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1. INTRODUCTION 
 

Machine learning was defined as “the field of study that gives computers the ability to 

learn without being explicitly programmed” by Arthur Samuel who also coined its name. 

Algorithms able to overcome following strictly static program instructions by making data-

driven predictions have its roots in pattern recognition and computational learning theory in 

artificial intelligence. Those algorithms are commonly associated with machine learning. 

The main characteristic of the algorithms is building a model from sample inputs. Machine 

learning is, thus, a subset of artificial intelligence in the field of computer science that aims 

to progressively improve performance on a specific task with data, without being explicitly 

programmed. Division by which problems in the field are separated infers two major tasks: 

supervised and unsupervised learning. The former taking as input annotations together with 

training data, and the latter that focuses on exploratory data analysis and does not take 

annotations as input.  

Affective computing research has gained momentum in the past few years, and although 

what seemed intractable mostly due to the amount of data associated with related tasks, has 

become an actuality. Boosted computing power of today’s computers has been one of the 

triggers that helped to shift theoretical knowledge to colossally important every-day 

applications. Another basis upon which the interest in the field has been sparked in many 

researchers are the practical implications, for example, in human-computer interactions, 

customer service furthering, and emergency call-centres prioritisation among callers that 

makes the service more effective and prompt. When interacting with a machine, humans 

often get impatient or frustrated if the machine responds inappropriately to how someone 

feels, for example, brief answers are not welcome when we are in doubt, and long-winded 

answers are irritating in other situations. 

  

1.1. AMBIGUITY OF EMOTIONAL EXPRESSION 
 

At the beginning it is important to point out to the complexity and multimodality of day-

to-day human interactions where emotions are conveyed by means of language, vocal 

intonations, facial expressions, hand gesture, head movement, body movement and posture. 
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Despite of abundance of cues in human-human interaction, the mainstream thus far divulged 

course of research in the affective computing field has focused on vocal and facial 

expressions. Background research in various scientific fields such as neuroscience, 

psychology and linguistics is used as an affective computing development basis. Thus, 

progress in emotion sensing and recognition is closely related to the study of the 

aforementioned disciplines. In readers interest would be to consult materials that are part of 

the course called Digital Speech Processing conducted at Faculty of Electrical Engineering 

and Computing in Zagreb, which are helpful to understand speech related measurable 

features commonly exploited in human affect modelling. Familiarizing oneself with 

principles of speech formation is beneficial for selecting audio features used for a specific 

application. Further expansion in that regard will be provided in the following chapters.  

Despite major advances in the field of affective computing research, modelling, 

analysing, interpreting and responding to naturalistic human affective behaviour remains a 

challenge for automated systems as emotions are ambiguous constructs to define even for 

humans. Even though all the so far proposed approaches provide an insight into the 

underlying principles of affect conveyance, all of them beg the question of real-life 

relevance, as different tactics of affect modelling are constantly pitched against each other 

in inconclusive papers from various journals. That is a proof of doubtfulness that researchers 

are still facing with, and it is a remainder of the pitfalls accompanying the subject. Emotional 

boundaries are in psychological circles still vague or ill-defined with uncertainty in 

individual expression and non-uniform perception among general population. Individual 

variations are substantial traits of affective displays, and with subtlety and complexity of 

emotional states conveyed in human interactions, cause emotive computing to be 

challenging.  

 

1.2. HISTORY OF MACHINE LEARNING 
 

It would be to readers disservice not to mention the history of machine learning and the 

course of the events that led to where we are today in 2018. Therefore, it will be flashed out 

how and why can we with such confidence claim to deal with, what is certainly not a trivial 

matter, with arguable success, and how we got there. It all started in the fifties when 

computers were still in little supply and rather weak which remained the case for half a 
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century making the reasons of marginalisation of the matter understandable. Throughout that 

era the subject was relegated to being mainly theoretical and rarely employed. It was in 1963 

that the Support Vector Machine was created by Vladimir Vapnik in Soviet Union, only for 

it to be under the radar for three more decades until he was scooped by Americans to the 

Bell Labs in the nineties. The neural network was devised in the 1940's, but again the 

computers of that time were nowhere near powerful enough to run them well. More than half 

a century on has the shift happened in the approach to the mathematical theorems. Odd 

though it may sound to some, against the backdrop of archived knowledge, computers of the 

twenty-first century have spurred the significant progress in the field. As the subject was 

stirred in the wake of technological advancements, new techniques were conceived that 

made machine learning seem mature, nevertheless it is very useful to learn it today in 2018, 

since it can now be evaluated rather than just studied superficially. 
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2. EMOTION ANNOTATION SCHEMES 
 

2.1. CATEGORICAL LABELLING 
 

In this subsection, so far proposed psychological methodologies linked to the subject are 

going to be outlined. Seven discrete emotions: sadness, surprise, fear, anger, neutral, 

happiness and disgust form the mainstream classes of the categorical method. Categorical 

labelling stems from the theory of pure emotions in which a person is characterised by the 

ability to express one emotion at a time. Apart from the conventional categorical method, 

there are other classification methods whose purpose will be additionally discussed once the 

drawbacks of the categorical method are explained. As it happens, while expressing 

emotions we as humans exhibit non-basic, subtle and rather complex mental states like 

thinking, embarrassment or depression which cannot be expressed using the categorial 

method, instead they require alternative treatment. For example, varying intensities of 

emotions, presence of several emotions at a time, and restriction in terms of the number of 

descriptive classes are the downsides of the categorical approach.  

 

2.2. DIMENSIONAL APPROACH 

 

Having in mind the fuzziness of emotional boundaries, some researches have conceived 

that affect intensity evaluation necessitates continuous scale used for measurement. To that 

end, psychologists have come up with a technique that accounts for the categorical approach 

disadvantages. Emotions can also be represented on a continuous scale, or to be precise, on 

multiple scales in a two-dimensional plane or a three-dimensional space. Usually, emotions 

are two-dimensional objects in a plane of valence and arousal. Usage of the third dimension 

can be encountered while browsing through myriad of published papers, with its name not 

being equal throughout. In line with that and having contemplated possible advances of using 

the third dimension for the purposes of automatic affect sensing and recognition, it was 

concluded that striking improvements would not be obtained, if the third dimension was 

employed. Furthermore, usage of a database with annotations of that kind has not been 

granted to the author, so it remains open for investigation to determine what would be the 

gains of using the third dimension. In Figure 2 commonly declared emotions are mapped 



5 

 

into a two-dimensional plane with the subfigure on the left representing an emotional space 

with three dimensions. 

 

2.3. APPROACH USED IN THIS PROJECT 
 

In this project dimensional emotional labels were mapped into a two-dimensional 

radially divided space separated to eight octants. Humans can only appreciate emotional 

labelling to a certain level, therefore, the procedure did not jeopardize the perceptual 

emotional categorisation. On balance, the minimal risks of simplifying emotion annotations 

by mapping them into eight octants is outweighed by significant computation time 

improvements. The improvements are obtained as a consequence of employing classification 

instead of regression for training and testing a classifier. Moreover, regression used in 

conjunction with dimensionally annotated data causes the need for implementation of two 

separate classifiers, hence, doubling the running time in the prediction step on an embedded 

platform.  

There is yet another remark to make, it could be beneficial to introduce the neutral class 

upon further statistical analysis. The question that the analysis shall answer by examining 

the annotations from the Recola database is what would be the radius of the centrally 

positioned neutral area. The reason why averaging the annotations across time frames was 

not sufficient are their resulting near-zero values that ensue from annotations located near 

the centre in a particular time frame (other functionals were computed on top of the mean 

value as a solution). Accuracy, which is already satisfactory for emotion prediction, could 

be enhanced by accounting for all near-the-centre datapoints with little or no significance in 

emotion class prediction.  

To recap, the approach used in this project is a mixture of the categorical and the 

dimensional approaches that aims to make the implemented algorithms suitable for 

computation time constrained applications without degrading perceptual emotion 

categorisation. In Figure 1 360 degrees range is segmented into eight octants; the octants 

have dimension signs written inside.   
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FIGURE 1 THE 2 PI RADIAN RANGE SEGMENTED INTO EIGHT OCTANTS. DIGITAL IMAGE. 

APPROXIMATIONS FOR THE ARCTANGENT FUNCTION IN EFFICIENT FRINGE PATTERN ANALYSIS, 2007, 

HTTPS://WWW.OSAPUBLISHING.ORG/OE/FULLTEXT.CFM?URI=OE-15-6-3053&ID=131164   

 

 

FIGURE 2 ILLUSTRATION OF A TWO-DIMENSIONAL PLANE TOGETHER WITH THE ALTERNATIVE 

THREE-DIMENSIONAL REPRESENTATION. ON THE RIGHT IT IS VISIBLE THAT NOT ALL 

QUADRANTS ARE EQUALLY DOTTED WITH TYPICAL EMOTIONS. THIS FIGURE IS TAKEN FROM [1].  
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3. PROJECT OUTLINE 
 

In this project typical assignments such as supervised classifier learning, classifier testing 

and implementation on an embedded platform have been decided on as a domain of study. 

