
Evolving Bent Quaternary Functions
Stjepan Picek∗, Karlo Knezevic†, Luca Mariot‡ Domagoj Jakobovic†, Alberto Leporati‡
∗Cyber Security Research Group, Delft University of Technology, Delft, The Netherlands
†University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

‡Department of Informatics, Systems and Communication,
Università degli Studi di Milano-Bicocca, Viale Sarca 336/14, 20126 Milano, Italy

Abstract—Boolean functions have a prominent role in many
real-world applications, which makes them a very active research
domain. Throughout the years, various heuristic techniques
proved to be an attractive choice for the construction of Boolean
functions with different properties. One of the most important
properties is nonlinearity, and in particular maximally nonlinear
Boolean functions are also called bent functions. In this paper,
instead of considering Boolean functions, we experiment with
quaternary functions. The corresponding problem is much more
difficult and presents an interesting benchmark as well as real-
world applications. The results we obtain show that evolution-
ary metaheuristics, especially genetic programming, succeed in
finding quaternary functions with the desired properties. The
obtained results in the quaternary domain can also be translated
into the binary domain, in which case this approach compares
favorably with the state-of-the-art in Boolean optimization. Our
techniques are able to find quaternary bent functions for up to
8 inputs, which corresponds to obtaining Boolean bent functions
of 16 inputs.

I. INTRODUCTION

Boolean functions have a number of real-world applications
in various domains. Examples range from usages in combina-
torics, such as the construction of Hadamard matrices [1] and
strongly regular graphs [2], or in coding theory, where they
are used for constructing certain classes of codes such as Reed-
Muller codes [3] and Kerdock codes [4]. Boolean functions are
also important in the construction of codebooks from codes [5]
and in cryptography for designing hash functions [6] and
symmetric ciphers [7], [8], as well as in fully homomorphic
encryption [9].

Boolean functions are basically mappings from Fn
2 to F2,

with F2 being the finite field of two elements. Although
they are among the breeds of finite functions that are most
often investigated in the literature, one can also consider
the more general case of q-ary functions defined over the
finite ring Zq, for q > 2. By doing so, one changes the
representation of the problem and the corresponding search
space size, as well as possible target applications. As an
example, generalized Boolean functions (i.e. mappings from
Fn

2 to Zq with q > 2) were first introduced with the aim of
finding codes for Multicode Code-Division Multiple Access
(MC-CDMA) systems [10].

In this paper we concentrate on q-ary functions and their
cryptographic applications, remarking however that cryptogra-
phy is only one among many other domains where they can be
applied. As we demonstrate, this problem is very interesting
both from the perspective of an evolutionary computation

benchmark and as a tool for constructing cryptographic primi-
tives. We study the cryptographic properties of q-ary functions,
i.e., mappings from Zn

q to Zq, focusing in particular on the case
of quaternary functions where q = 4. In the rest of this paper,
when referring to Boolean functions we consider the standard
case where the output belongs to F2. On the other hand, we
call quaternary functions those mapping to Z4.

The quest for quaternary functions is motivated by the
search of new algebraic constructions of cryptographically
significant Boolean functions: the idea is to define quaternary
functions with good properties, and then derive the associated
Boolean functions through projection mappings. Although
this technique may sound mathematically very involved, we
emphasize that the procedure is straightforward. In particular,
the main constraints to be met are the following ones:

1) For both Boolean and quaternary functions there need
to exist a way to express the desired properties, i.e.,
how to write a suitable fitness function. As we see in
Sections II-A and II-B, this condition is satisfied for the
cryptographic property of nonlinearity, since it can be
calculated for both types of functions (even though the
corresponding equations differ).

2) After evolving Boolean or quaternary functions, there
must be a one-to-one mapping between these two
classes. The Gray map [11], which is one of these
possible mappings, is presented in Section V-A.

