On the distribution of software faults in evolution of complex
systems

Tihana Galinac Grbac

Faculty of Engineering, University of Rijeka
Rijeka, Croatia
tihana.galinac@riteh.hr

ABSTRACT

Complex software systems and systems of systems have become
essential in the modern human society, making their reliability
one of the crucial problems in software engineering. As such sys-
tems are developed as a sequence of releases, it is important to
understand the reliability behavior during their evolution. There
are many empirical principles regarding the distribution of faults
within system structure. All these principles are implied by the
underlying probability distribution of faults. The aim of this paper
is to find the probability distribution that best fits the empirical
fault data from 21 versions of two evolutionary developed open
source systems, and study how this distribution changes during
system evolution.

CCS CONCEPTS

« Software and its engineering — Software system structures;
Software reliability;

KEYWORDS

Systems of Systems, complex systems, fault distributions, system
structure

ACM Reference Format:

Tihana Galinac Grbac and Goran Mausa. 2016. On the distribution of soft-
ware faults in evolution of complex systems. In SiSOS@ECSA 2016: In-
ternational Colloquium on Software-intensive Systems-of-Systems at 10th
European Conference on Software Architecture (ECSA Volume 3), Novem-
ber 29, 2016, Copenhagen, Denmark. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3175731.3176181

1 INTRODUCTION

Global trend of proactive introducing information and communica-
tion technologies in various application domains such as medicine,
smart homes, smart cities, automotive etc. and integrating these
systems and their applications and services opens new innovative
opportunities in all these domains. This integration leads to com-
posing Systems of Systems (SoS). Systems of systems are usually
mission critical, supporting numerous people in their everyday ac-
tivities. That is why their reliable and failure free operation becomes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SiSoS@ECSA 2016, November 29, 2016, Copenhagen, Denmark

© 2016 Association for Computing Machinery.

ACM ISBN 978-1-4503-6399-0/16/11...$15.00
https://doi.org/10.1145/3175731.3176181

Goran Mausa
Faculty of Engineering, University of Rijeka
Rijeka, Croatia
goran.mausa@riteh.hr

so important. Because of their importance in supporting humans in
their everyday activities usually they are integrating functionality
of variety of other systems thus they gradually become complex.
From stand-alone systems these systems become networked and
tend to grow to systems of systems. Although this evolution trend
is evident, we still do not have mature discipline for engineering
such systems and their evolution. New modelling approaches that
are able to simulate system properties already during design of
these systems, such as modelling of system growth in relation to
its reliability, are the key research directions engineering these
Systems of Systems that can help humans to further evolve these
systems maintaining its key quality attributes such as reliability.

Integration of various systems is implemented in their complex
software. Software is an abstract representation of system that hides
complex details of system behaviour. Integrating abstractions of
various systems needs deep understanding of system behaviour
and understanding of consequences of modeling this abstract inter-
actions. The system modeling and programming activity is human
intellectual activity. How humans model software is based on their
logical reasoning in solving complex problems by decomposing
it into smaller, simpler functional units, blocks, modules, classes.
Complex system behaviour is then realised by dynamic interaction
of those simpler functional units. These simpler functional units
are developed by numerous developers, development teams, com-
munities usually worldwide. Humans are error prone and limited
in understanding consequences of their design activities on whole
complex system behaviour. Therefore, software systems that are
composed from such simpler units are usually prone to failures and
huge amount of software development and verification resources
are spent to implement their reliable behaviour in operation. Com-
position of such simpler functional units forms the system structure.
Existing system design principles guide us how to define system
structure, how to model its elementary structure elements and their
interconnections. However, we lack some formal approach that
could simulate consequences of our design decisions and that is
especially important while building such Systems of Systems. Sys-
tem structure hides some properties that may be used for their
modelling and modelling of their behaviour. Here in this paper our
focus is on modelling fault distributions over the software struc-
ture. In our previous work we found that empirical Pareto principle
is valid for industrial context and identified fault probability dis-
tributions across industrial system releases that seem consistent
[6, 7]. Moreover, we found that system structure evolves during the
system evolution and this evolution path is determined from the
initial system structure, [12]. Furthermore, we found some hidden
topological structure properties that may be used for such modeling
[13].

