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NUMERICAL MODELLING OF FREE-SURFACE FLOWS WITH
VARIABLE BOTTOM TOPOGRAPHY

LUKA SOPTA
DAMIR KARABAIC
Faculty of Engineering

University of Rijeka
Rijeka, Vukovarska 58
Croatia

Abstract

This paper presents possible ways of dealing with the problem of correct handling the source term in the
case when finite difference upwind method based on approximate Roe’s Riemann solver has been applied for the
numerical solution of the one-dimensional free-surface flow with variable bottom topography. The possibility of
writing the continuity equation in two different ways, with water depth or with water surface elevation as
dependent variable, has been considered. These two variations were combined with two approaches of
discretizing the source term : centred discretization of the source term and upwinding of the source term in the
same manner as the physical flux. Numerical results on the test case that simulates the propagation of the tidal
wave in the channel with variable bottom topography shows that the upwinding of the source term can be
avoided if the water surface elevation is used as dependent variable in the continuity equation.

1. Introduction

. In recent years many researches have been made in application of hyperbolic partial
differential equations describing free-surface flows. For practical applications a great importance have
prob{ems with variable bottom topography that results in the presence of the bottom slope term as a
part jof the source term in the mathematical model. Variable bottom topography and consequent
presénce of the source term can, if not handled correctly, cause a lot of numerical difficulties. -

In the chapter 2 the mathematical model of free-surface flow with variable bottom topography
is described. The reason of eliminating excessive numerical diffusion leads to the rewriting of the
continuity equation with water elevation as dependent variable instead of water depth because on the
variable topography the water elevation is normally much smoother than the water depth.

In the chapter 3 is described the finite difference upwind numerical scheme based on flux-
difference splitting technique which uses Roe’s approximate Riemann solver as a building block for
spatial discretizing of the flux term. Because it is well known that centred discretization of the source
term combined with flux-difference or flux-vector splitting techniques for the flux term gives bad
results, the way of upwinding the source term in the same manner as the flux term is described.

Chapter 4 describes the test case that simulates the propagation of the tidal wave in the channel
with variable bottom topography and gives numerical results for the two approaches of writing the
continuity equation given in chapter 2, combined with the two ways of discretizing the source term
described in the chapter 3.
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2. Mathematical model

Free-surface flows of an incompressible fluid when the depth of the fluid is small when
compared to the characteristic dimension of the problem are governed by the Saint-Venant shallow-
water equations. These equations are obtained from the incompressible Euler equations with
assumption of the hydrostatic pressure distribution and with neglecting the dissipative effects. They
have the form of non-linear hyperbolic system of partial differential equations so the conservation form
is preferred to the non-conservation one because non-linearity produces discontinuities in the solution.
For the one-dimensional case we have system of two equations, which consists of the continuity
equation (1) and the momentum equation (2) :
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Here h = h(x,1) represents water depth, u = u(x,1) depth averaged velocity and g is a constant gravity
acceleration. On the left hand of equation (2) we have the source term which consists of the bottom

slope term S, = —fid%, where Z = Z(x) is the bottom elevation measured from the fixed reference

level (Figure 1), and the friction slope term S; which is usually calculated by the use of Manning’s
formula :
n2u|u|
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where » is Manning’s roughness coefficient. In our numerical calculation we will neglect the friction
term according to the test case described in chapter 4 and will consider only the variable bottom

topography.
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Figure 1.

The set of PDEs (1),(2) is usually written in vector form and in case of S;=0 we have :
U+F,+5=0 4)

where U = U(x,t) denotes the vector of unknowns, F = F(U) is the flux vector, and § = 8(x,#) is the
source term :
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The conservative hyperbolic system (4) is characterised by the Jacobian matrix A of the flux F:
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where ¢=./gh represents the celerity i.e. the velocity of propagation of gravitational waves of small
amplitude in the fluid continuum. Jacobian matrix A has two real and distinct eigenvalues

A =u+,gh=u+c
Azzu—w/ghzu—c

which are, in fact, absolute velocities of propagation of small disturbances in the fluid continuum.
Many numerical methods for solving the hyperbolic system (4) are based on tracking the propagation
of discontinuities in right direction, so the diagonal form of Jacobian 4 is usually used :

A=XAX" (7)
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where A represents the diagonal matrix of eigenvalues of A , and X is the matrix of corresponding
eigenvectors having the form

B
0 A, u+c u-c

For the shallow water flows with variable bottom topography it is much more convenient to

take the water elevation
H(x,t)=h(x,t) + Z(x) ®)

as dependent variable in the continuity equation (1), so after putting (5) in (1) we get
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W1thout changing the momentum equation (2). For the following numerical calculation we w111
des;gnate the system of equations (1) and (2) with the corresponding vector of unknowns U= [h uh ]
as a mathematical model I , and the system of equations (9) and (2) with the U=[ H uh |
mathematical model II.
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3. Numerical model