The problem of finding Boolean functions of n variables
with the best possible combinations of cryptographic proper-
ties is extremely difficult. This stems from the impossibility
of exhaustively exploring the corresponding search space,
which grows superexponentially as 22n

, making complete
enumeration unfeasible for n > 5. Indeed, for n = 6 variables
there are already 264 ≈ 1.84 ·1019 possible Boolean functions,
while for n= 8 there are 2256≈ 1.16 ·1077 functions, a quantity
which almost matches the estimated number of atoms in the
observable universe. For this reason, two wide approaches
have been developed in the literature to address the problem.
The first one uses algebraic constructions to generate classes
of Boolean functions with good cryptographic properties [12].
The second one employs heuristic techniques to explore the
space of Boolean functions, by driving the search through
specific fitness functions that account for several cryptographic
properties. With quaternary functions the search space size
equals 44n

, which is significantly more difficult than for the



Boolean case. Still, from the representation point of view,
quaternary functions of n variables can be easily transformed
into Boolean functions of 2n variables, which means we need
to work with only half of the variables.

The aim of this paper is to investigate the application of
evolutionary algorithms to the search of quaternary functions
with maximal nonlinearity, something that to the best of our
knowledge has never been done before. In particular, we
focus our attention on the use of Genetic Algorithms (GA)
and Genetic Programming (GP) to evolve respectively 1) the
truth tables of n-variable quaternary functions, represented as
quaternary strings of length 4n, and 2) quaternary trees that
are evaluated through their associated truth tables. Here, by
quaternary tree we mean a tree whose leaf values are in
Z4, but where every node can only have two children. With
both of these encodings, our aim is to evolve bent quaternary
functions, since they have maximal nonlinearity. Our main
contributions can be summarized as follows:

1) A new encoding based on quaternary trees for the
genetic programming heuristic. Although used here in
a specific example, we are confident that such represen-
tation can find its place in other problems as long as the
two constraints discussed above about fitness functions
and one-to-one mapping are satisfied.

2) The evolution of quaternary functions of different di-
mensions with specific cryptographic properties through
GA and GP. We discuss the difficulty of such a process
and compare the results between the two encodings
we use. After transforming quaternary functions into
Boolean functions, we also compare our results with
state-of-the-art works from the relevant literature.

3) The discovery of maximally nonlinear quaternary func-
tions that are not bent. As far as we know, the only kind
of quaternary functions with maximal nonlinearity that
have been described in the literature are bent functions,
by analogy with the Boolean case.

4) The observation that evolving non-bent maximally non-
linear quaternary functions is easier than evolving bent
quaternary functions. At the same time, all bent qua-
ternary functions can be mapped into bent Boolean
functions. Moreover, while all bent quaternary functions
can be mapped into bent Boolean functions, we show
that this fact does not hold for non-bent maximally
nonlinear quaternary functions.

The remainder of this paper is organized as follows. Sec-
tion II covers the necessary definitions and notions about
Boolean and quaternary functions, along with the crypto-
graphic criteria that we take into account. An overview of the
literature concerning heuristics for finding Boolean functions
with good cryptographic properties is given in Section III.
Section IV presents details of the algorithms we use for our
experiments, focusing on the representation for the candidate
solutions and the genetic operators adopted. Section IV de-
scribes the problem instances and the parameters that we
consider, while Section V discusses the results obtained by

Table I: Walsh-Hadamard transform of a bent Boolean function
with 4 inputs.

x ∈ F4
2 f (x) W f (x) x ∈ F4

2 f (x) W f (x)

0000 0 4 1000 0 -4
0001 1 4 1001 1 4
0010 0 -4 1010 0 -4
0011 0 4 1011 0 -4
0100 1 4 1100 0 4
0101 1 4 1101 0 -4
0110 0 -4 1110 1 4
0111 1 4 1111 0 4

our experiments, as well as possible transformations between
Boolean and quaternary functions and future work. Finally,
Section VI sums up the key contributions of the paper.

II. BACKGROUND

A. Boolean Functions

Let n ∈N. A Boolean function is a mapping from Fn
2 to F2

where F2 is the Galois field (or finite field) with two elements.
We denote the set of all n-tuples over the field F2 as Fn

2. The
set Fn

2 represents all binary vectors of length n, and it can
be viewed as a F2-vector space [12] . The inner product of
vectors a and b over the F2 field is defined as a ·b =⊕n

i=1aibi,
with “⊕” denoting addition modulo two. The Hamming weight
(HW ) of a vector a ∈ Fn

2 is the number of non-zero positions
in the vector.