https://doi.org/10.1145/3175731.3176181
https://doi.org/10.1145/3175731.3176181

SiSoS@ECSA 2016, November 29, 2016, Copenhagen, Denmark

System reliability is usually modeled as probability of failure
during system operation. There are numerous reliability models
that aim to model system reliability and the most popular ones are
Reliability Growth Models [9, 11]. We may also observe failures as
manifestation of processed faults that are implemented in software
program by human mistake while programming. So, modelling
software fault distributions across the system structure is another
approach to modelling system faultiness that is in some relation to
system reliability that is our goal to investigate in wider context
of our research. We may relate this modelling to modelling human
intellect for modeling system abstractions. Interesting finding from
previous work is that distribution of programming faults across
the system units follows Power Law distributions [3, 6, 16]. This
fact has been empirically validated for open source and industrial
systems. Complex systems are not developed in one project but they
evolve to complex system through number of incremental mod-
ifications implemented in numerous sequential system releases.
Here, it is important to stress that empirical evidence shows that
fault behaviour can be modeled by Power Law distributions. That
implies that fault distributions in one system release can not be
modeled as a consequence of random incremental independent
modification and the probability of fault with finite variance but ex-
hibit dependencies with fault behaviour of previous system releases.
Moreover, software structure evolution has also some hidden evolu-
tionary path. The modeling of system fault distributions in evolving
complex software systems is still unexplored area of system and
software engineering discipline and this paper has contribution in
that direction.

In modeling complex software system behaviour we have limited
understanding of real underlying phenomena. The main reason lies
in limited number of empirical studies and very weak accessibility
of information from these systems and their development environ-
ments. Empirical studies from system engineering discipline are
rare, usually performed on open source systems with weak gener-
alisation to industrial systems and especially with weak analytical
interaction to other modeling approaches. Importance of this study
is exactly to add on empirical evidence about fault distributions
in evolving complex software system structures, interconnecting
empirical and analytical studies from open source and industrial
environments and discussing conclusions from various modelling
approaches.

The first step in studying the fault behavior in complex systems
is understanding their distribution among software components.
This knowledge can be crucial in modeling system reliability, and
also in development process for early planning of development
activities, such as testing effort and system architecture. The idea
is to find the probability distribution that best fits empirical fault
data for various complex systems, and study how such distribution
changes over system evolution.

Although the software fault behavior is an important problem
that was studied extensively resulting in many empirically verified
principles (e.g. the Pareto principle [4], [2], [7]), there are only a
couple of studies that approach the problem by looking at the under-
lying probability distribution, which gives rise to those principles.
The work [6] considers four releases of the closed source industrial
complex software system for the telecommunications domain. On
the other hand, there are two papers [16] and [3] considering the

Tihana Galinac Grbac and Goran Mausa

open source Eclipse project. The former considers three, and the
latter five consecutive versions. Although two of these versions
coincide, it is not possible to compare the results, because the con-
sidered families of distributions are different, and the distribution
was not studied with respect to the same software components. In
[16] the the distribution of faults was studied among packages of
the Eclipse system, while in [3] it was studied among the files of
the Eclipse system.