Noteworthy, related to the topic attainments will be hereby laid out. Since graduate projects 

which show grasp and technical literacy of a participant with the ability to deliver palpable 

results are considered successful, this thesis is aimed towards that goal. In other words, focus 

is not on outscoring current state-of-the-art achievements, but on illustrating a typical 

emotion recognition machine learning task. This project has its specificities on top of 

ordinarily exhibited machine learning problems, for instance, selection of optimal features 

in the feature extraction step, the annotations mapping, and the database preparation. 

Following steps intend to systematically explain machine learning mechanisms in a 

comprehensive manner.  

It is of upmost importance to adopt the proper method for challenging peculiarities of 

emotion recognition, since approaching the problem varies greatly depending on the nature 

of the task. Innate differences of tasks are contingent on the type of data that is classified, 

i.e., whether data are emotions, share prices or something else. Accordingly, training and 

testing of data of dissimilar nature against the same classifier is not advisable. First decision 

pertaining emotion recognition should cope with whether to use regression or classification. 

The former would imply having discrete annotations, and the latter having continuously 

annotated data, usually in multiple dimensions. Furthermore, any experience could 

potentially save us a great deal of time spent on classifier’s parameters tuning in case it has 

been proven that data is not annotated properly or if the wrong classifier is chosen for the 

task in question. Approach used for tackling the problem could be called prospective 

hindsight. To reiterate, when handling data and its annotations it is vital to be able to answer 

questions that aim to explain will the implemented procedure be useful for differentiating 

between emotions or is such a procedure solely satisfiable for the sake of obtaining 

seemingly content accuracy with no real-world applicability. Another way of looking at it is 

making sure that predicted data manifests what is easily and unambiguously perceived by 

humans. If predicted data does not put across emotional states the way humans can recognise 

them, then there is no point in trying hard to achieve an unperceivable differentiation, or a 

distinction that is not agreed upon among psychologists. Additional explanations of the 
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approaches (the categorical and the dimensional approach) can be found in chapter Emotion 

annotation schemes. 

On the back of this, discussion is piloted to the method that was used in this project. 

Conclusions hereby presented were not entirely made in a chronological order – as a 

consequence of foreseeing the faults of the techniques used – but rather as a result of learning 

on one’s own mistakes. The main issues of interpreting affective displays are the choice of 

using discrete or continuous emotional labels, and cherry-picking features from profusion to 

choose from. The discrete emotional categories were here obtained by mapping the 

continuously annotated recordings into eight octants. The stated approach is underpinned by 

the fact that by mapping emotions to eight or so sections of a two-dimensional plane no 

perceivable loss in clarity in predicted emotions occurs in comparison to emotions 

represented as objects in a two-dimensional continuous space. Thereupon making this 

approach a mixture of the discrete and the continuous approach with little or no notable loss 

in usefulness. It has been established that by mapping data into a two-dimensional plane 

where emotions are characterised by their octant position does not make the scheme lesser 

in merit. Furthermore, to better apprehend how the project was organised, here is the list of 

carried out steps: 

1. Given database’s features were evaluated 

2. New features were proposed (not invented, but selected) 

3. Functionals were chosen 

4. The functionals were computed once the feature files were created using the 

openSMILE toolkit 

5. Suitable classifier was chosen 

6. Classifier’s parameters were adjusted 

7. Equally distributed data sets were created (the training and the testing data set) 

8. Accuracy and computation time were noted 

9. The code was implemented on RPi 

10. The computation times were comparatively assessed 

11. The testing data set was decimated to attain better RPi performance 

Given database’s features were deduced as superfluous for use by virtue of their 

inadequacy when it comes to the score obtained from the classifier trained on the initial data, 

without computing new features or functionals. The classifier was trained against the data 
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with original features computed by database’s creators, which did not produce satisfying 

results. What is more, in different papers, [2], alike conclusions were drawn which indicate 

to the usage of groups of features that are evidently similar. The recommended features 

presented in [3] come from an interdisciplinary meeting of voice and speech scientists in 

Geneva and they were further developed at Technical University Munchen (TUM). Criteria 

used in choosing the parameters were as follows: 

1) The potential of a parameter to index psychological changes in voice during affective 

processes  

2) The frequency and success of certain parameter deduced from previous work 

(literature) 

3) Parameter’s theoretical significance 

Two versions of acoustic parameter sets are advocated in [3]. Researches from [3] claim 

to have chosen the parameters wisely according to the extensive research carried on the part 

of several independent researchers. First of the two feature sets is the minimalistic set 

(GEMAPS) and the second is the extended parameter set (eGEMAPS). The minimalistic set 

owes its convenience to eighteen low-level descriptors typically divided into three groups: 

frequency related parameters, energy (amplitude) related parameters and spectral 

parameters. The GEMAPS parameter set is an interdisciplinary attempt to agree on a 

minimalistic parameter set, based on multiple sources, interdisciplinary evidence and 

theoretical significance.  
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4. FEATURES 

 

An early survey from the literature, [4], summarises a few decades of affective speech 

research, and concludes from the empirical data presented, that loudness, fundamental 

frequency mean, variability, range and energy of a speech signal show correlation with 

prototypical vocal affective expressions such as stress (intensity, F0 mean), anger and 

sadness (all parameters) and boredom (F0 and range). Same is overviewed in [5] . 

Furthermore, speech and articulation pace were also found to be important for setting 

emotions apart.  Particularly, work concerning an automatic unsupervised arousal 

framework in which the pace features are brought up is [6]. In other work, [7], acoustic 

analysis of fundamental frequency and harmonics related parameters was performed. 

Previous paper, [7], explains the experiments done on a small set of emotional speech 

utterances, where the authors have confirmed the importance of F0 and a spectral distribution 

as cues to affective speech content. Some other features were also mentioned in the 

previously cited papers which are not going to be examined because of their limited 

applicability to this project.  

Following Table 1 lists features used in this thesis. The below listed features are 

representative of a good feature-set for acoustic affect modelling. In the column on the right 

clarification of the features on the left is given.  
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TABLE 1 TABLE OF USED PARAMETERS TAKEN FROM THE EGMAPS AND THE GMAPS 

Frequency related parameters: 

Pitch, logarithmic F0 on a semitone 

frequency scale, starting at 27.5 Hz (semitone 

0) 

Pitch is often described as a relative scale in 

which 1 octave corresponds to a doubling in 

fundamental frequency, and an octave is 

divided into 12 semitones. This musical scale 

is effectively log F0. Pitch is a perceptual 

consequence of F0. Pitch is qualitative and F0 

is quantitative (i.e., we can objectively 

measure it from a signal). It is sufficient to 

state that our perception of pitch depends only 

on F0.  

Jitter, deviations in individual consecutive 

F0 period lengths 

Jitter (absolute) is a cycle-to-cycle variation 

of the fundamental frequency, i.e., the 

average absolute difference between 

consecutive periods, expressed as:  

𝐽 =
1

𝑁 − 1
∑|𝑇𝑖 − 𝑇𝑖+1|

𝑁−1

𝑖=1

        (1) 

Formant 1, 2, and 3 frequency, centre 

frequency of first, second, and third 

formant 

A formant is a concentration of acoustic 

energy around a particular frequency in the 

speech wave. There are several formants, 

each at a different frequency, roughly one in 

each 1000 Hz band. Or, to put differently, 

formants occur at roughly 1000 Hz intervals. 

Each formant corresponds to a resonance in 

the vocal tract. Additionally, one can recall 

the source-filter theory of speech production. 

Formant 1, bandwidth of first formant Formant bandwidth is known to have little 

effect on vowel quality. It has a strong effect 

on mutual masking between vowels. A 

narrow-bandwidth voice is thus more 

resistant to masking, and a stronger masker 

than a wide formant vowel [8]. This paper 

considers the relation between the vocal tract 

characteristics (bandwidth of formants etc.) 

under the personality of speech [9].  

Energy/Amplitude related parameters: 
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Shimmer, difference of the peak amplitudes 

of consecutive F0 periods 

Shimmer (dB) is expressed as the variability 

of the peak-to-peak amplitude in decibels, 

i.e., the average absolute base-10 logarithm of 

the difference between the amplitudes of 

consecutive periods, multiplied by 20:  

𝑆(ⅆ𝐵) =
1

𝑁 − 1
∑ |20 log (

𝐴𝑖+1

𝐴𝑖

)|   ,     (2)

𝑁−1

𝑖=1

 

where Ai are the extracted peak-to-peak 

amplitude data and N is the number of 

extracted fundamental frequency periods. 