A Boolean function f on Fn
2 can be uniquely represented by

a truth table, which is the vector ( f (0, · · · ,0), ..., f (1, · · · ,1))
that contains the output values of f for the inputs listed in
lexicographic order [12].

Another unique representation of a Boolean function is the
Walsh-Hadamard transform Wf , that measures the correlation
between f (~x) and all linear functions of the form a · x, for
~a ranging in Fn

2 [13]. An example of the Walsh-Hadamard
transform of a Boolean function with 4 inputs is given in
Table I. The Walsh-Hadamard transform of a Boolean function
f : Fn

2→ F2 equals [12]:

Wf (a) = ∑
x∈Fn

2

(−1) f (x)⊕a·x. (1)

A Boolean function f is balanced if the Walsh-Hadamard
coefficient of the null vector 0 equals zero [14]:

Wf (0) = 0. (2)

Alternatively, a Boolean function with n inputs is balanced if
the Hamming weight of its truth table equals 2n−1, i.e., if it
is composed of an equal number of zeros and ones.

A Boolean function f used in the design of stream and
block ciphers should lie at a large Hamming distance (HD)
from all affine functions, in order to resist linear cryptanalytic
attacks. This distance corresponds to the nonlinearity of f ,
which is defined as the minimum HD between f and all affine
functions [12]. The nonlinearity N f of a Boolean function f



expressed in terms of the Walsh-Hadamard coefficients of f
is [12]:

N f = 2n−1− 1
2

maxa∈Fn
2
|Wf (a)|. (3)

A natural question is to determine what is the maximum
nonlinearity a Boolean function can attain. This can be derived
from Parseval’s relation:

∑
a∈Fn

2

Wf (a)2 = 22n, (4)

which implies that the mean of Wf (a)2 equals 2n, and
maxa∈Fn

2
|Wf (a)| is thus at least equal to the square root

of this mean, that is, 2n/2. Boolean functions whose Walsh
coefficients all have absolute value 2n/2 are called bent, and
they have the highest possible nonlinearity. Clearly, bent func-
tions only exist for even number of variables, and are never
balanced. The expression for nonlinearity of bent functions is
as follows: [1], [15]: N f = 2n−1−2

n
2−1. The Boolean function

reported in Table I is an example of a bent function, since
all its Walsh-Hadamard coefficients are 24/2 = 4 in absolute
value. Hence, its nonlinearity is equal to 24−1−24/2−1 = 6.

B. Quaternary Functions

To generalize the notion of Boolean functions one can take
into account the residual class ring (Galois ring) Zq = Z/qZ.
Specifically, we consider the case where q = 4. The set of all
n-tuples of elements in Z4 is denoted as Zn

4. A quaternary
function F of n variables is a mapping from Zn

4 to Z4, that is,
a {0,1,2,3}-valued function. Let i denote the complex number
such that i2 =−1. There is a group-isomorphism between the
set {0,1,2,3} and (±1,±i) under the standard isomorphism
x → ix [16], [17]. We denote addition and multiplication
modulo 4 with “+” and “·”. The Hamming weight (HW ) of a
function F is the number of values u∈Zn

4 such that F(u) 6= 0.
As noted in [18], a quaternary function F : Zn

4→ Z4 can be
represented by its truth table

(F(0, · · · ,0),F(0, · · · ,1), · · · ,F(3, · · · ,3)),

which is the quaternary vector of length 4n defining the output
values of F in lexicographic order.

The Walsh-Hadamard transform of a quaternary function F
is defined as follows:

WF(a) = ∑
v∈Zn

4

ia·v+F(v). (5)

Similarly to the Boolean case, a quaternary function is
balanced if and only if WF(~0) equals 0. Alternatively, it is
balanced if and only if for all j ∈ Z4 the cardinality of the set
η j(F) equals 4n−1, where η j(F) = {u ∈ Zn

4|F(u) = j}.
To define nonlinearity, we can use either the Hamming

metric (NH
F ) or the Lee metric (NL

F ) as the underlying distance.
In this paper, we work with the Lee metric, since there
is an isometry (distance preserving bijection) between Zn

4
equipped with the Lee distance and F2n

2 equipped with the
Hamming distance when Gray mapping is used (for details

Table II: Walsh-Hadamard transform of a bent quaternary
function with two inputs.