In this paper we focus on empirical study of fault distributions
in large scale open source complex systems in evolution. We per-
form empirical study on Eclipse projects JDT and PDE and their 11
and 10 releases respectively. We discuss applicability of probability
distributions (Weibull, Lognormal, Pareto, Double Pareto and Yule
Simon) to model fault behaviour in these two open source projects
in relation to previously performed studies in the same open source
context. Furthermore, we discuss result obtained in this study in
relation to results obtained in our previous study while modelling
the same probability distributions to the large scale telecommuni-
cation system in evolution from an industrial context [6]. Here it is
important to stress that the same experimenter has been involved
in both studies, in both data collection and modelling activities,
that provides unique opportunity to better understand the differ-
ences of these two contexts and possible threats to validity of this
approach. Furthermore, we discuss these results in relation to our
previous studies using other reliability modelling approaches and
structural analysis performed on the same datasets from industrial
and open source development environment. That discussions and
obtained conclusions are the main contributions of this paper. Here
we present just overview of our key findings due to space limita-
tion. The results obtained are directly contributing to the software
and systems engineering discipline with conclusions about evolu-
tionary behaviour of software fault and failure distributions across
the software structure and time. The main results are identified
benefits and limitations of these modelling approaches across the
open source and industrial contexts.

The remainder of this paper is organized as follows. Section 2
describes the context of the study. Section 3 presents analytical
model. Section 4 describes evaluation model. Section 5 presents
our detailed results, followed by Section 6 in which we discuss
possible threats to validity. Section 7 further discusses the results
and provides some insights into future work. Finally, Section 8
concludes the paper.

2 CONTEXT OF THE STUDY

This study is performed within wider research scope of research
project Evolving Software Systems: Analysis and Innovative Ap-
proaches for Smart Management (EVOSOFT)! aiming to understand
fault distributions and effects of different modeling approaches in
different evolving complex system development contexts. Since the
datasets are crucial for proper empirical research, part of our ef-
forts were devoted to develop proper and systematic data collection
procedures that would allow us to minimise data collection threats
to validity and maximise generalisation ability of results obtained
on these datasets. We are especially interested in transparency of
conclusions between industrial and open source software systems,

Ihttp://www.seiplab.riteh.uniri.hr/?pageid=7128lang=en

On the distribution of software faults in evolution of complex systems

since data from open source systems are more accessible to research
communities and consequently more used in empirical research
studies. Furthermore, we are also experimenting with different mod-
eling approaches to the same datasets thus aiming to understand
relations among them in this particular context of fault and failure
distributions in the large scale complex software systems.

The datasets consist of measurements performed on functional
software element that is elementary building block in software
structure. In case of industrial system this functional software unit
for which the faults are counted is so called software unit, that is
the smallest self contained software artifact forming the system
and can be replaced independently from the other system during
the system operation. The same unit is the smallest administrative
unit of complex system structure that is represented in various
industrial software development repositories. On the other hand,
in case of the open source software, we analysed Java code and
this functional unit that made elementary building block in soft-
ware structure for which we collected number of faults is Java class
(excluding inner classes). Note that in previous studies on fault
probability distributions from open source contexts the structural
unit for fault count data was package in [16] and file in [3]. The
measurements were measuring the number of faults detected in
prerelease for each functional unit. Prerelease faults are the faults
reported before official system release to network integration test
in case of telecommunication system from closed industrial context
and, for open source community these are the faults that are re-
ported before system is released to the open community. We count
only faults, locations in software functional units, where the system
failure reported from the testing phase is located in the particular
functional software unit as fault and corrected. Note that here one
has to relate system failure occurrence with fault in software code
in particular functional software unit. This relation is not clear and
developer knowledge is needed to find this relation. If this relation
is not captured in the repository (that is usually the case) then it is
hard for researcher to identify these links. Moreover, there may be
several faults that may lead to one system failure and vice versa,
several failures may occurred because of one single fault in software
code. Note, that during the numerous testing activities duplicate
failures that are caused by the same fault in software code may be
reported. All duplicates are removed for both datasets obtained in
both contexts.

Datasets for software fault distributions are sensitive on data
collection procedure because it combines data from two separated
software lifecycle phases (and different software development repos-
itories), i.e. from software program structures that are artifacts from
software development phase (obtained from code repositories e.g.
Git) and system failures as artifacts from system verification phase
(obtained from failure repositories, e.g. Bugzila). It is not trivial
to find relation among software structure elements where faults
are corrected and system failures that are caused by these faults.
Usually this link is not captured and maintained within software
development repositories. More information about datasets reliabil-
ity and systematic data collection procedures is published in [10].
Part of datasets used in this study are freely available.