Loudness, an estimate of the perceived 

signal intensity from an auditory spectrum 

Loudness is an attribute of auditory sensation 

in terms of which sounds can be ordered on a 

scale.  

Harmonics-to-noise ratio (HNR)  The HNR is the relation of energy in 

harmonic components to energy in noise-like 

components 

Spectral (balance/shape/dynamics) parameters: 

Alpha Ratio, ratio of the summed energy 

from 50-1000 Hz and 1-5 kHz 

Alfa ratio is defined as the ratio between the 

energy in the low frequency region and the 

high frequency region. More specifically, it is 

the ratio between summed energy from 50 to 

1000 Hz and 1 to 5 kHz, expressed as: 

𝜌𝛼 =
∑ 𝑋(𝑚)𝑚𝑘

𝑚=1

∑ 𝑋(𝑚)𝑀
𝑚=𝑚𝑘+1

             (3) 

Where 𝑚1𝑘 is the highest spectral bin index 

where 𝑓 ≤ 1 kHz is still true. 

Hammarberg Index, ratio of the strongest 

energy peak in the 0-2 kHz region to the 

strongest peak in the 2–5 kHz region 

The measure was defined by Hammaberg in 

1980 as the ratio of the strongest energy peak 

in the 0-2 kHz region to that of the strongest 

peak in the 2-5 kHz region. Hammaberg 

defined fixed static pivot point of 2 kHz 

where the low and high frequency regions are 

separated. Symbolically the index is defined 

as: 
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       (4) 

Where 𝑚2𝑘 is the highest spectral bin index 

where 𝑓 ≤ 2 kHz is still true. 

Spectral Slope 0-500 Hz and 500-1500 Hz Spectral slope is a linear regression slope of 

the logarithmic power spectrum within the 

two given bands. 

MFCC 1-4 Mel-Frequency Cepstral 

Coefficients 1-4 

Mel-frequency cepstrum (MFC) is a 

representation of the short-term power 

spectrum of a sound, based on a linear cosine 

transform of a log power spectrum on a 

nonlinear mel scale of frequency. 

Spectral flux, difference of the spectra of 

two consecutive frames 

The spectral flux of restricted frequency 

bands, or sub-band flux, is a computational 

measure indicating the extent to which the 

spectrum changes over time. 

 

Harmonic difference H1-H2 The H1-H2 harmonic difference is the ratio 

of energy of the first F0 harmonic (H1) to the 

energy of the second F0 harmonic (H2) 

Harmonic difference H1-A3  The H1-A3 harmonic difference is the ratio 

of energy of the first F0 harmonic (H1) to the 

energy of the highest harmonic in the third 

formant range (A3) 

 

Throughout machine learning related papers handcrafted feature sets are used to 

simplify the task of working with complex data. Similarly, for recognition of affective 

displays handcrafted features are advocated instead of making use of large feature sets, 

however, optimal compact feature set has not been agreed upon. There exists copious of 

related work wherein massive feature sets are used after which dimensionality reduction is 

done to save only the features with at least some relevance to the specified task. Popular 

emotion recognition challenges prove the aforesaid. For example, the INTERSPEECH 

compare paralinguistic challenge, [10], makes the trend of using large feature sets obvious. 

However, in AVEC 2016 challenge, [2], efforts are aimed towards making use of a reduced 

feature set, specifically the eGeMAPS. Interesting assessment of performance of the 
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eGEMAPS was undertaken in [3], where comparative evaluation against the feature set used 

by the INTERSPEECH compare challenge is performed. The benefits of the eGEMAPS 

have been demonstrated in [3] for as much as to the fact that the eGEMAPS only amounted 

to 1.4% of the size of the best performing feature set from the INTERSPEECH compare 

challenge, while being competitive in performance. Moreover, since MFCC coefficients 

have proven to be highly successful, [11], they are included in the set used in this thesis on 

top of the features from the GEMPAS, also the Spectral flux feature was added to the used 

set. Both the Spectral flux and the MFCCs are included in the extended eGEMAPS feature 

set from [3], not the GEMPAS. Conversely, some features such as the formant 1, 2, and 3 

relative energy, as well as the ratio of the energy of the spectral harmonic peak at the first, 

second and third formant’s centre frequency to the energy of the spectral peak at F0 were 

taken out from the minimalistic GEMAPS feature set. Because of that and in contribution to 

proven successfulness of the eGEMAPS, feature set used in this thesis was assembled of 

mostly the features from the GEMPAS with some additional, valuable for this task features 

from the extended set. The feature set is detailed in Table 1. Minimalistic feature sets 

analogously as large-scale, brute-force feature sets compute LLDs on a time window. An 

optimal time window’s length is considered generally disputable, yet for specific 

applications it is not coincidentally chosen. Time window’s length ensures that LLDs 

computed meet the condition of temporal stationarity. Given the circumstances of herein 

described task, the openSMILE toolkit in conjunction with the GEMAPS corresponding 

configuration file was utilised to compute the LLDs with the window that is 20 milliseconds 

long for energy, spectral and formant features, and 60 milliseconds long for the remining 

features. The openSMILE toolkit is a publicly available, free toolkit, with some 

functionalities not freely obtainable, most commonly used in alike cases. The time window 

mentioned here is not the time window used for computing functionals. 

A more complex MFCC coefficients computation is going to be clarified here to 

provide an insight to coefficients’ remarkable ability to extract characteristics entrenched in 

vast majority of emotive speech signals. Even though there exists ample of other alike 

features, MFCCs are popular, and that is for a reason. MFCCs are decorrelated Mel-filter 

bank coefficients (MFBs). Triangular filters scaled in accordance to human perception are 

used to produce MFBs; each filter bank represents the contribution of a band of frequencies 

similarly perceived by humans. The discrete Cosine Transform (DCT) is then applied to 
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filtered data to convert MFBs into the time domain, producing MFCCs. The DCT has by 

consequence of that the role of decorrelation of the features.  

Not all features are as complex in their computation, although they require attention. 

Averaging over the waveform for computing loudness, for example, is not how humans 

would observe it, hence the method which consists of using 26 triangular filters is employed 

for calculating MFBs. Upon MSBs computation each filter bank is weighted and scaled to 

create an auditory spectrum that is then used for loudness extraction by summing over the 

spectrum.  

 

4.1. FUNCTIONALS 
 

Functionals are a measure that accounts for any sudden spikes in a speech utterance by 

smoothing the utterance; all functionals are computed on a fixed-length window applied to 

an utterance. The fixed-length windows (not to be confused with the time windows from 

Features) are overlapped and shifted 40 milliseconds forward in each step until the end of the 

utterance is reached. The shift length (or an overlapping step) is determined by consulting 

literature and taking into consideration characteristics of emotive speech signals. At the very 

beginning of the project only mean was computed with successive windows without 

overlapping. Poor results of that approach ensued from the negligence of the characteristics 

of the data that was annotated continuously in time by movements of the sliders across the 

screen. The major shortcoming of doing described is rapid database size shrinking caused 

by averaging or representing neighbouring samples in chunks. Another drawback is the 

undermining of the process of annotating the data set, i.e., neglecting the insufficient 

smoothing of the annotations. After having examined the influence of a few approaches to 

the resulting size of the data set and considering the sampling rate of the openSMILE toolkit, 

it was decided that the fixed-length windows should be 2.5 seconds long with the 

overlapping step of 40 milliseconds. There is yet another reason why such overlapping 

length was chosen – to be consistent with the annotation sampling rate of 40 milliseconds. 

To achieve accordance between the annotation files and the feature files the beginning and 

ending part of the annotation files were removed to compensate for the usage of the fixed-

length windows. The centre of each window is the point in time with inclined significance 

over side parts of the windows, which is why the functionals (or statistical measures) are 
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computed over the whole fixed-length window. Furthermore, the decision to compute 

functionals on a 2.5 second window with an overlapping step of 40 milliseconds is in line 

with the paper from literature [2]. To make this chapter wholesome there follows a table of 

used functionals. In Table 2 used functionals are listed. 

 

TABLE 2  

Used functionals: 

Percentile 25, 75 Percentile is the value below which given 

percentage of observations falls. Taking a 

distribution for example, if we say that the 

percentile 25 equals to 0.01, it means that 

25% of the data from the distribution falls 

below 0.01 in the distribution sample range. 

Using the limit for example, as samples 

approach infinity, the percentile 

approximates the inverse of the CDF 

function. 

Coefficient of variation (COV) The COV, also known as relative standard 

deviation, is a standardised measure of 

dispersion of a distribution. It is defined as 

the ratio of the standard deviation and the 

mean, i.e., it denotes the variability of the 

distribution.  