For the numerical integration of the system (4) with appropriate boundary and initial
conditions, the finite difference method will be used, so the domain will be discretized with the
uniform mesh characterised by points x; =iAx . For the time discretization will be used explicit two-

step predictor-corrector scheme that belongs to the family of Runge-Kutta methods with second order
accuracy. If we denote the vector of unknowns in time step ¢” and at particular computational point 7 as
U"; then the following scheme gives after the predictor step U’; and after the corrector step we get the
vector of unknowns in time step ™" :
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Here F,,,,, =F(U,,U,,,)= F(U,,Uy) represents numerical flux through the cell face between cells i

and i+1 , and the indexes L and R denote the values at the cells left and right of the corresponding cell
face. For the Roe’s approximate Riemann solver that belongs to a family of upwind schemes based on
the flux-difference splitting, numerical flux has the form :

~
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where is Fr = F(Ug) = F(U;+;) and F, = F(Up) = F(U)). ZM,Z is the Jacobian matrix of the flux

evaluated at some average state U between Uy and Uy :
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where is for Roe’s scheme
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After that Jacobian matrix is taken in diagonalized form with absolute values of its eigenvalues :

l4]= x|A|x !
£
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The source term in (10) can be discretized by central differences in the following way :
0
S,- = g hi+1hi_] Z(xi-H) - Z(xi'l) (14)
2Ax

But use of this discretization of source term with upwind methods based on flux-difference or flux-
vector splitting to the case of free-surface flow with variable bottom topography gives poor results if
the classical mathematical model I with continuity equation (1) is used. In that case the source term
should be upwinded in the same way as the flux. Bermudez and Vazquez [1] gave a general
methodology of upwinding the source term for class of flux-difference or flux-vector splitting
schemes. Numerical source term is divided in the left and right numerical source term :

Si =Si-1/2 +Si+l/2 (15)
with
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where is 8 = 8(x, ,x,,U,,Uy) an approximation of source term on corresponding cell face :
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4. Test case and numerical results

Two mathematical models described in chapter 2 will be applicated with centred discretization
of the source term or with upwinding of the source term to the test case described by Bermudez and
Vazquez [1]. Test case simulates propagation of a tidal wave of a 43200 second period from the left to
the right of the channel of length L = 648000 m (Figure 1) with a variable bottom elevation Z = Z(x)
defined by :

Z(x)=10.5 +igi—1osm[n(‘2—x+%ﬂ (18)

Water in the channel is initially at rest, so the initial conditions are :

H(x,00=H,(x)=H,=60.5m or h(x,0)=h,(x)=H,-Z(x)
u(x,0) =u,(x)=0

The tidal wave is defined as boundary condition at the left end of the channel (x = 0) by the sinusoidal
function ¢(f) :

. 2t 1
h(0,1) = hy(0) + () = hy (0) +4 + 4sm[ﬂ( 1500 _EH .
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At é‘he other end of the channel (x = L) is applied boundary condition
!

; u(L,f)=0.

The simulation is performed for the time interval 7 = 10800 s. If we assume that wave travels
by the average constant speed ¢ = ,/gi? with & = 40m then it can propagate into the channel no more

than c_,, -7 ~214000 m .

Figure 2 shows surface elevation H, and velocity u, after the time T=10800 s computed with
the mathematical model I, that is with the continuity equation (1), with centred discretization of the
source term according to (14). It is clearly seen that the wave has perturbed the whole domain and that
this combination of mathematical and numerical model gives a poor result.

If the upwinding of the source term is performed on the same mathematical model then we get
very accurate result (figure 3) .

If we apply mathematical model II with continuity equation (9) with centred discretization of
the source term then we get also very accurate result (figure 4) without performing upwinding of the
source term.

Results on the figure 5 show that mathematical model II is not compatible with upwinding of
the source term because that combination gives very poor result.
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5. Conclusion

Finite difference upwind method based on approximate Riemann solver has been applied for
the numerical solution of the one-dimensional free-surface flow with variable bottom topography. The
possibility of writing the continuity equation in two different ways, with water depth or with water
surface elevation as dependent variable, has been considered. These two variations were designated as
mathematical models I and II and they were tested in the combination with two approaches of
discretizing the source term : centred discretization of the source term and upwinding of the source
term in the same manner as the physical flux.

It is well known that centred discretization of the source term combined with flux-difference or
flux-vector splitting techniques for the flux term give bad results and that the upwinding of the source
term is necessary. That is not valid when the second form of continuity equation is used. Numerical
results on the test case that simulates the propagation of the tidal wave in the channel with variable
bottom topography show that the application of second mathematical model gives the opposite result
when combined with two different discretizations of the source term. We can conclude that the
ui)winding of the source term can be avoided if the water surface elevation is used as dependent
variable in the continuity equation. Other alternative for avoiding very complicate application of
upwinding of the source term and approximate Riemann solvers is the use of much simpler Lax-
Friedrichs solver that allows extracting of the part of the flux term and its appropriate discretization as
described by Nujic [3].
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