Zhttp://www.seiplab.riteh.uniri.hr/?page_id=834

SiSoS@ECSA 2016, November 29, 2016, Copenhagen, Denmark

As we already mentioned we study two different development
contexts: an industrial closed source large scale software system
from telecommunication domain and its four releases during its
evolution and two open source software systems JDT and PDE of
Eclipse development community with its 11 and 10 consecutive
releases, respectively. In both cases the first author of this study
was directly involved in data collection procedure that provides
better understanding of underlying effects that data collection may
impose and thus represent threats to study validity. Furthermore,
the obtained conclusions on both datasets are more transparent to
the data collection bias.

Industrial software (IS) is a large scale telecommunication EVOSOFT
that evolved during more than 30 years, with several millions lines
of code, developed in globally distributed organization. The soft-
ware is developed by development teams that are working in glob-
ally distributed local design centers. Development methodology is
based on Waterfall model but with functional team organisation and
feature driven planing in incremental system delivery and iterative
software unit delivery. We have data collected for four consecutive
industrial projects from Mobile switching Center software system
of Ericsson, and have published several studies using these datasets
[6, 7].

On the other hand, in this study we use datasets of JDT and
PDE Eclipse open source development project. The development
methodology in open source community is different from closed
industrial development community, with much less standards, and
administrative documentation. Open source community is more
Agile in sense of formalizing the project, its realisation and system
evolution. From that point of view, we expect that the evolution
trends observed in these two development contexts by using differ-
ent modeling approaches should reflect these differences. Eclipse
development community has defined to use within its development
project (such as Eclipse PDE, JDT, MyLin, etc) the open source
code and bug repositories (e.g. GIT and Bugzilla). Eclipse open
source community projects are chosen because there is large body
of knowledge based on empirical studies exactly in this context and
usually with week documenting of data collection procedures that
is crucial importance for validity of empirical studies especially in
this particular case when datasets have to be linked by researcher
and this process is not so straight forward in software development
repositories. Furthermore, the Eclipse projects were selected be-
cause their satisfactory repository of both, bug reports and commit
changes that can create dataset appropriate for our analysis. More-
over, we wanted to analyze projects that are as large as possible,
so we choose the projects with the greatest number of versions.
Within the student projects at the Faculty of Engineering, Univer-
sity of Rijeka, we have developed number of tools that automatise
data collection procedure as published in [10], [12] and datasets
that are partially available on our web page. All the experiments
using these datasets are performed using licences of Matlab and
Statistica.

The datasets used in this study are presented in Table 1.

SiSoS@ECSA 2016, November 29, 2016, Copenhagen, Denmark

Tihana Galinac Grbac and Goran Mausa

Table 1: The Eclipse datasets: basic statistics

Project nr. of software units total faults nr. of faults in 20% most faulty units % of faults in 20% most faulty units
PDE 2.0 576 242 242 100
PDE 2.1 761 231 231 100
PDE 3.0 881 584 485 83
PDE 3.1 1108 733 636 87
PDE 3.2 1351 1124 608 54
PDE 3.3 1713 1888 1231 65
PDE 3.4 2144 2087 1904 91
PDE 3.5 2297 2144 1861 87
PDE3.6 2412 756 648 86
PDE 3.7 2404 819 658 80
PDE 3.8 3522 68 68 100
JDT 2.0 2397 3754 2976 79
JDT 2.1 2743 2147 1818 85
JDT 3.0 3420 4491 3758 84
JDT 3.1 3883 4212 3716 88
JDT 3.2 2233 2317 1936 84
JDT 3.3 4821 2545 2361 93
JDT 3.4 4932 1764 1764 100
JDT 3.5 4395 935 935 100
JDT 3.6 4392 690 690 100
JDT 3.7 4415 715 715 100
JDT 3.8 4444 709 709 100

3 PROBABILITY DISTRIBUTIONS

In the previous empirical studies on fault distributions it is reported
that the most appropriate probability distribution fitting the empir-
ical fault data are Yule-Simon, lognormal and double Pareto. These
distributions have generative model and this can be explained by
evolving trend of fault distributions through system evolution. Moti-
vated by this findings here we analyse like in previous work Pareto,
Weibull, lognormal, double Pareto, and Yule-Simon distributions
for modeling software fault distributions across the software system
modules.

