 

development of the new lattice model we follow similar procedures as in [4] used for the 

passive material. Here, we propose the procedure for establishing the lattice parameters 

which are computed from the condition of equality of the enthalpy of a unit cell of the 

lattice and the real continuum. The electromechanical coupling is included in piezoelectric 

constitutive relations in which stress and electric displacement both depend on strain and 

electric field. 

2 Electro-mechanical lattice parameters 

In this section we present the general framework for computing lattice parameters in a 

regular lattice. The presented framework is detailed for the triangular lattice, where lattice 

elements form equilateral triangles (see Figure 2).  

2.1 General procedure 

Analogously as for the passive media [3], for the active piezoelectric material the 

lattice parameters follow from the equivalence of continuum and the lattice unit cell 

enthalpy  

  .cont cellU U  (1) 

The enthalpy of the continuum piezoelectric media [6] reads 
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where and σ ε  are the second order stress and strain tensors, D  stand for the electric 

displacement vector and E  denotes the electric field vector. Constitutive equations for 

piezoelectric materials are [6, 7] 

 – , ,  σ Cε eE D eε κE   (3) 

where C  is the fourth order elasticity tensor, e  is the third order tensor of piezoelectric 

coupling coefficients and κ is the second order permittivity tensor. Including the 

constitutive equations (3) in (2), and assuming that the strains and electric fields are 

constant, the enthalpy of the continuum can be written as 

  2 ,
2

cont ij ijkl kl k kij ij i ij j

V
U C E e E E        (4) 

where V is the volume of the unit cell.  

Enthalpy of the single unit cell is computed by summing up the enthalpies of all the 

lattice elements in this unit cell 
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where superscript e stands for e-th lattice element and eN  denotes the total number of 

lattice elements in one unit cell. 

 

2.2 Triangular lattice with hexagonal unit cell  

 
In what follows we limit our consideration to the hexagonal unit cells (see Figure 2), 

whose volume is 23 / 2,V l t with l being the length of the lattice element and t the 

thickness of the unit cell. Inserting this volume into (4), we obtain for continuum 

  
23
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l t
U C E e E E        (6) 

 

 
Figure 2. Triangular lattice and hexagonal unit cell  
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Obviously, the continuum electrical enthalpy (6) can be decomposed in three parts: the 

mechanical, coupled and electrical, defined by the first, second and third term of the right-

hand side of the equation (6), respectively.  

Herein, the truss elements are used as lattice elements, analogously to similar lattice 

models of passive material [3]. The key difference is that the piezoelectric trusses are 

used, that is, these elements have two nodes and three degrees of freedom (two 

displacements and the electric potential) in each node [8]. For this type of finite element, 

constitutive equations (3) for the e-th element reduce to simplest one-dimensional form 

 

( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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,
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where ( )eE  is the Young’s modulus of the lattice element. All the components in (7) refer 

to the local coordinate system of the element e, with the coordinate axis 1 in the direction 

of the truss element, while all the other stress, strain, electric field and electric 

displacement components vanish in this one-dimensional form. Plugging reduced form of 

the constitutive equations (7) in equation (5), and taking 6eN   yields for the lattice 
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In this work it is further assumed that all material parameters are constant along the truss 

cross section and equal for all the elements in the unit cell. The truss strain and electric 

fields (in each element) are obtained by projecting the global strain and electric fields on 

the truss axis 
( )e

in  as 

 ( ) ( ) ( ) ( ) ( )

11 1, ,e e e e e

i ij j i in n E n E     (9) 

where ij  and iE  are the global uniform strain and electric fields, respectively. Indices i 

and j take values 1 or 3, depending on the direction in the global coordinate system 

1 3.OX X For the hexagonal unit cell depicted in Figure 2, the unit direction vectors read as 
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  (10) 

Finally, taking the cross section of the lattice truss elements to be rectangular with 

thickness t, equal to the thickness of the continuum model, and height h equal to the side 

of the hexagonal unit cell (as shown in Figure 2), we can write d d ,V A x with .A ht  

Inserting (9) and (10) into (8), and integrating over element’s halflength, 0 / 2x l  , the 

final expression for the enthalpy of a unit cell may be written as 
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Analogously to the continuum, we note that the unit cell enthalpy (11) is composed of the 

mechanical, coupled and electrical part. 

 
2.3 Lattice parameters for structured triangular piezoelectric truss lattice 

 
Having the expression of the previous subsection at hand, we proceed to determine (i) 

mechanical, (ii) coupled, and (iii) electrical lattice parameters.  