Standard deviation (SD) Standard deviation quantifies the amount of 

variation of a set of data values. The formula 

of the SD is:  

                    (5) 

Where x1, x2, x3... are the observed values, 

and N is the number of samples. 

Mean 

Min 

Max 
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5. DATABASE 

 

A new multimodal corpus of spontaneous interactions in French called RECOLA, for 

Remote Collaborative and Affective interactions, was recently introduced by Ringeval in 

[12]. Participants were indulged in a survival collaborative task that was performed in dyads, 

i.e., in groups of two people, and remotely by video conference. The RECOLA database is 

a multimodal database that includes 9.5 h of recordings; precisely it consists of audio, video, 

electro-cardiogram (ECG) and electro-dermal activity (EDA) modalities, all of which were 

synchronously and continuously recorded for 46 participants. The database is annotated by 

six French-speaking annotators who used the ANNEMO web-based tool. Not all participants 

were native French speakers, even though all of them spoke French during the experiment; 

there were 17 native French, three native German and three native Italian speakers. 

Annotators were, on the other hand, all native French speakers. Notwithstanding the original 

number of participants, only a fraction thereof agreed for their recordings to be publicly 

available, as a result of which the database has not got 46, but 23 recordings. At the website 

where the database was downloaded there is another folder with 27 recordings prepared for 

and used in AVEC2016 challenge [2]. Initial recordings’ names are, therefore, not 

consecutively numbered; their names stem from the full database’s names, prior to its 

reduction. To address mentioned, the reading from the folders was performed once the files 

were renamed.  Furthermore, the database comes with dimensional annotations, since they 

have been proven to be successful in an affective content analysis.  

In this database multimodal information sources serve the purpose of studying 

communication modalities, for instance gestural and facial expressions, however, only audio 

recordings were used in this project.  
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FIGURE 3 THE RECORDINGS WERE ANNOTATED USING THE ANNEMO WEB-BASE ANNOTATION 

TOOL. THIS FIGURE IS TAKEN FROM [12].  

In the process of constituting the corpus, mood induction techniques were introduced to 

broaden the valence dimension range. Facilitators of the experiment decided on mood to be 

induced in one of the participants based on a previous participants inquiry. The survival task 

employed [12], originally designed by NASA, involved high stakes in resolving the 

dilemmas participants were faced with, which made it suitable for artificial surroundings 

because it managed to provoke real-life emotions in a laboratory environment.  

Figure 3 depicts the annotation procedure that included two steps – annotating valence 

and arousal by moving the sliders across the screen. Final annotation files consist of six 

annotations, since the one from the non-native annotator was removed.  
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FIGURE 4 THIS FIGURE REPRESENTS VALENCE ANNOTATIONS WITH ZERO MEAN 

NORMALISATION FROM SEVEN ANNOTATORS; THREE MALE, THREE FEMALE AND ONE NON-

NATIVE ANNOTATOR. THIS FIGURE IS TAKEN FROM [12]. 

From Figure 4 it is obvious that native annotators did assess valence in a similar 

manner despite the non-negligible inter-rater disagreements. However, the non-native 

annotator (the blue line) did not rely on linguistic information, just the non-verbal cues, and 

that is why his latent and attenuated annotations were excluded from the annotation files. On 

that note, it is often highlighted how important it is to have reliable ground-truth annotations 

for dimension-based affect modelling and analysis [1]. To this date, the conundrum of 

whether to use self-assessed annotations or the ones coming from observers is still something 

researches are working on. Some works infer to the profits of a subjective assessment while 

the others are preoccupied in stressing the objectiveness and the unbiasedness achieved by 

applying statistical metrics on a range of multiple annotators’ assessments. In this work, 

seven annotators had been given the assignment of assessing valence and arousal separately 

by moving the slider, however, there exists models where greater accuracy was facilitated 

using self-assessment labels, in defiance of the intuitive ambiguity associated with assessing 

arousal while being emotionally overwhelmed. Arousal was the dimension whose self-

assessed annotations were discussed in [1]. Whether the same holds independently of the 

utilised modalities and cues, or can the analogy be drawn for valence, is open for discussion. 

Further, cleverer approach, according to the authors, to achieve a more reliable ground-truth 

is laid out in [2], where the golden standard is addressed.  
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Additionally, accuracy evaluation could be done on one annotator at a time for all 

six annotators. Such evaluation would provide an insight in inter-rater differences and it 

would free the performance assessment of a burden caused by averaging annotations across 

six annotators. Specifically, if a person who annotated recordings unusually high or low can 

be spotted, that annotator would not worsen accuracy in a practical application in which 

there are no labels (annotations) in the prediction step. The only thing that would matter, 

though, is how well can an emotion be classified based on a classifier trained with hopefully 

properly labelled training data set, and not how well can an emotion be predicted compared 

with labels coming from the same annotators who labelled the training data set. In this project 

labels from six annotators were averaged and used in the assessment of the classifier’s 

performance in the prediction step.        

Authors of the database said that they had used different normalization techniques to 

improve the inter-rater discrepancies. Further, they describe how they mitigated the problem 

of missing values in the annotation files that had only occurred for no more than 20 seconds 

at a time, but still required their attention. To alleviate the problem, a piecewise cubic 

interpolation was used.  

Since this database is a conflation of multi-modal sources, to achieve compatibility 

with the rest of the information modalities, the audio recordings’ annotation files were 

binned to resulting, here used files, with the frame rate of 40 milliseconds. The sample rate 

of 40 millisecondsis because of that going to have to be deliberated when the openSMILE 

toolkit gets utilised for extracting the project specific features and functionals. While 

extracting the features, decimation from 10 milliseconds to 40 milliseconds is ought to be 

performed to achieve congruency between the annotation and the feature files.     
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6. PYTHON FUNCTIONS AND LIBRARIES 

 

One of the extenuating circumstances of the task of this project was the availability of 

free and open-source Python libraries used for technical computing. For example, SciPy 

contains modules for optimization, linear algebra, integration, interpolation, special 

functions, FFT, signal and image processing, ODE solvers and other tasks common in 

science and engineering. SciPy builds on the NumPy array object and is part of the NumPy 

stack which includes tools like Matplotlib, pandas and SymPy, and an expanding set of 

scientific computing libraries. The basic data structure used by SciPy is a multidimensional 

array provided by the NumPy module. NumPy provides some functions for linear algebra, 

Fourier transforms, and random number generation, but not with the generality of the 

equivalent functions in SciPy. Refer to [13] for more on the subject.  

Utilisation of available functions, particularly machine learning based functions, is a 

convenient way of taking advantage of decades of condensed mathematical knowledge. If 

machine learning functions were rewritten every time a task of a similar type shall be 

delivered, that would make the exploration of applicability of different classifiers to specific 

tasks virtually impossible. Classification algorithms implemented in machine learning 

functions are complex enough to require investigation in their own right. Reinventing the 

aforementioned algorithms that are based on well-established theorems and corollas from 

the 20th century would mean spending a great deal of time and effort every time a project is 

being carried out. In that respect, the algorithms in the form of functions are going to be 

tapped into for the purposes of this project. The functions cull their embedded knowledge 

from various theoretical sources; also, they were written by different authors. The tactic is, 

thence, to deploy tools that were meant to make future relating work more effective by 

switching focus from the parallelism and futility of reinventing what exists to the joint efforts 

of researches around the world in achieving task specific attainments. All the potential 

downsides that coding one’s own classifier entails are bypassed by making use of the Python 

functions which come in easily obtainable packages. None the less, the convenience of the 

pre-coded machine learning functions does not ensue their instant applicability to a wide 

range of tasks; the functions need to be interfered with in terms of adjusting their parameters.  

Ubiquitous practice of dealing with data sets is splitting the whole data set into three 

parts: a training, a development and a testing part. Mentioned splitting scheme is an 
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assurance that the classifiers’ parameters will not be optimised on the same data set on which 

testing is performed. In other words, an evaluation (development) data set exists so that 

classifier’s parameters can be evaluated by testing the choice thereof on a separate data set 

from a testing data set (later in text referred to as a split). If the evaluation is performed on a 

split that is afterwards used as a testing split, then such an optimisation is not valid, for it 

overlooks the overfitting that happens in that case. Say we take a data set and intend to 

optimise classifier’s parameters on a split created as a fraction of the original data set, and 

then if we use the same split for testing the classifier’s performance, resulting accuracy will 

not be unbiased nor will it be repeatable.  

Moreover, there exists even more statistically content solution for optimising classifier’s 

parameters, which was employed in this project. It is called cross-validation, a method that 

improves a standard technique by performing the splitting arbitrary amount of times. In this 

project, the independency of the testing split is ensured by splitting the data set into three 

parts. Along with the splitting, the evaluation is performed in each iteration of the algorithm. 