Let X be the random variable counting the number of faults in
a software module. It is a discrete random variable taking values
in the set Ny of non-negative integers. Given a sample of software
modules, let f;. denote the relative frequency of modules with k
faults, for k € Ny. The empirical distribution of X on that sample is
given by its probability mass function PMF

p: Ny —[0,1], (1)

given by the assignment p(k) = fi, for k € Ny. The goal of the
paper is to find the best theoretical distribution fitting the empirical
distribution of X for samples described in Sect. 2.

As in the previous works [3] and [6], instead of fitting the PMF,
we fit the complementary cumulative distribution function CCDF,
which is in fact an equivalent problem, as explained in [3]. For
a discrete random variable X with the PMF p defined on Ny, the
CCDF is given as

PX>x)=) pk)=) f.

k>x k>x

where x € Ny. However, most of the families of probability dis-
tributions that we consider are actually continuous. Nevertheless,
they will be used to fit the discrete random variable X, viewing
the empirical values of CCDF as the values of the CCDF for the
continuous random variable at integer arguments.

For the continuous random variable X, let p be the probability
density function PDF, defined on R or some of its subsets, usually

R>¢. Then the CCDF P(X > x) of X is related to the PDF p by
(x)——dP(X>x)
PO= " ’

where x is in the domain of p. The PDF and CCDF for the probability
distributions considered in this paper are given in Table 2. For more
details on the considered probability distributions, we refer to the
previous work [6] and [3], and the references therein.

4 NON-LINEAR REGRESSION FIT

The fitting to empirical data is done in the same way as in the pre-
vious works [3, 6, 16]. More precisely, the fitting of the empirical
distribution’s CCDF for the random variable X, counting the num-
ber of faults in software modules of the 21 open source software
development projects described in Sect. 2, was conducted using the
MATLAB curve fitting tool. This tool uses the non-linear regression
to estimate the parameters of the family of probability distribu-
tions in which the model for the empirical data is sought. The
non-linear regression in MATLAB is based on numerical algorithms
for minimizing the sum square error

SSerr = Z(yi - gi)z’ (2)

i=1

where y; and §j; are the actual and fitted values of ith observation,
and n is the number of observations, with respect to the possible
values of the unknown parameters. The estimated parameters are
the values of parameters for which the minimal sum square error is
obtained. The families of possible models considered in this paper
are the families of probability distributions listed in Sect. 3. These
are the same as in [3] and [6].

As in the previous works, we take the adjusted coefficient of
determination R? and the standard error of estimate Se as measures
of goodness-of-fit. The adjusted R? is adjusted to the degrees of
freedom of the distribution. It is defined as

(n = 1)SSerr

RP=1- — 2
(n -m-— 1)SStot

®)

On the distribution of software faults in evolution of complex systems

SiSoS@ECSA 2016, November 29, 2016, Copenhagen, Denmark

Table 2: PDF and CCDF for the considered probability distributions

Name | Type | PDF/PMF \ CCDF
: B B
Weibull ‘ cont. ‘ 6 % exp((x)), x>0 ‘ exp(—(%)), x>0
2 —
Lognormal® ‘ cont. ‘ exp((Inx—p))’ x>0 ‘ I_Q(MT#)’ x>0
x ercr
Paret 1, for0 < x < xpm,
areto cont. ﬁx . —(1+ﬁ) (xm/x)ﬁ, for x > xXm.
Y/B
[1+(xm/t) ﬁ] ‘ 5)7(1+ﬁ) 1+(xM/t)’ﬁ vIB)
Double Pareto | cont. 1+(x/t) ﬁ]Hy/ﬂ t 1- W , for0 < x < xp,
for x > xpp,