~x ∈ Z2
4 F (z) WF (z) ~x ∈ Z2

4 F (z) WF (z)

00 0 -4i 20 0 4i
01 3 4 21 1 4
02 2 -4i 22 2 4i
03 1 4 23 3 4
10 3 4 30 3 -4
11 3 4 31 1 4
12 3 -4 32 3 4
13 3 -4 33 1 -4

see Section V-A). The nonlinearity of a function F under the
Lee distance equals:

NL
F = 4n− max

a∈Zn
4,b∈Z4

{
Re(ibWF(a))

}
(6)

= 4n−max
a∈Zn

4

{|Re(WF(a))|, |Im(WF(a))|} , (7)

where Re(z) and Im(z) denote the real and imaginary part of
the complex number z.

A quaternary function is bent if |WF(a)|= 2n ∀a ∈ Zn
4. The

nonlinearity of a bent quaternary function with n inputs equals:

NL
F = 22n−2n. (8)

Note that in Zn
4 a function can be bent for any dimension n,

while in Fn
2 a function can be bent if and only if n is even.

An example of the Walsh-Hadamard transform of a quaternary
bent function is given in Table II.

III. RELATED WORK

As already mentioned, there are many successful applica-
tions of heuristic techniques for constructing Boolean func-
tions usable in cryptography. To the best of our knowledge,
there are no examples of heuristic constructions of quaternary
functions. Consequently, here we discuss works that consider
the evolution of Boolean functions with high (or maximal)
nonlinearity.

Millan et al. evolve Boolean functions with high nonlinear-
ity by utilizing a genetic algorithm [19]. Millan, Clark, and
Dawson further increase the strength of genetic algorithms by
combining them with a hill climbing and a resetting step, with
the goal of finding highly nonlinear Boolean functions of up
to 12 variables [20]. McLaughlin and Clark experiment with
simulated annealing to generate Boolean functions that have
optimal values for a number of properties, namely algebraic
immunity, fast algebraic resistance, and algebraic degree [21].
In their work, they consider Boolean functions with sizes of
up to 16 inputs.

Clark et al. experiment with simulated annealing in order to
design Boolean functions using spectral inversion [22]. They
observe that several cryptographic properties of interest are
defined in terms of the Walsh-Hadamard transform values. On
the basis of Parseval’s theorem, one can infer what values
the Walsh-Hadamard spectrum should have. Note that it is
not possible to know how these values should be permuted,



since in general the inverse Walsh-Hadamard transform maps
to a pseudo-Boolean function. Consequently, when generating
a Walsh-Hadamard spectrum containing these values, a neces-
sary step is to verify that it corresponds indeed to a Boolean
function. Mariot and Leporati [23] also adopt the spectral
inversion method, designing a genetic algorithm where the
genotype consists of the Walsh-Hadamard values to permute
in order to evolve semi-bent Boolean functions.

Picek, Jakobovic, and Golub experiment with genetic al-
gorithms and genetic programming to find Boolean functions
that have several optimal properties [24]. Here, the genetic
programming tree (as a genotype) is a posteriori transformed
to the truth table representation for evaluation purposes. Mariot
and Leporati employ Particle Swarm Optimization (PSO) to
find Boolean functions with good trade-offs of cryptographic
properties for dimensions up to 12 inputs [25]. Hrbacek and
Dvorak use Cartesian genetic programming to evolve bent
Boolean functions of sizes up to 16 inputs. In particular, the
authors test several configurations of algorithms in order to
speed up the evolution process [26]. Additionally, the authors
do not limit the number of generations and therefore they
succeed in finding bent functions in each run for sizes between
6 and 16 variables.

Picek et al. investigate a number of different evolutionary
algorithms and fitness functions for Boolean functions of 8 in-
puts [27]. They show that genetic programming and Cartesian
genetic programming outperform genetic algorithms and evo-
lution strategies in a number of relevant test scenarios. Picek,
Sisejkovic, and Jakobovic use immunological algorithms to
evolve either bent or highly nonlinear Boolean functions with
up to 16 inputs [28]. Finally, Picek and Jakobovic use genetic
programming to evolve algebraic constructions that are then
used to construct bent Boolean functions [29].