Hence, the optimisation is not only performed once, but numerous times, each of which is 

characterised by a different evaluation split. The tactic implies training the classifier several 

times, which is done at the expense of the increased computation time. The technique here 

described is encouraged throughout the literature for its notable benefits for parameters 

tuning, despite that it comes at a price.  

In Figure 5 all used Python packages are listed. 

 

FIGURE 5 USED PYTHON PACKAGES 
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On the Raspberry version of the code only the testing of the classifier and the features 

and functionals computation are implemented, thus it requires fewer packages. In Figure 6 all 

packages used on the Raspberry Pi are listed.  

 

FIGURE 6 USED PYTHON PACKAGES ON RASPBERRY PI 

The two most commonly utilised classifier functions are the svm.SVC and the 

svm.SVR. Letter C stands for classification, while letter R stands for regression. 

Classification is to be used with categorically annotated data, whereas regression is to be 

used with continuously annotated data. Apart from the svm.SVC, there are other alternatives 

to choose from, for instance, the neighbors.KNeighborsClassifier(). The choice 

comes down to a particular application and hinges upon the annotation method of a testing 

file. Due to everything so far mentioned in this chapter such as splitting a data set and 

emphasising the gains of using cross-validation for tweaking classifier’s parameters, the 

svm.SVC classifier is chosen and optimised via cross-validation. Cross-validation is 

implemented using the GridSearchCV() function. The chosen kernel function is rbf. 

Kernel functions are highly influential on the outcome of classification. To better 

comprehend its meaning, an overview of the Support Vector Classifier with mathematical 

insights of the theorems that were taken advantage of in the classifier construction follows.  

 

6.1 MATHEMATICAL BACKGROUND 
 

The Support Vector Machine’s history and the course of events that led to its widely 

accepted role in up-to-date machine learning tasks is discussed in History of machine learning, 

where reader’s attention is directed towards its dependency on computing power of today’s 

computers. In this chapter, the objective of the SVM and its inner workings are elucidated. 

If we take two-dimensional case as an example, finding the best splitting boundary between 

data is akin of finding the best splitting line, however, if we extend the analogy to N-

dimensional data, we are talking about the separating hyperplane. The best separating 

hyperplane is the hyperplane that contains the widest margin between supporting vectors. 
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Another name sometimes used as a synonym for the separating hyperplane is the decision 

boundary. Intuition would imply that to classify a sample, proximity from the sample and all 

the remaining samples should be calculated, which is what the 

neighbors.KNeighborsClassifier() classifier does, although that is not necessary 

when the SVM is utilised. The biggest disadvantage of employing the KNN is poor 

scalability which is the corollary of computing the distances per every datapoint. Fairly 

comparable results of the KNN and the SVM accuracy-wise aside, the SVM aims to mitigate 

the problem of lousy scalability by implementation of the separating hyperplane. The 

hyperplane is computed only once when the classifier is trained, thus notably improving 

classification time even for small databases. On an intuitive level it is not unconceivable how 

the separating hyperplane is being positioned in a space by iteratively maximizing the margin 

between support vectors until the final decision is made upon convergence. The total width 

between support vectors is, therefore, the margin. Moreover, literature suggests that not only 

is the SVM superior in terms of pace at which classification is performed, but it is a more 

reliable algorithm in comparison with the KNN in handling outliers. The aforesaid 

undermines the non-linearity typically inseparable from machine learning tasks associated 

data sets and the principles of handling thereof. Bearing in mind that data sets (or sometimes 

referred to as feature-sets) are made up from features whose number depends on the task, 

invoking linear algebra procedures will not be sufficient. Indeed, other assertions or 

constraints made upon the SVM when dealing with multi-dimensional data shall be pondered 

that will prove to be integral for both undertaking the math behind the algorithm and 

optimising SVM’s parameters.   

Let us define classification function: 

𝒔𝒈𝒏(𝒘 ∙ 𝒙𝒊 + 𝒃).     (6) 

By observing the function value, we can determine to which class testing sample, 𝑥𝑖 , 

belongs. In above equation 𝑤 is weight, a perpendicular vector to the separating hyperplane, 

and 𝑏 is bias. From this point on 𝑥𝑖 will be called a datapoint. Therefore, the sign is the key 

for differentiating between two classes. Further, let us define support vectors: 

.     (7) 
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Support vectors are 𝑥 from above. We divide support vectors into negative and positive 

depending whether the above equation equals -1 or 1 respectively. If we write the above 

equation and the one that equals to -1, it corresponds to negative support vectors. By 

multiplying both equations with the class value (or annotation label) 𝑦𝑖, we get: 

𝑦𝑖(𝑥𝑖 ∙ 𝑤 + 𝑏) − 1 = 0.    (8) 

Where 𝑦𝑖 equals -1 and 1 for the equations defining negative and positive support vectors 

respectively. The above equation is the joint definition of support vectors from two classes. 

Next, we define the margin hyperplanes (later called the positive and negative hyperplanes) 

as the hyperplanes that include support vectors, and are a boundary separating the training 

data set from the margin zone on both sides.  

 

FIGURE 7 THIS FIGURE REPRESENTS THE MARGIN ZONE WITH DATAPOINS BELONGING TO TWO 

CLASSES THAT ON ITS BOUNDARIES HAVE SUPPORT VECTORS (CIRCLED). 

 

On the top of  Figure 7 defining equations for negative and positive support vectors 

are given. For the training data set we impose a constraint on their proximity from the 

separating hyperplane:  

.      (9) 
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The positive and negative hyperplanes are defined as:  

.      (10) 

 

FIGURE 8 THIS FIGURE SURMISES WHAT IS WRITTEN IN THE TEXT REGARDING THE 

DEFINITIONS OF THE SEPARATING, POSITIVE AND NEGATIVE (MARGIN) HYPERPLANES.  

 

In Figure 8 the positive and negative hyperplanes are visually represented in a two-

dimensional plane. Also, in Figure 8 the separating hyperplane is noticeable; it is defined 

as: 

.               (11) 

The constraint on a training data set from (9) is not applied on datapoints used for testing; 

datapoints used for testing can be anywhere between the separating hyperplane and the 

positive and negative hyperplanes. Next, constraint optimisation implies minimizing ‖𝑤‖ 

and maximising 𝑏. We are trying to maximise the width between the positive and negative 

hyperplanes while obeying the discrimination boundary. To confirm stated, we denote the 

width as: 

𝑊 = (𝑥+ − 𝑥−) ∙
𝑤

‖𝑤‖
,                (12) 

where 𝑥+ and 𝑥− are support vectors. After plugging support vector definition from (8) in 

equation (12), we get: 
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𝑊 =
2

‖𝑤‖
.              (13) 

Hence, to maximise the with, ‖𝑤‖ is minimised; or 
1

2
‖𝑤‖2 is minimised.  

As a result of what was written in chapter 6.1 Mathematical background, quadratic 

programming problem has arisen:  

Min: 𝑓: 
1

2
‖𝑤‖2 (this is a quadratic function), such that 𝑔: 𝑦𝑖(𝑥𝑖 ∙ 𝑤 + 𝑏) − 1 = 0.  

This a constrained optimisation problem and it can be solved by the Lagrangian multiplier 

method. The fact that it is a quadratic problem signals that the surface is paraboloid with just 

a single global minimum, thus avoiding problem associated with neural networks. Next, an 

intersection of 𝑓  and 𝑔  needs to be found at a tangent point (tangent means that the 

derivative equals zero). An intersection is min (or max) for 𝑓, such that the constraint is 

satisfied. Same thing can be recast by defining two constraints with new variables – a and 

𝜆. 

             (14) 

In (14) we are looking for a solution point p. If we introduce the Langrangian L and require 

the derivative of L to be zero: 

  .          (15) 

Partial derivatives with respect to x will recover the parallel normal constraint. Partial 

derivatives with respect to 𝜆 will recover second constraint from (14). In general, first row 

of (15) becomes:  

.                    (16) 

In our case: 

,    (17) 

so Lagrangian is:  
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.    (18) 

From the property that derivatives must equal zero at min: 

.                       (19) 

To solve the dual of this problem, w and b from (18) need to be substituted with (19). In the 

dual formulation maximization is necessary: 

.          (20) 

To solve (20) for a, only inner products are needed. After solving (20) for a, w can be found. 

Now that w is computed (once the training finishes), we can classify an unknown point by 

looking at the sign of 

.                         (21) 

To surmise, in this chapter a quadratic programming problem has been introduced 

by means of which the training of the SVM classifier is performed. The problem is based on 

the maximization of the width, and it progresses into a quadratic optimisation problem, 

which is solved by the Lagrangian multiplier method.  