Yule-Simon® ‘ disc. ‘ p(k) = p(0) - M k e Ny ‘ P(X > x)=p(0) - 7Ek>g(‘j(:;k’a)

@ @ is the CDF of the standard normal distribution.

b T(a)(b) .
B(a, b) = 1575

where m is the number of parameters in the fitting function, and
n
SStot =) (yi — §)° “
i=1

is the total sum of squares, where g is the mean of the observed
data. The standard error of estimate Se is defined as
SS,
Se = 4] —=. 5)

n—m

5 RESULTS

We omit here to provide the detailed results of distribution fitting
with estimated parameters of best fit for each distribution and the
obtained measures R? and S for goodness-of-fit due to limit in page
numbers. Instead we just report an overview of the obtained results
in Figure 1 and discuss them and compare to the previous work. In
the figure, for each release of the analysed projects PDE and JDT,
we provide measures R? for the goodness-of-fit of the distributions
with estimated parameters.

The best fit for all the analysed project releases, in both cases
PDE and JDT, is as follows: Yule-Simon, Pareto, Double Pareto,
Lognormal, and Weibull. Only in versions PDE 3.2 and PDE 3.7 this
order is a bit different, where Pareto slightly outfits the Yule-Simon
distribution. The difference in goodness-of-fit in these projects is so
small that we may safely conclude that the Yule-Simon distribution
provides the best fit for the considered projects.

This is in accordance with earlier findings in [3], and confirms
that the Yule-Simon distribution is a good choice for fitting the fault
distributions in open source software systems. Since Yule-Simon
distribution has a generative model, this is a promising distribution
for early predictions of fault distributions in open source software
projects, since the distribution parameters may be estimated from
the project properties and early performance.

6 VALIDITY

Threats to validity are addressing problem to what extent the re-
sults are biased [14]. To discuss construct validity we explain how
the probability fault distributions may be used in modelling of com-
plex software systems and for planing verification activities. As we
may observe the best fit probability distribution is the same for all

is the beta function.

analysed releases in evolution and distribution parameters do not
change much from release to release. This is an indicator that the
probability distribution may be used during software evolution as
guiding principle for planing verification activities that is in line
with findings from empirical studies investigating Pareto principle
that is widely used in practice [2, 4, 7]. However, when we compare
best fit analytical distributions between open source and industrial
software we may observe some differences in best fit model. The
cause of such deviation may be some other factors from the develop-
ment context that may influence the results and we did not involve
them into this study. For example, industrial software projects are
more systematic in planning the impacts and system evolution.
However, these additional factors have to be further investigated.
In this study the datasets are per Java class and we obtained sim-
ilar result as in previous studies on open source systems [3, 16]
although their datasets were per package and file. This may imply
that the probability distributions are not affected by granularity of
system (class, file, package) used in the analysis. Furthermore, our
datasets are obtained by following systematically developed data
collection procedure [10]. As we may observe, the similar results
are obtained in previous studies in open source environment. On
the other hand, the same experimenter has been involved into data
collection activity in industrial software for which we obtained
different results, see Table 3. The only difference in data collection
was that in industrial software systems linking procedure between
faults and software modules was inherently implemented within
software development repositories and is performed by software
developer implementing correction for particular fault. Thus this
dataset is more reliable compared to open source projects where
linking is artificially made by researcher after the project is finished.