IV. EXPERIMENTAL SETTINGS AND RESULTS

A. Representations and Algorithms

The most important decision that needs to be made in a
heuristic optimization algorithm is usually the representation
of candidate solutions. In this work, we experiment with two
different encodings, respectively employed for Genetic Algo-
rithms (GA) and Genetic Programming (GP), and compare
their efficiency.

1) Integer Encoding for GA: Considering both Boolean and
quaternary functions, a representation based on the truth table
is probably the most natural choice. In this case, a quaternary
function of n variables is represented with a string of length 4n

which corresponds to its lexicographically ordered truth table.
Each element of the string can assume values in {0,1,2,3},
and it is initialized by sampling from the uniform distribution.

Appropriate crossover and mutation operators need to be
defined in order to be able to use genetic algorithms with
this encoding. In our experiments, we use a single mutation
operator, which randomly chooses a single gene (element
of the string) and generates its new value with a uniform
probability over Z4. For crossover, we adopt three different
operators: the first one is a simple single-point crossover,

Table III: Genetic programming functions.

Function Definition

AND (a ·b) mod 4
OR (a+b) mod 4

which combines the first part of one parent and the second
part of the other parent into a single child. We also use a two-
point variant which takes two parts from one and one part from
the other parent. For both single-point and two-point crossover
operators, crossover points are randomly chosen. Finally, we
use the averaging crossover, which constructs each gene in the
child by using the average value of the corresponding genes
from both parents. The choice of the crossover operator is
made randomly each time a crossover is performed.

2) Quaternary Tree Encoding for GP: As opposed to the
truth table encoding, the other option we consider is to use
a symbolic representation of a quaternary function. This is
performed in a way such that GP can be used to evolve
a quaternary function in the form of a syntactic tree. Here,
the terminal set consists of the n input quaternary variables,
denoted as {v1, . . . ,vn}. The function set (i.e., the set of inner
nodes of a tree) should consist of appropriate operators that
allow the definition of quaternary functions with n inputs.
In our experiments, we use the AND and OR operations
modulo 4, which are defined as shown in Table III. We do
not implement the NOT function since it cannot be uniquely
expressed in Z4, due to the fact that the value 2 does not
have a multiplicative inverse (recall that Z4 is not a field but a
ring). This means that we are not able to consider all possible
functions but only those that can be expressed only through
AND and OR operations.

When computing the truth table for the function, the same
tree is parsed for every possible input combination of variables.
Each result (evaluated at the root node) is written in the
corresponding position of the truth table, and the tree is then
given its fitness based on the properties of the resulting truth
table. The crossover is performed with five different tree-based
crossover operators selected at random: a simple tree crossover
with 90% bias for functional nodes, uniform crossover, size
fair, one-point, and context preserving crossover [30].

B. Common Parameters

Regardless of the encoding, we use the same selection
operator to conduct the search – a steady-state selection
process, shown in Algorithm 1, where in each iteration only
one individual from the population is replaced with a new one.
The selection of the individual to be replaced is performed in
a tournament of size 3: the algorithm selects 3 individuals at
random and eliminates the worst among them. The remaining
tournament survivors are then used as parents to create a
new individual via crossover. Right after creation, the new
individual immediately undergoes mutation, which depends on
the mutation rate parameter. In our experiments this parameter
equals 0.3, meaning that three out of ten new individuals are
mutated on average. This kind of algorithm is convenient since



it eliminates the need for specifying the crossover rate, and in
our previous experience provides a steady rate of convergence.

In all the experiments the number of independent trials N
for each configuration is 30 and the stopping criterion for all
algorithms equals 500 000 evaluations or reaching the maximal
nonlinearity. The population size for both the GA and GP
experiments is 200. When using genetic programming, we
experiment with maximal tree depths of 4, 6, and 8. We se-
lected all the above experimental parameters after performing
a preliminary tuning phase.