In contribution to the two-dimensional theory, its N-dimensional non-linear 

extension is analogously conceivable. In a general case non-linear functions which map the 

original feature space into a higher dimensional space are utilised. Non-linear functions or 

kernels guarantee the existence of a higher dimensional space and make the mapping 

possible without stringent constraints.  

As for the multi-class implementation of the SVM, it can be obtained by training 

several classifiers and combining their results. There are numerous strategies for combining 

SVMs; two methods that can be chosen by adjusting Python parameters are called “one per 

class” and “pairwise coupling”. The “one per class” method includes training one classifier 

per class that discriminates between that class and the rest of the classes. Each class’ 

corresponding classifier is assuming a positive value belongs to that class, and a negative 

value to any of the other classes. Classifier’s output is the index i of the largest discriminating 
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function fi. The most commonly used discrimination function is the signed distance between 

a datapoint and the separating hyperplane: 

                     (22) 

where 𝑤𝑖 and 𝑏𝑖are the normal and the bias of the separating hyperplane of the i-th SVM 

classifier respectively. Final decision is made by finding the maximal discriminating 

function: 

                  (23) 

where K is the number of classes. 

The pairwise coupling method trains K(K-1)/2 binary SVM classifiers. Each of these 

classifiers is trained to discriminate between two classes. To classify a datapoint, the 

pairwise coupling method combines the discrimination functions of K(K-1)/2 classifiers by 

using a voting scheme. When the number of classes is high the pairwise coupling method 

requires training with a large number of SVM classifiers. 

In Figure 9 is the code wherein cross-validation is implemented: 

 

FIGURE 9 

Gamma value with the greatest accuracy equals 0.01; and C value equals 10 for the 

data used in the project. Performance of each option can be evaluated by examining means 



30 

 

and standard deviations of the scores, since the classifier is trained several times for each 

parameters combination. The number of times the classifier is trained for each parameters 

permutation is determined by the number of splits of the data set used for training and 

evaluation, i.e., by signifying the number of splits to the GridSearchCV()function via 

changing the CV parameter. By default, the CV parameter is set to 3, thus, indicating to three-

fold cross-validation. The estimator that is chosen by the search gets stored in the 

best_estimator_ attribute; the best_score_ attribute bears the information of the mean 

cross-validated score of the best estimator; and the best_params_ attribute stores the 

parameter setting that gave the best score for the best estimator. In this case an estimator 

choice was not evaluated in the GridSearchCV() function, only the other two attributes 

were examined, for the estimator choice was decided ahead of its evaluation through the use 

of cross-validation. To clarify, an estimator choice denotes used classifier together with its 

parameters such as the kernel function parameter. The classifier used is the svm.SVC and 

the kernel of choice is rbf. The range of parameters is not wider because it would be too 

demanding in the sense of computation time. The CV parameter was not interfered with; it 

was set on default value. Cross-validation splits a testing data set into N parts, each of which 

is once used as an evaluation split for parameter tuning. After the decision on the best 

parameters is made, the cross-validation function then fits the whole testing split to a 

classifier with respect to the best parameters.  More about splitting data sets can be found in 

Python functions and libraries.  
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7.  DATABASE PREPARATION 
 

The database used consists of 23 audio recordings, some of which were originally 

assigned to the testing data set while others were allocated to the training data set. However, 

that approach was not applicable to the database because of the unevenly distributed 

affective expressions. The reason being that the database was not properly balanced during 

its creation, making for the emotionally biased recordings that cannot be a realistic 

representation of what might be expected in a speaker independent classification case. 

Mainly, the size of a database and even distribution of affective states determine if a database 

can be utilised for modelling a speaker independent recognition scheme. In that regard, the 

size of the database was not sufficient to represent an unbiased set of recordings from which 

a random recording could be taken out as an adequate candidate for testing the classifier. 

Described obstacle was at first assumed to be true after the results of the testing turned out 

to be unsatisfactory in the sense that they were not accurate unless the database’s samples 

were not shuffled. Which brings us back to chapter Functionals where the functionals 

computation on a fixed-length window was explained, underlining the statistical dependency 

of neighbouring samples (or datapoints). Hence the reason why were the results seemingly 

convincing when the database’s samples had been shuffled. Notwithstanding the potential 

usefulness of shuffling data for other applications, doing it would not even remotely be 

similar to the situations that portray practical implications. Thereby, random segments were 

pulled out from all 23 recordings; from each recording two of the segments were conflated 

into one testing file that should have served as a proof of concept, had the results been 

acceptable. But that premise proved to be flawed as well; it comes out to be that it was not 

enough to extract whichever 30 seconds segments, two per 5-minute recording to ensure for 

the statistical balance of emotive states across the two splits.  

This chapter is focused on the database and its specificities, and it aims to lay out the 

strategies associated with databases with uneven distribution of classes, in this case affective 

states. Though the problem may be alleviated when dealing with enormous databases in 

which there are enough recordings so that splits contain classes from across the spectrum 

due to the sheer size of data put into them, it was not the case in this project. The 

unfavourable characteristics of this database are attributable to the database’s size, the 

scheme used for exerting emotive states, and the pitfalls that entail from not concentrating 

enough on deliberate allocation of the data throughout the recordings. To that end, a new 
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scheme was proposed and tested, whereby satisfying results were attainable due to the 

apparent uniformity of the data across the splits from the perspective of the classifier. Put 

differently, thanks to the unbiasedness, as the classifier interprets it, a scheme that transforms 

the database, giving it the most sough-after properties, allows for the classification to be 

successful, while at the same time not making allocation of the data to the splits unrealistic. 

For such a scheme to work, data annotations should be examined, taking all recordings into 

consideration, and only datapoints that have counterparts in the training split should be 

assigned to the testing split. If annotations are thought of as attributes of emotive states, then 

we are addressing equal distribution of affects regarding their attribute dispersion across all 

recordings. To clarify, it would not make sense to check the annotation of each datapoint at 

a time because it would make the process unreasonably demanding in terms of computation 

time, with no tangible improvements obtained in return. In light of this, the algorithm used 

to account for the database inauspiciousness is going to be succinctly explained here:  

1) All recordings were divided into segments of 30 seconds. 

2) To every segment of each recording predominant octant was assigned by inspecting 

each annotation included in the segment.  

3) For every segment of each recording percentage of the predominant octant was 

computed.  

4) Based on the two variables, the percentage and the predominant octant, the list of 

segments was sorted, such that the beginning of the list starts with the chunk of first 

octant segments, following with the chunk of second octant segments and so on. 

Within every chunk of a certain octant segments list was sorted by the percentage 

variable.  

5) From the sorted list first segment from each chunk of segments was assigned to the 

testing file. Not all segments from the top of every chunk were assigned to the testing 

files; some of them which were not accompanied with at least one more segment 

from the same chunk were earmarked for the training split only. One testing file, 

created by continuously appending all recording’s testing segments, and others, 

containing one recording’s testing segments only, were separately saved to memory. 

This procedure made it possible to test the classifier for every speaker (recording) 

individually and against the testing file that contains segments from all speakers.  

6) The training file was filled with corresponding segments parallelly with the testing 

files.  
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7) The normalized extracted features for training were fed as input to the PCA function 

with desired retained accuracy of 95%. 

8) The chosen classifier (the svm.SVC) was trained on the training split using cross-

validation technique that further divided the training split into three parts and 

searched for the best parameters permutation producing cross-validated mean 

accuracy for every choice of parameters. Upon finding the optimal parameters 

choice, the same training split was reused in its entirety to refit it to the classifier with 

the optimal parameters, thus enlarging the split used for training in cross-validation, 

which was only two-thirds as large as the whole training split.  

9) The classifier was tested separately for each speaker and jointly for all datapoints 

from the training split. Several metrics were used for accuracy representation.  

The steps described are balancing the distribution of datapoints across the two splits. 

Reason for not including the segments which do not have at least one other segment below 

them in a chunk of segments belonging to the same octant to the testing split, lies with the 

fact that by doing so some octants would not be present in both splits. As the loop that iterates 

through all recordings was being executed, percentages and predominant octants per 

segments were printed out, which proved that the database is not only unevenly filled with 

segments of different kind per recording, but also how diverse the annotations across 

recordings were.  

Consequently, in spite of a trend in the research community to make contributions in 

speaker-independent systems, considering its complexity and the need for a database of 

greater size, it does not come as a surprise that there is a limited number of speaker-

independent related papers available. In some papers authors refer to speaker-dependent 

schemes as speaker-independent systems with a limited number of speakers, which is 

contradictory. In this project the database consisting of 23 speakers was separated into two 

splits, each of which contains segments deliberately picked so that they model a real-life 

case of equally distributed data for testing and training. Used scheme, thus, makes certain 

that the database has sought-after properties, and it is an example of a robust and stable 

system that demonstrates good generalization thanks to the database preparation. In that 

context, to this artificially modelled speaker-dependent system the Support Vector Machine 

as well as K nearest neighbour classifier were applied and the efficiency is presented by 

means of emotion recognition accuracy. Upon completion of evaluating the classifiers, the 
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SVM classifier’s performance was analysed with different function kernels under diverse 

parametrisation.  