Imposing the equivalence of above developed continuum and unit cell enthalpies 

yields the following mechanical material parameters 

 ( ) ( ) ( )

1111 1133 1313

3 1 1
, , .

4 4 4

e e eC E C E C E     (12) 

From (12), it can be deduced analogously as for the passive materials [1,4] that for the 

plane stress cases the Poisson’s ratio of the proposed lattice model is fixed to the value of 

1/ 3.   The Young’s modulus on the other hand is computed from the plane stress 

condition 

 
1111 2

,
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contE
C





  (13) 

where contE   is  the Young’s modulus of the continuum model. From (12) and (13), it 

follows that the Young’s modulus for the truss lattice elements can be computed as 

 ( ) 3
.

2

e

contE E   (14) 

Typically the piezoelectric coupling tensor has few non-zero components (see e.g. 

[6,9]), namely 311 322 333 113 223, , , and ,e e e e e     given that the material is polarized in direction 

3.X Analogously as for the mechanical parameters, the piezoelectric coupling coefficients 

of the lattice elements are computed from the equivalence of (6) and (11), leading to 

 ( ) ( )

311 113 111 322 223 333 111

3 3
, 0, .

6 2

e ee e e e e e e       (15) 

Combining the first and last term from (15) one notes the following constraints between 

the global model coupling parameters 

 311 113 333 / 3.e e e    (16) 

which need to be respected for the proposed lattice model to accurately describe the 

behavior of the underlying continuum.  

Finally, the equality of the electrical parts of the enthalpies (6) and (11) leads to 

 
( )

11 11 33 22, 0.e        (17) 

In equation (17) there is also one constraint, 11 33 ,   implying that the proposed model 

is able to accurately model only the materials with isotropic permittivity.  
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3 Numerical analysis 

The performance of the developed lattice model is tested on the academic example of 

the uniaxial contraction of the rectangular plate due to electric charge. Mechanical 

boundary conditions are imposed along the bottom edge, while the electric potential is 

imposed on the top and bottom edge, as shown on Figure 3a).  

 

 
Figure 3. Boundary conditions: a) continuum model, b) lattice model 

 

The analytical solutions, based on the continuum model with 56540 MPa,contE 

1/ 3   and 
9 2

11 33 16,50 10 N/V ,      are compared with the solution obtained by the 

piezoelectric truss element lattice model presented in Figure 3b). The calculations are 

performed for two sets of values of the continuum coupling parameters, given in equations 

(18) and (19), whereby the constraints (16) are met only in the first case. 

 3 3

311 313 113

N N
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Vmm Vmm
e e e          (18) 
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e e e

e e
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  (19) 

 

In (18) and (19), only the coupling coefficients with non-zero values are given with 

respect to the global coordinate system as defined in Figure 3. Displacements in both 

directions and enthalpies are compared with analytical results. Obtained values are 

presented in Table 1, while Figure 4 and Figure 5 show the undeformed and deformed 

shape of the continuum model and lattice model for the Case 1 and Case 2, respectively. 
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Table 1. Results for displacements and enthalpies for the Case 1 and Case 2 

 Case 1 Case 2 

 
Analytical 

solutions 

Lattice 

(l=0,25 mm) 

Analytical 

solutions 

Lattice 

(l=0,25 mm) 

Horizontal 

displacement / 

mm 

87,352 10   0  51,744 10    0  

Vertical 

displacement / 

mm 

52,040 10   52,037 10   62,386 10  52,037 10   

Enthalpy / Nmm 54,606 10   54,604 10  55,783 10   54,604 10  

Enthalpy error, 

% 
- 0,043% - 20,39% 

 

 
Figure 4. Undeformed and deformed shape for Case 1:  a) continuum model, b) lattice model  

 

 
Figure 5. Undeformed and deformed shape for Case 2:  a) continuum model, b) lattice model 

 

It is to be noted that four different lattice models have been used in calculations, with 

the length of the lattice elements equal to 2 mm, 1 mm, 0.5 mm and 0.25 mm, but the 

results for displacements and enthalpy converged to the values presented in Table 1 even 

when using the coarsest model. 
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4 Conclusion 

It is clearly visible that accurate results are obtained by the proposed lattice model only 

if the material constraints (16) are met, otherwise significant errors can be generated. 

While this fact significantly restricts the practical applicability of the present lattice 

model, it is expected that this shortcoming can be efficiently overcome by applying 

piezoelectric beam elements instead of the truss elements, analogously as for the passive 

materials [1, 3, 4].  
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