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Abstract

In this paper my aim is to show that, given the descriptive epistemic context, the analogy between mathematics and the natural
sciences holds even when one’s epistemic route is experimentation. Experiments are usually taken to be the lynchpin of the
natural sciences investigations, which seems to be the domain that does not have much in common with mathematics and the
way we grasp the basic mathematical concepts. Putnam, on the other hand, interestingly points out that experiments are per-
ceived in the mathematical investigations too. My goal is to go one step further than Putnam might have wanted to go and,

hopefully, show that the analogy holds throughout.

As well known, foundations of mathematics in a more
technical sense of the term is the study of the most basic
mathematical concepts and logical structure of mathemat-
ics. It includes the study of how to organize such concepts
into a hierarchy of more and less fundamental ones, of
what are the axioms and rules of proof, as well as the
study of the properties and limitations of formal systems
(Simpson 2000). In a broader sense, “conceived of phi-
losophically, the foundations of mathematics concern vari-
ous metaphysical and epistemological problems raised by
mathematical practice, its results and applications.”
(Detlefsen 1998)

This paper is about foundations. of mathematics in the
latter, broader sense of the term and focuses on a topic in
the epistemic domain. The goal is to show that, given the
context of discovery, the epistemic paths in mathematics
are analogous with those in the natural sciences.

In particular, the paper is about the experiment as one of
the possible epistemic paths, i.e. modes of initial epistemic
access to both mathematical and scientific reality (objects
and properties).

At first site, it might be difficult to see how mathematics —
as an armchair activity — could be related to the experi-
ments — usually perceived as belonging to the domain of
the natural, (hence) empirical sciences.

Putnam, on the other hand, suggests that “the adoption
of the axiom of choice as a new paradigm was an experi-
ment, even if the experiment was not performed by men in
white coats in a laboratory. And similar experiments go all
the way back in the history of mathematics.” (Putnam
1979: xi) Whatever we might think of the axiom of choice
case and its history, when comparing the mathematical
procedures with the experiments in the natural sciences
the analogy, at least at first, seems implausible.

The two domains are usually found unrelated based on
two. considerations: firstly, experiment§ In science are
practical procedures, done in laboratories, hence distant
from the standard mathematical ones, @nd secondly, the
domains are not mutually analogous due to an insyr-
mountable difference in methodology: the axiomatic-
deductive method in  mathematics and the indyc-
tive/abductive method in the natural sciences.

I will address the former remark by analysing the stryc.
ture of proofs and experiments, while MY TePly to the |atter
remarks will take into consideration @ distinction to pe
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made between the pre-formal and the formal development
of theories in the mathematical domain.

| shall start by addressing the first consideration, namely
that the experiments in science seem to be practical pro-
cedures, i.e. that the natural sciences are based on em-
pirical/practical procedures while mathematics is an arm-
chair activity.

How could the domain of mathematical armchair/a priori
research be analogous to the predominantly empirical pro-
file of scientific knowledge, in particular when it comes to
experiments, often taken to be paradigmatic research tool
for scientific discovery and hence a posteriori gained
knowledge?

Notwithstanding this commonsensical view, let us see if
experiments in (the natural) sciences ought to be practical
in the first place.

The standard taxonomy, based on Galileo's writings, in-
cludes the distinction according to which there are three
main types of experiments: the real, the imaginary and the
thought experiments (MaclLachlan 1973: 374). The real
ones are those that have been performed, the imaginary
are those that haven't been formed but could have been,
while the thought experiments are those that could not be
performed due to the lack of technology or because im-
possible in principle.

Given Galileo’s writings, it is a contentious issue which
experiments were real, and which imaginary. Koyré, one of
the most prominent historian of physics of the 20th century
(Stump 2001: 243), take many of Galileo’s experiments
that are considered to be performed as imaginary ones
(MacLachlan 1973: 374). Others have defended the view
that Galileo was a great experimenter, and had all the
possible resources to actually perform the experiments
(Settle 1961) (Drake 1978).

What about the thought experiments? Such experiments
played an important role in the development of scientific
theories in the work of scientists such as Galileo, Newton,
Einstein, Heisenberg (MacLachlan 1973: 375). The list of
well-known thought experiments is a long one: Stevin's in-
clined plane experiment, Galileo’s leaning tower of Pisa
experiment, Schrodinger's cat, Maxwell's demon, Newton’s
bucket, Einstein chasing a light beam, Twin paradox and
many others (Brown 1991). Thought experiments turn out
to be important for our discussion for two main reasons: 1)
such experiments are not practical, the objects involved in
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such experiments are not concrete, and no direct manipu-
lation of the objects is involved, and (2) the structure of
such experiments resembles the structure of mathematical
proofs.

Let us start with Galileo’s thought experiment on falling
bodies (or Galileo’s leaning tower of Pisa experiment). It is
the experiment which, as Galileo says through the words
of Salviati,

shows that difference of weight, even when very great,
is without effect in changing the speed of falling bodies,
so that as far as weight is concerned they all fall with
equal speed: the idea is, | say, so new, and at first
glance so remote from fact, that if we do not have the
means of making it just as clear as sunlight, it had bet-
ter not be mentioned... (Galileo 1914: 83)

| shall present Brown’s formulation of the experiment
(Brown 1991: 1).

Galileo starts from Aristotle’s claim that objects fall at
speed relative to their mass, having the heavier bodies fall
faster than the light ones:

v(H) > v(L)

The following step is to get a compound body, more pre-
cisely to get a heavy cannon ball attached to a light mus-
ket ball.