It has been suggested in [14] that the research community is endeavouring to make use 

of contextual information, such as gender, to achieve speaker-independency. In line with 

experimental results of this work, the SVM classifier appears to possess global optimality as 

a training algorithm as well as high performance [15]. Some other authors assert how it is 

possible to implement a combination of a speaker identification system followed by a 

speaker-dependent emotion recognition system. To be concise, source [14] provides a 

definition of a speaker-independent system, although, here used scheme is speaker-

dependent. Citation from [14]:  

“By the term speaker-independent we mean that the utterances that are included in the 

test set come from one specific speaker, whose utterances are not included in the training 

set. In other words, it is not possible for the classifier to be tested on utterances derived 

from the same speaker whose utterances belong to the training set.”  

In all the works so far examined, statistical values of features are computed, and feature 

selection is applied to retain a small number of features. Frequently mentioned methods are 

the Sequential Floating Forward algorithm and the Principal component analysis. The latter 

was applied on the database’s extracted features and functionals.    

The accuracy will be discussed in chapter Accuracy, where comparison with previous 

work will offer qualitative conclusions. 
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8. ACCURACY  
 

TABLE 3 

speaker precision   recall f1-score support 

1 0.74       0.83 0.78 8759 

2 0.67       0.81 0.73 9800 

3 0.76       0.70 0.73 4577 

4 0.73 0.68 0.70 7830 

5 0.74       0.52 0.61 5433 

6 0.59       0.38 0.46 604 

7 0.55       0.51 0.53 297 

8 0.81       0.59 0.68 1926 

average / total        0.72       0.72       0.71      39226 

 

 

Results from Table 3 were obtained with the svm.SVC classifier with rbf kernel 

function, C=10, and gamma=0.01. Datapoints that comprise both the training and the testing 

splits are made up from the features computed for this project with the aid of the openSMILE 

toolkit; the features given with the database were discarded. Before the classifier had been 

trained, database’s biasedness was accounted for by purposefully breaking it apart so that 

the appearance of different octant segments is balanced. Several kernel function options were 

implemented to monitor their influence on accuracy, which was notably dissimilar. Starting 

from the linear kernel, whose evaluation never went further from altering the code, because 

the code never terminated; to the poly kernel which did show relatively poor performance; 

and the sigmoid kernel which failed miserably. In the end, the rbf kernel proved to be both 

fast and accurate.  

In Table 3 rows represent eight classes to which datapoints were mapped from their 

original two-dimensional representation in a plane of valence and arousal. Reader shall recall 

explanation of Figure 2, where the dimensionally annotated data is depicted. The 

dimensional approach requires regression instead of classification, making the computation 

time longer in comparison, however, attempt to implement two classifiers for valence and 

arousal has been experimented with. It did not result in expected accuracy nor acceptable 

computation time. Furthermore, unexplained bias has arisen and was observed after calling 

the score function, whose meaning is not equal to the meaning of the score function used in 
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conjunction with the svm.SVC. For all the addressed reasons, a mixture of the dimensional 

and the categorical approach has been developed – mapping the data to eight octants. Labels 

were not attached to the octants, for it remains an arbitrary problem. This way, interpreting 

or naming the octants in terms of affective jargon is left to whomever thinks they have the 

appropriate names. Results are obtained on the testing split that consists of purposely picked 

and conflated segments.  

The precision is the ratio tp / (tp + fp), where tp is the number of true positives, and 

fp is the number of false positives. The precision is intuitively the ability of the classifier not 

to label a sample as positive if it is negative. 

The recall is the ratio tp / (tp + fn), where tp is the number of true positives, and fn 

is the number of false negatives. The recall is intuitively the ability of the classifier to find 

all the positive samples. 

The F-1 score can be interpreted as a weighted harmonic mean of the precision and 

recall, where an F-1 score reaches its best value at 1 and worst score at 0. 

  The support is the number of occurrences of each class.  

 Additionally, each speaker’s testing file was tested with the clf.score function. 

Results are very similar to the ones obtained with the precision function. The score function 

computes the percentage of correctly predicted datapoints out of all datapoints used for 

testing.  

Upon features and functionals computation completion some rows contained zeros 

or NaNs. That is because a recording had unvoiced regions at certain times, which shortly 

thereafter influenced functionals computation making for gaps (zeros or NaNs) in the final 

features files. The gaps problem was cured by simply omitting affected rows from the files. 
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TABLE 4 

Speaker i Duration of 

testing split 

Prediction 

computation time, 

tested on PC, 

without decimation 

(40 milliseconds) 

Score, 

(clf.score() 

function) 

predominant 

octants across 

segments for 

speaker i: 

1 60s 5.49s .68 5 3 1 0 1 0 0 0 

2 57.48s 5.06s .59 0 1 0 0 5 1 0 3 

3 57.48s 5.09s .7 4 5 0 0 1 0 0 0 

4 57.44s 4.97s .6 3 5 0 0 1 0 0 1 

5 87.48s 7.7s .77 3 3 0 1 3 0 0 0 

6 117.44s 10.52s .86 2 4 2 2 0 0 0 0 

7 87.4s 7.73s .74 4 3 0 3 0 0 0 0 

8 57.44s 5.05s .68 0 3 1 6 0 0 0 0 

9 57.44s 5.09s .71 1 4 0 0 5 0 0 0 

10 27.44s 2.09s .33 0 0 0 0 9 0 1 0 

11 117.44s 10.45s .81 0 3 2 3 2 0 0 0 

12 117.44s 9.8s .75 2 2 0 4 2 0 0 0 

13 57.48s 5.09s .65 6 4 0 0 0 0 0 0 

14 57.44s 4.99s .63 0 3 1 5 1 0 0 0 

15 87.44s 5.41s .79 2 5 0 0 3 0 0 0 

16 57.36s 5.08s .65 5 0 1 3 1 0 0 0 

17 57.4s 4.94s .62 5 1 0 2 1 0 0 1 

18 87.48s 7.94s .75 1 4 0 2 3 0 0 0 

19 57.48s 5.09s .82 6 2 1 1 0 0 0 0 

20 87.48s 8.22s .77 2 4 0 4 0 0 0 0 

21 57.48s 5.05s .68 1 2 0 5 1 0 0 1 

22 57.48s 5.31s .64 2 7 0 1 0 0 0 0 

23 57.48s 5.05s .68 0 7 0 3 0 0 0 0 

 

In Table 4 accuracy for every testing file, belonging to each speaker, is shown. Fifth 

column signals to everything written in chapter 7.  Database preparation, where it is explained 

how chunks of different octants are not equally split per recording nor across recordings 

(speakers). Now it is clear that pervasive unbalance on relatively short recordings could have 

only been rectified by interfering in the database prior to fitting it to the classifier and testing 

accuracy. Second column shows that, for most recordings, two segments were assigned to 

the testing split. These segments are together around 60 seconds long. Results from third 

column were computed with the sampling period of 40 milliseconds; with a higher period 

(160 milliseconds) computation times were roughly half as long as the ones from Table 4.  
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As for the time consumed for training the classifier, it took around 170 minutes until 

all the data was fitted (with cross-validation). The training was conducted at University by 

courtesy of an assistant who enabled the access to a more powerful computer then one would 

usually have in personal possession.         

There is still features and functionals computation step that has not been discussed. 

Since the first three recordings are approximately the same duration, their computation times 

were averaged. It took 7.48 seconds for the openSMILE features computation and 4.02 

seconds for the functionals computation in the case with down-sampled files with a sampling 

period of 160 milliseconds.Original sampling period was 40 milliseconds; it was selected to 

be congruent with the sampling period from other modalities. (With the original sampling 

rate, it took 21 sec, on average, to compute the functionals).  

To sum up, overall it takes on average 11.5 seconds to compute features and 

functionals with reduced sampling rate on a computer with 8 GB installed RAM and 3 GHz 

processor. After we account for the average testing prediction time with the reduced 

sampling frequency, it adds up to 14.2 seconds. The timing was performed on three one-

minute long recordings, for first, second and third speaker, whose duration was determined 

by the database preparation scheme (See the first three rows in the second column from Table 

4 to learn about their duration). Reader is instructed to consult [14] for comparison with 

state-of-the-art accuracy achievements for both speaker-dependent and speaker-independent 

schemes.  
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9. EXECUTION TIME COMPARISON ON RASPBERRY PI VS. PC 
 

On the Raspberry Pi, it took on average 45.1 seconds for the features computation, and 

29.8 seconds for the functionals computation, which together with the average testing time 

comes to 86 seconds. The evaluation was performed on three one-minute long recordings, 

corresponding to first, second and third speaker, whose duration was established after the 

database preparation scheme. For the functionals computation and the classifier testing, 

reduced sampling rate with a period of 160 milliseconds was used. The features computation 

was facilitated by the openSMILE toolkit, which extracted them at a rate of 10 milliseconds. 