Algorithm 1 Steady-state k-tournament selection

randomly select k individuals;
remove the worst of those k individuals;
child = crossover between the best two of the tournament;
perform mutation on child, with given probability;
insert child into population;

C. Fitness Functions

We start with a fitness function that maximizes the nonlin-
earity property of an individual:

f itness1 = 4n−max
a∈Zn

4

{|Re(WF(a))|, |Im(WF(a))|} . (9)

This fitness function seems a natural choice since it directly
looks for the maximal nonlinearity value. A literature survey
reveals that such a fitness function has already been used with
considerable success when evolving bent Boolean functions.
Interestingly, when using this function, we noticed a situation
we could not account for by looking at the existing literature.
Our algorithms had no problems in finding quaternary func-
tions having maximal nonlinearity, but the Walsh-Hadamard
spectrum of such functions was not what one would expect
from a bent function. More precisely, the Walsh-Hadamard
spectrum of such functions had values of zero in some
coefficients, which is not possible for Boolean bent functions.

Consequently, we used an additional fitness function (again,
with the goal of maximization), designed to cope with the
difference between non-bent maximal nonlinear and bent
quaternary functions:

f itness2 = f itness1−
2∗ (zero_coeffs)

4n . (10)

Here, zero_coeffs denotes the number of coefficients in the
Walsh-Hadamard spectrum whose values equal 0. We multiply
this number by a factor of 2 to account for the two binary
components for each element in Z4.

D. Results

In this section, we present the results obtained in our
experiments. First, in Table IV, we give details on search space
sizes and maximal possible nonlinearities for all quaternary
function dimensions we consider. One can already see that
for dimension n = 3 the search space size is not amenable to
exhaustive search.

Table IV: Search space sizes and the maximal nonlinearity
values.

Size Search space size Maximal nonlinearity NL
F

2 416 12
3 464 56
4 4256 240
5 41024 992
6 44096 4032
7 416384 16256
8 465536 65280

Table V: GA results under integer representation, f itness1.

Size Min Max Average Std dev Average bent

2 12 12 12.00 0.00 4.83
3 54 55 54.13 0.35 0.00
4 230 233 231.73 0.88 0.00
5 965 970 967.25 1.39 0.00
6 3 962 3 964 3 963.00 1.41 0.00

In Tables V and VI we give results respectively for GA inte-
ger and GP tree encodings, both under the first fitness function.
The column Average bent denotes the average number of bent
functions obtained in the last generation of an evolutionary
run. This value is averaged over all 30 experimental runs. In
Table V we notice that we are able to find quaternary functions
with maximal nonlinearity as well as bent functions only for
the smallest size we investigated (n= 2). All larger sizes result
in functions having significantly lower nonlinearity than the
one theoretically obtainable (see Table IV). Observe that we
did not conduct experiments on integer encoding for n > 6,
since those sizes resulted in significantly smaller nonlinearities
than the maximal ones.

Table VI gives results for GP under tree encoding (recall
that in our tree encoding there are 4 possible values, which
differentiates our representation from the “standard” one as
used in classic GP). As it can be seen, in this case we were
able to find non-bent maximally nonlinear functions as well
as bent quaternary functions for all considered dimensions.
Since GP was able to find maximally nonlinear functions in
every run even for the smallest tree depth considered in our
investigation, we do not give here results for larger depths. We
note however that they are in accordance with the presented
results.

The fact that we are always able to find maximal nonlinear
functions suggests that this optimization problem, although
extremely difficult for GA with integer encoding, is easy for
GP under the tree encoding. Still, the average number of
bent functions found by GP is small, except for the smallest
problem instance with n = 2 variables. Hence, GP is not very
efficient in generating bent functions under this first fitness
function. To cope with this situation, we used the second
fitness function.

In Table VII we give results for GA based on integer
encoding under the second fitness function. Interestingly, when



Table VI: GP results with tree representation, tree depth 4,
f itness1.

Size Min Max Average Std dev Average bent

2 12 12 12.00 0.00 30.20
3 56 56 56.00 0.00 0.83
4 240 240 240.00 0.00 2.97
5 992 992 992.00 0.00 0.47
6 4 032 4 032 4 032.00 0.00 2.26
7 16 256 16 256 16 256.00 0.00 0.29
8 65 280 65 280 65 280.00 0.00 2.00

Table VII: GA results with integer representation, f itness2.