If we take Aristotle’s theory of gravity to be true, it follows
that

(1) the combined system is heavier than the heavy ball
alone, hence v(H+L) > v(H) and

(2) the light ball acts as a drag and slows up the heavy
one, hence  v(H+L) < v(H).

Aristotle’s theory of gravity leads to a paradoxical result.
Galileo’s answer consists in making the two velocity equal,
which means that the two bodies fall at the same speed:
v(H + L) = v(H).

Norton is famously representing thought experiments in
physics as arguments in his (Norton 1991). Let us take the
example of thermodynamics in which Norton shows how to
prove certain assertions by using the structure of the re-
ductio ad absurdum proofs in mathematics:

Thermodynamics lends itself to some of the most effec-
tive of all thought experiments. This is because the
three laws of thermodynamics are such that they can
readily be stated as assertions of impossibilities.

First law: It is impossible to design a perpetual motion
machine of the first kind, that is, a machine whose ef-
fect is to produce more energy than it consumes.
Second law: It is impossible to design a perpetual mo-
tion machine of the second kind, that is, a machine
whose sole effect is to transfer heat from a colder heat
reservoir to a hotter reservoir.

Third law: it is impossible for any finite process to yield
a temperature of absolute zero.

An easy way to derive consequences from these asser-
tions of impossibility is by a reductio argument. To de-
rive a theorem X, take one or more of the above laws
as premises. Assume not-X, the negation of X. Show
that not-X allows the design of a machine prohibited by
the premisses. Then conclude X. (Norton 1991: 131f)

Interestingly enough, Koyré goes one step further when
asserting that “all the good physics is done a priori” (Koyré
1968: 88). | will not pursue Koyré’s view any further. Even
without endorsing Koyré’s Platonism in physics, | consider

it possible to defend the analogy between the domain of
mathematics and the natural sciences in the epistemic de-
scriptive context.

At his point, someone might complaint (and this is the
second remark) that the mathematical domain and the one
of the natural sciences are methodologically too different
to support any kind of analogy, even in the epistemic de-
scriptive context (i.e. in the context of discovery). Given
that mathematical procedures are based on the axiomatic-
deduction method, while the scientific ones on induc-
tion/abduction.

Let us address this remark. Frege rightly underlines that

it is in the nature of mathematics always to prefer proof,
where proof is possible, to any confirmation by induc-
tion. Euclid gives proofs of many things which anyone
would concede him without question, and it was when
men refused to be satisfied even with Euclid's stan-
dards of rigour that they were led to the enquiries set in
train by the Axiom of Parallels. (Frege 1884: 2)

However, Frege is referring to the domain of confirmation,
that is justification. The historical development of mathe-
matical results, i.e. the heuristics (in the sense of the epis-
temic paths within the context of discovery) does not gen-
erally coincide with the proofs of theories in the context of
justification. Lakatos stresses that the pre-formal proce-
dures in the development of mathematical results cannot
be represented as drafts of the formal, deductive proofs
and deductive systems that we find in textbooks. The heu-
ristic pattern is not deductive and has a development on its
own (Lakatos 1976). Polya as well underlines the impor-
tance of distinguishing the process of discovery from the
one of justification (Polya 1945).

Let us take the example of Euler's theorem from 1740.
The problem was suggested to Euler by Philippe Naudé, a
French mathematician, and it concerns the ways a positive
integer can be written as the sum of distinct positive inte-
gers. Euler noticed, by analysing many numbers, that all of
them could be decomposed into distinct integers in pre-
cisely as many ways as they could be decomposed into
odd integers.

In the case of number 6, it can be decomposed as the
sum of distinct natural numbers in four ways:

6

5+1
4+2
3+2+1

and it can be decomposed as the sum of odd numbers in
the following four ways:

5+1

3+3

3+1+1+1
TH1+1+1+141.

Euler, as many other mathematicians in similar situations,
then asked himself if the same holds for every positive in-
tegers. Later on he found an ingenious proof of the theo-
rem (Dunham 1994: 57-63).

Dunham describes such a process of testing the asser-
tion for many cases/numbers as a common practice in
which mathematicians “like chemists, gain valuable insight
by experimenting with specific cases before trying to for-
mulate and prove general laws” (Dunham 1994: 58), while
Polya compares the mathematician to “the naturalist who,
impressed by a curious plant or a curious geological for-
mation, conceives a general question” (Polya 1945: 115).
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Throughout the history of mathematic examples like
Euler’s are legion.

Let me summarize. The contrast between mathematical
and physical sciences within the descriptive epistemic con-
text is less dramatic than assumed in the literature. Many
important, even crucial experiments in physics are thought
experiments, quite similar to their mathematical counter-
parts. Other are imaginary experiments grounded on
knowledge from the laboratory ones. I hence suggest that
we talk about analogy rather than about a dramatic con-
trast.

Symmetrically, to remain within the context of discovery,
the method of reasoning in mathematics does not stand in
stark contrast to its counterpart in the natural sciences.
Namely, mathematical discoveries are often arrived at
through inductive varieties of reasoning. The two are again
to a significant extent analogous to each other.

To conclude, if we take into consideration the non-
commonsensical aspects of experiments in the natural sci-
ences as well as the distinction between the pre-formal
and formal development of the mathematical theories, the
analogy between the domain of mathematics and the one
of the natural sciences in the descriptive epistemic context
holds ground.
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