7 DISCUSSION AND FUTURE WORK

In our previous study investigating applicability of empirical Pareto
principle we found out that it is generally valid for industrial and
open source software systems. However, we did not obtain the same
results when analysing analytical fault distributions. It seems that
the probability distributions do not behave similarly in industrial
and open source software systems. Moreover, we found out that
granularity of structure used in the analysis do not effect the best

SiSoS@ECSA 2016, November 29, 2016, Copenhagen, Denmark

Tihana Galinac Grbac and Goran Mausa

Table 3: Ranking the probability distributions with respect to their performance in the non-linear regression fitting of the
empirical samples for the random variable counting the number of faults in a software module

Rank This study

Galinac Grbac et al. [6] ~ Concasetal. [3] ~ Zhang [16]

1 Yule-Simon

2 Pareto Lognormal
3 Double Pareto

4 Lognormal Weibull

5 Weibull Pareto

Double Pareto

Yule-Simon

Yule-Simon Weibull

Double Pareto Pareto
Lognormal -
Weibull -

0,98 A

097 1 ——Double Pareto
~8—Weibull

0,96

r'é / \ N tognormal

095 =>é=Pareto

=ié=Yule-Simon
0,94 + «®-Yule-Simon (p0 not from data)
0,93

JDT JDT JDT JDT JDT JDT JDT JDT JDT JDT JDT
20 21 30 31 32 33 34 35 36 37 38

0,98 %@ﬁ%

0,97 ~&—Double Pareto
~f—Weibull

096 1 ~#—Lognormal

0,95 \ =>é=Pareto

f / —¥=Yule-Simon
094

R / \ / =@~ Yule-Simon (p0 not from data)
n\/ \ A

PDE PDE PDE PDE PDE PDE PDE PDE PDE PDE
20 21 30 31 32 33 34 35 36 37

Figure 1: R? for non-linear regression fit regression parameter for the double Pareto, Weibull, Lognormal, Pareto and Yule-
Simon CCDF distribution to the random variable X in projects JDT and PDE

fit probability distributions and that this property could be gener-
alized for different system granularities. Probably at some higher
system granularity levels we may not bring statistical conclusions
because of sample size. Moreover, some conclusions from the initial
empirical study on fault distributions [4] are confirmed here. The
same best fit probability distribution is present in all releases of one
software system. This is in line with observation that the fault be-
haviour does not change much from release to release. Moreover, we
obtained similar probability distribution parameters across system
releases in open source context. In future work we would analyse
the parameters of probability distributions for different verification
phases of the industrial software. Empirical study analysing Pareto
principle for each verification phase (unit test, system test, function
test) has identified that Pareto principle persists across the veri-
fication phases and fault distributions are more similar between
sequential verification phases [8].

Our previous study investigating software structure evolution
has statistically identified that there exists continuous change in
software structure during software evolution across releases [12].
For the future work we plan to investigate the correlation between
software structure change and changes in probability distribution
parameters. That may lead to conclusion how to model software
systems and how is software structure affecting the probability
fault distributions.

For modelling system reliability there are numerous reliability
growth models available [9, 11]. However, it is hard to identify
best reliability model early enough, during development project in
order to use it for planing of future verification activities. In system
evolution, when development projects are overlaping over the same
software base this modelling is getting even worse [5]. Furthermore,
the best fit reliability growth model of fault data over time are
changing as verification time progress [1, 15]. It is interesting for
the future work to analyse how the fault distributions are changing
as verification progress and its relation to reliability growth models.
In that analysis it is interesting to analyse if fault distribution are the
system structure property or verification process property. These
conclusions may be valuable for early determination of reliability
growth model that is crucial in planing verification activities.

8 CONCLUSION

In the conclusion, we compare the results of this study with the
results of the previous works. The ranking of the performance of
considered probability distributions in this study and the previous
ones is given in Table 3.

On datasets, we study software engineering empirical principles,
and probability distributions. In the second phase we will examine
the findings in relation to other software properties, like exam-
ining the effect of software structure on fault distributions and
other related local properties including size and modified size. In

On the distribution of software faults in evolution of complex systems SiSoS@ECSA 2016, November 29, 2016, Copenhagen, Denmark

the third phase we want to investigate possibilities of identifying
formal models and innovative approaches for fault distributions
that would be useful in simulating software evolution, guiding sys-
tem design, implementation and verification for the purpose of its
smart quality management. Finally, we want to experiment with
innovative approaches in real software development environment.