Size Min Max Average Std dev Average bent

2 12 12 12.00 0.00 0.00
3 54 55 54.03 0.18 0.00
4 231 233 231.93 0.58 0.00
5 964 969 966.33 1.32 0.00
6 3 959 3 959 3 959.00 0.00 0.00

considering maximally nonlinear functions we do not see
much difference from the first case (cf. Table V), but we
observe that for n = 2 we get worse results, since in this case
we are not even able to obtain a single bent quaternary function
over all experimental runs.

In Figure 1, we give boxplots for the second fitness function
for all quaternary function sizes, and for tree depths of 4, 6,
and 8. We can observe that the best results are obtained with
the depth 8. We observe that when the tree depth equals 6,
the average number of bent functions is significantly larger
for n = 7 and 8 than with the tree depth of 8. Still, on
average over all problem sizes, tree depth of 8 performs the
best. Consequently, in Table VIII, we report the results of GP
performance under the second fitness function using tree depth
8. We notice that for all experiments we were able to find both
maximally nonlinear and bent quaternary functions in every
run. Actually, for n up to 6 we see that more than half of
the population are bent quaternary functions on average. This
serves as a strong indication that our improved fitness function
works well, if the encoding is appropriate.

V. DISCUSSION

In this section, we first discuss how to map bent qua-
ternary Boolean functions of n variables into bent Boolean

Table VIII: GP results with tree representation, tree depth 8,
f itness2.

Size Min Max Average Std dev Average bent

2 12 12 12.00 0.00 160.13
3 56 56 56.00 0.00 134.80
4 240 240 240.00 0.00 143.50
5 992 992 992.00 0.00 93.75
6 4 032 4 032 4 032.00 0.00 111.5
7 16 128 16 256 16 170.67 0.58 13.33
8 65 279 65 280 65 279.50 0.71 1
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Figure 1: Average number of bent functions over all function
sizes.

functions of 2n variables. Next, we compare such results (i.e.,
constructed bent Boolean functions) with the state-of-the-art
results from the relevant literature. Finally, we briefly discuss
several possible future research directions.

A. From Quaternary to Binary Functions

Once we obtain quaternary functions, the question is how
to use them. One option is to employ them directly as they
are, which is the approach taken for instance by Schmidt
in [10], where he uses quaternary constant-amplitude codes
for multicode CDMA. Another option is to transform qua-
ternary functions into Boolean functions. Here, we follow
this line of work. There are several possible mappings to
transform a quaternary function into a Boolean one [18]. In our
experiments, we use the Gray mapping since it is a distance-
preserving bijection (i.e. an isometry) between Zn

4 under the
Lee distance and F2n

2 under the Hamming distance. The Gray
mapping φ : Z4→ F2×F2 is defined as:

0→ 00, 1→ 01, 2→ 11, 3→ 10.

Alternatively, if u,v ∈ F2 and w = u+2v (i.e., by using 2-
adic expansion), the Gray mapping equals φ(w) = (v,u⊕ v).
The mapping φ can now be extended naturally to Zn

4. Observe
that the same mapping can also be used to transform Boolean
functions into quaternary functions.

B. Comparison with the State-of-the-art Results for Boolean
Functions

Our results show that whenever we obtain a bent quaternary
function it maps to two bent Boolean functions. Conversely,
when we obtain a non-bent maximally nonlinear quaternary
function, it never maps to a pair of bent Boolean functions
(nor to a single bent Boolean function). Consequently, here



we only discuss the results obtained with the second fitness
function and compare them with the state-of-the-art results.

Picek, Sisejkovic, and Jakobovic investigate the perfor-
mance of two immunological algorithms, as well as genetic
algorithms and evolution strategy (for all algorithms they con-
sider bitstring and floating-point representation). Their results
show that they are able to find bent Boolean functions only for
the case of n= 6 variables. For all larger sizes, the nonlinearity
is significantly below the maximal attainable one [28]. In our
work, we were able to find bent Boolean functions of up to
16 inputs in every run.