In comparison with the performance on the PC mentioned in chapter Accuracy, the difference 

in the execution times is 71.8 seconds. Put differently, the execution time on PC is almost 

one-sixth as long as the running time on the Raspberry Pi. Further reduction of the running 

time could be achieved by additionally lowering the sampling rate or with computation of a 

fewer number of functionals, which are listed in chapter Functionals. Also, putting less 

demand on accuracy by calling the PCA function with a smaller input argument, which was 

in this case set to 90% accuracy, would surely improve computation time. Constraint on the 

number of computed features is controlled by the PCA function’s input argument, therefore, 

the running time could be enhanced by allowing for the number of features and functionals 

to shrink below 42 (the dimension of the feature files with PCA(0.90)). The PCA function 

was also saved to pickle after it was fitted to the training data set, and that is why it reduced 

the testing data set to the same dimension; it was a precaution that guaranteed the reduced 

testing data set is not going to have different number or choice of features and functionals. 

Performance of the two implementations is detailed in Table 5.  

TABLE 5 THE RESULTS IN THIS TABLE ARE OBTAINED BY AVERAGING COMPUTATION TIMES 

FOR THE FIRST THREE TESTING SPLITS, EACH OF WHICH ARE AROUND 60 SECONDS LONG. 

 Features 

computation 

time 

Functionals 

computation 

time 

Average testing 

prediction time 

Sum 

PC 7.48 4.02 2.7 14.2 

Raspberry Pi 45.1 29.8 11.1 86 
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9.1. RASPBERRY PI IMPLEMENTATION 
 

To make use of the packages mentioned in Python functions and libraries, they had to be installed 

with either pip or apt-get commands in a terminal. The pip prefix commands store 

installation files in /user/local/pyhon3.5/dist-package/, and the apt-get prefix 

commands store installation files in /user/lib/python3/dist-packages/, unless 

otherwise instructed. The pip commands are used to download and install packages of 

different kinds and versions, whereas the apt-get commands do not provide the option of 

choosing the version of a package and are considered generally easier to use in the sense that 

the packages can be updated and upgraded with a simple command that does not require for 

a programmer to know the up-to-date version number of the package. To install pip, this 

command should be executed: sudo apt-get install python3-pip.  

The installation of the openSMILE toolkit did not finish quickly and apart from the 

installation instructions provided in the official manual, some other commands had to be 

executed. It is important to remark that prior to the openSMILE execution, the path must be 

changed with the PATH command to wherever it was installed. The execution times were 

measured separately for the functionals computation, the features computation and the 

testing part of the code. For the testing part of the code, pickled data including the fitted 

classifier data and the fitted PCA function data were loaded.   
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10. RASPBERRY PI 
 

The Raspberry Pi is a low cost, credit-card sized computed that has ports for monitor or 

TV (HDMI), mouse (USB), keyboard (USB), SD card and LAN access. What is more, it has 

audio, display and camera input, and GPIO bus. It has the ability to interact with the outside 

world and has been used in a wide array of digital maker projects [16].  Some of which were 

brought up in [16] are: music machines, parent detectors, weather stations and tweeting 

birdhouses with infra-red cameras.  

 

FIGURE 10 THE RASPBERRY PI 3 MODEL B+ 

TABLE 6 

Release date 14 March 2018; 3 months ago 

Introductory price US$35 

Operating system Raspbian 

System-on-chip used Broadcom BCM2837B0 

CPU 1.4 GHz 64/32-bit quad-core ARM Cortex-A53 

Memory 1 GB LPDDR2 RAM at 900 MHz 

Storage MicroSDHC slot 

Power 1.5 W (average when idle) to 6.7 W (maximum under 

stress) 

Website  raspberrypi.org  

 

Graphics Broadcom VideoCore IV 300 MHz/400 MHz 

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://en.wikipedia.org/wiki/Gibibyte
https://en.wikipedia.org/wiki/Mobile_DDR#LPDDR2
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/MicroSDHC
https://raspberrypi.org/
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/VideoCore
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Here follows a description from Wikipedia page accessed on 25th of June 2018: 

“Raspberry Pi 3 Model B was released in February 2016 with a 64 bit quad core 

processor, and has on-board WiFi, Bluetooth and USB boot capabilities. On Pi Day 

2018 model 3B+ appeared with a faster 1.4 GHz processor and a 3 times faster 

network based on gigabit ethernet (300 Mbit / s) or 2.4 / 5 GHz dual-band Wi-Fi 

(100 Mbit / s). Other options are: Power over Ethernet (PoE), USB boot and network 

boot (an SD card is no longer required). This allows the use of the Pi in hard-to-

reach places (possibly without electricity).” 

Additional details are available in [17]. In Table 6 an overview of the Raspberry Pi hardware 

parts is presented; and Figure 10 depicts the layout of the used components.  
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11. CONCLUSION AND FINAL REMARKS 
 

Taking into consideration running time results from chapter Execution time comparison on 

Raspberry Pi vs. PC, arguing that this scheme could be used in real-time applications on the 

Raspberry Pi does not seem implausible, however, the running time is still above the real-

time margin of 60 seconds. The timing results were obtained on averagely 60 seconds long 

recordings. There are options one should ponder that could make the algorithm faster, such 

as accepting lower accuracy, and sampling data with a lower rate. Demand on accuracy can 

be controlled by changing the input argument of the PCA function, which can lower 

dimensionality at the expense of poorer accuracy. Down-sampling by a factor of four was 

implemented in this project, making the sample period four times as long as before, i.e., it 

was increased from 40 milliseconds to 160 milliseconds. As a conclusion regarding the real-

time applicability, the author is at liberty to say how it is not an unattainable goal, especially 

if a newer version of Raspberry embedded board comes out, or if lower accuracy or sampling 

rate is tolerable. Not only that, an option to write one’s own classification related functions 

and optimise them so that they exceed performance of widely used ones could prove worthy 

of effort, but it would be beyond the scope of this thesis. Further, there are not many more 

Python implemented types of classifier functions that have not been utilised in this project. 

Let us conclude that on this board real-time implementation is a lofty goal, and how the 

option of picking another embedded platform should be contemplated. That kind of 

reasoning is solidified by the high computational demands systems like this one pose, thus 

requiring appropriately powerful embedded platforms.   

 On the other hand, accuracy here obtained is not unconvincing, quite the contrary, it 

indicates to a proper usage of available Python tools, a well-informed database preparation, 

and a correct way of tuning the parameters of the classifier. This project was constrained by 

the database’s size that entailed a need for interference in its emotive content distribution. 

Furthermore, embedded platforms’ computing power is a restraint for implementation of 

complex algorithms.     
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12. SUMMARY 
 

Utilising emotion information through human-computer interactions is associated with 

practical applications that are beginning to pervade our every-day life. However, the 

challenges systems which aim to classify emotive states pose are many. Starting from the 

fuzziness of emotional boundaries to the computational demand of widely used algorithms 

and classifier functions. In this project an embedded platform was used for an affect 

recognition task which included computing features and functionals, database preparation, 

fitting data to a classifier, an evaluation of accuracy and timing the embedded board 

implemented algorithms. Since computation time is a critical factor in embedded platforms’ 

performance evaluation, the importance of timing the algorithms was emphasised. The tasks 

of this project were facilitated by making use of the openSMILE toolkit and Python functions 

for computing the features and implementing the classifier respectively. Following the 

assessment of different classifiers under diverse parametrisation, the prepared training data 

set was fitted to the SVM classifier and prediction evaluation was performed in terms of 

accuracy and execution time, both of which were compared with embedded platform’s 

results. Accuracy obtained is comparable to other works. The running time on the Raspberry 

Pi shows improvement as we decrease the sampling rate, but it is above the acceptable 

margin for real-time applications. The high accuracy is partially indebted to the meticulous 

database preparation, which ensured that the two data sets were evenly filled with emotive 

content from different octants. The used database contains 23 recordings, each from a 

different speaker; it is described in detail in chapter Database. Different categorisation 

approaches have been appraised in chapter Emotion annotation schemes. The annotated data was 

mapped into eight octants; each octant’s accuracy expressed with various metrics is 

discussed in chapter Accuracy.    

Key words: machine learning, Python, SVM, emotion recognition, affective computing, 

affect, emotive state, Raspberry Pi  
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