ACKNOWLEDGMENTS

The authors would like to thank to the support of Croatian Science
Foundation’s funding of the project EVOSOFT (UIP-2014-09-7945)
and by the University of Rijeka Research Grant 13.09.2.2.16.

REFERENCES

[1] Carina Andersson. 2007. A Replicated Empirical Study of a Selection Method for
Software Reliability Growth Models. Empirical Softw. Engg. 12, 2 (April 2007),
161-182.

[2] Carina Andersson and Per Runeson. 2007. A Replicated Quantitative Analysis of
Fault Distributions in Complex Software Systems. IEEE Trans. Softw. Eng. 33, 5
(May 2007), 273-286.

[3] Giulio Concas, Michele Marchesi, Alessandro Murgia, Roberto Tonelli, and Ivana

Turnu. 2011. On the Distribution of Bugs in the Eclipse System. IEEE Trans. Softw.

Eng. 37, 6 (Nov. 2011), 872-877.

Norman E. Fenton and Niclas Ohlsson. 2000. Quantitative Analysis of Faults and

Failures in a Complex Software System. IEEE Trans. Softw. Eng. 26, 8 (Aug. 2000),

797-814.

[5] T. Galinac and S. Golubi¢. 2005. Project overlapping and its influence on the
product quality. In Proceedings of the 8th International Conference on Telecommu-
nications, 2005. ConTEL 2005., Vol. 2. 655-662.

[6] Tihana Galinac Grbac and Darko Huljeni¢. 2015. On the probability distribution
of faults in complex software systems. Inf. Softw. Technol. 58 (Feb. 2015), 250-258.

[7] Tihana Galinac Grbac, Per Runeson, and Darko Huljeni¢. 2013. A Second Repli-
cated Quantitative Analysis of Fault Distributions in Complex Software Systems.
IEEE Trans. Softw. Eng. 39, 4 (April 2013), 462-476.

[8] Tihana Galinac Grbac, Per Runeson, and Darko Huljeni¢. 2016. A Quantitative
Analysis of the Unit Verification Perspective on Fault Distributions in Complex
Software Systems: An Operational Replication. Software Quality Journal 24, 4
(Dec. 2016), 967-995.

[9] Michael R. Lyu (Ed.). 1996. Handbook of Software Reliability Engineering. McGraw-
Hill, Inc., Hightstown, NJ, USA.

[10] Goran Mausa and Tihana Galinac Grbac. 2016. A Systematic Data Collection
Procedure for Software Defect Prediction. Computer Science and Information
Systems 13, 1 (2016), 173-197.

[11] John D. Musa. 2004. Software Reliability Engineering: More Reliable Software Faster
and Cheaper. Authorhouse.

[12] Jean Petri¢ and Tihana Galinac Grbac. 2014. Software Structure Evolution and
Relation to System Defectiveness. In Proceedings of the 18th International Con-
ference on Evaluation and Assessment in Software Engineering (EASE ’14). ACM,
New York, NY, USA, Article 34, 10 pages.

[13] Joao Pita Costa and Tihana Galinac Grbac. to appear. The topological data
analysis of time series failure data in software evolution. In Proceedings of the 8th
ACMY/SPEC International Conference on Performance Engineering (ICPE °17).

[14] Per Runeson and Martin Host. 2009. Guidelines for Conducting and Reporting
Case Study Research in Software Engineering. Empirical Softw. Engg. 14, 2 (April
2009), 131-164.

[15] C. Stringfellow and A. Amschler Andrews. 2002. An Empirical Method for
Selecting Software Reliability Growth Models. Empirical Softw. Engg. 7, 4 (Dec.
2002), 319-343.

[16] Hongyu Zhang. 2008. On the Distribution of Software Faults. IEEE Trans. Softw.
Eng. 34, 2 (2008), 301-302.

=

	Abstract
	1 Introduction
	2 Context of the Study
	3 Probability Distributions
	4 Non-linear Regression Fit
	5 Results
	6 Validity
	7 Discussion and future work
	8 Conclusion
	Acknowledgments
	References