Next, Picek et al. investigate a number of evolutionary
algorithms in order to evolve bent Boolean functions with 8
inputs [27]. The results obtained there suggest that Cartesian
genetic programming and genetic programming have the best
performance, particularly for small tree sizes with which GP
is able to reach maximal nonlinearity in 100% of the cases.
Naturally, a direct comparison with our work is difficult since
they consider only functions with 8 inputs and it remains to
be seen how their approach would perform for larger Boolean
function sizes. Considering our results, the comparable size
is 4 for quaternary functions, where we were able to find
bent functions in every run and where more than half of the
population is composed of bent functions.

Hrbacek and Dvorak use Cartesian GP to evolve bent
Boolean functions in dimensions [6, · · · ,16]. They report suc-
cess (i.e., they find bent Boolean functions) in each experi-
mental run, which makes their results directly comparable with
ours. Still, they use a computer cluster with 112 nodes (Intel
E5-2670) and 128 GB of RAM [26] while we use a desktop
computer with Intel i5-3470 and 8 GB of RAM. Consequently,
our approach seems to be more efficient.

Finally, Picek and Jakobovic use GP in order to design
secondary constructions that are then used to obtain bent
Boolean functions [29]. There, the authors are able to find
bent Boolean functions for much larger sizes than we give
here, but let us note that they do not evolve larger Boolean
functions directly but use instead a clever trick that enables
them to expand small bent Boolean functions into larger ones.
The secondary construction method used in that work always
generates the same set of bent functions, since it relies on the
initial set of bent functions of less variables. The approach
presented in this paper allows finding different bent functions
in every algorithm run.

C. Future Work

On the basis of the obtained results, there are several
possible future directions to explore. The first option is to
consider quaternary functions of more variables. Our results
indicate that the main issue in pursuing this approach is the
computational complexity of the Walsh-Hadamard transforma-
tion and not the difficulty of finding bent quaternary functions.
In order to speed up the Walsh-Hadamard calculation, we
could implement a butterfly divide-and-conquer algorithm
analogously to the case of Boolean functions [12], but we did
not find any reference for the quaternary case in the literature.

The second option is to consider the Hamming distance when
calculating nonlinearity. Although then the mapping between
Zn

4 and F2n
2 is less elegant, finding bent Boolean functions is

still possible.
Next, it is well known that there exists a connection

among bent Boolean, quaternary, and generalized Boolean
functions (mappings between Fn

2 and Zq) [17]. It would be
interesting to see how difficult is the evolution of generalized
Boolean functions, especially with respect to their application
in designing orthogonal Latin squares (OLS) via cellular
automata (CA). As a matter of fact, a recent work by Mariot
et al. [31] shows that balanced generalized Boolean functions
can be used to define pairs of CA local rules that produce
OLS. This observation has been partially exploited in [32]
to evolve pairs of binary CA rules that generate OLS via
genetic algorithms and genetic programming. An interesting
venue for future research would be to investigate how the
evolutionary algorithms presented in this paper would perform
when evolving generalized Boolean functions that are then
mapped to pairs of CA local rules. The fitness function, in
this case, would take into account the orthogonality of the
Latin squares produced by these pairs of CA rules.

From a more general perspective, here we use quaternary
trees. Our results suggest that this representation significantly
outperforms the integer encoding with values in Z4, although it
considers only a subset of the search space (recall that there is
no NOT function in our experiments). It would be interesting
to explore whether this quaternary tree representation would
result in high quality results for other problems where the
standard GP representation offers good results. We see no
obstacle in using it as long as there is a clear notion of the
desired properties in both representations, as well as a one-to-
one mapping between them.

VI. CONCLUSIONS

In this paper, we introduced the problem of evolving qua-
ternary functions with maximal nonlinearity. We experimented
with two encodings, namely integer encoding which is em-
ployed for GA experiments and tree encoding for GP, and we
showed that the latter offers by far superior results. The results
for quaternary tree encoding show that we were able to obtain
bent functions for all dimensions we experimented with. From
there, we used Gray mapping to obtain bent Boolean functions
in 2n variables (where we went up to 16 variables). Our results
are either comparable or better than those obtained with other
techniques when evolving bent Boolean functions.

Besides bent quaternary functions, we showed that it is
possible to construct maximally nonlinear quaternary functions
that are not bent, a fact which to the best of our knowledge was
not known before. Finally, we note the efficiency of quaternary
tree encoding, which we believe could also be competitive in
other problems when Boolean functions are considered.
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