
Simulation of Real-Time Scheduling Algorithms in Object Oriented
Systems

Goran Jakovljević, Zvonimir Rakamarić, Domagoj Babić

Faculty of electronic engineering and computing, Zagreb 2002.
goran.jakovljevic@fer.hr, {zrakamar, dbabic}@rasip.fer.hr

Abstract. This document describes authors'
research in application of object-oriented
language (Java) in real-time systems. It
describes advantages and disadvantages of Java,
and gives a critic overview of necessary
modifications to make Java an acceptable choice
for real-time systems. Because of inherent
constraints of existing run-time environments,
this paper deals only with a part of complete
problem, which was possible to simulate on
existing Java platform. We have developed
modular aperiodic scheduling algorithm
simulator. Simulator implements EDF
scheduling algorithm, but it can easily be
extended to support any aperiodic scheduling
algorithm.

p

Keywords. Real time java, scheduling
simulation,

1 Introduction

Real time system is a system that must react
to events from its environment with precise time
constraints. As a consequence, accurate behavior

 not depend only on
orrectness of computation, but also on

cor

y using object-oriented approach to
des

ction of our simulator is
giv

tial
anner. Synonyms are task and job, although

istinguish between them.
The set of rules that determines an order of

ro

Pro

ocess with new
process that is scheduled for execution and has
higher priorit In this case
currently executing process is suspended and put
int

highly

3.
nt is much better.

Processes execution constraints according to
[1] can be grouped to classes:

of such system does
c

rectness in time domain. Delayed reaction to
some important event can be useless, even
dangerous or catastrophic depending on real time
system type (hard real-time, firm real-time, soft
real-time).

Development techniques used in the past are
based on low level of abstraction like assembler
programming and cannot offer short
development cycle nor satisfy rigid maintenance
demands. B

ign real-time systems, programmer has more
chance to concentrate to the problem that has to
be solved. There is a clear difference between
problem space and solution space, and
programmer is relieved from binding this spaces
together. That makes software portability and
maintenance easier.

 The rest of this paper describes the results of
our work. Section 2 gives an overview of real-
time systems. Section 3 describes Java in relation

to real-time systems. The basic explanation of
architecture and fun

en in section 4. In section 5, we conclude.

1.1 Basic terms

Under process we assume computation
executed on central processing unit in sequen
m
some authors prefer to d

cess execution is called scheduling algorithm.
Every process in system passes through set of
states. Process that can be executed on
processing unit is called "active" process.

cess that waits for a free CPU time slot is
called "ready" process. Currently executing
process is called "running" process. Graphical
representation is given on Fig. 1.

Figure 1. Process states

In dynamic systems it must be possible to

replace the currently executing pr

EXECUTION
Sending

process to
execution

Preemption

Activation Termination

Ready process
queue

y than the current one.

o ready queue, and newly arrived process with
higher priority is started. This operation is known
as preemption. In dynamic real-time systems
preemption is important for three reasons:

1. Processes intended to do the interrupt
processing are of great importance and it is
important to execute them as soon as they
enter the system.

2. When processes in one system have
diverse priorities, preemption makes more
efficient process scheduling possible.
System responsiveness to events from
system environme

1. Time constraints
Precedence constraints
Mutual exclusion constraints (over sh

2.
3. ared

Re by the
fol

e time at which a
 execute.

is the amount of

 on a given processor without

i – is the time before

4. e at which a

5.

6. Fi – Di

Pro 2.

Figure 2. Process parameters

there are both periodic and aperiodic processes in
real-time s

recedence constraints bind processes
tog

te software
already written in other languages using Java JNI

Java interpreter interprets compiled Java code
(ja

cceptable for real time
sys

d of device and
emory access instructions in bytecodes.

system, it is
perative to find out worst-case execution time.

Jav

 put a
ris

ions written in Java, Java run time
ust implement adequate support.

whole thread package defined in POSIX
pecification. Java threads evolved from Green

Th

tions when
ma

t Java does not implement that
ma

resources)
al time process can be characterized

lowing parameters:
1. Arrival time Ai – is th

process is ready to
2. Computation time Ci –

time needed to complete process
computation
any interruption.

3. Deadline time D
which a process should be completed.
Start time Si – is the tim
process starts its execution.
Finish time Fi – is the time at which a
process finishes its execution.
Lateness Li: Li =

7. Laxity Xi: Xi = Di – Ai – Ci
cess parameters are visualized on Fig.

Regarding to time characteristics, processes
can be divided into periodic and aperiodic.
Periodic processes are composed of endless set
of identical activities, which are regularly
activated with a constant frequency. Generally,

ystems.
P
ether in a way that one process has to wait for

the results of execution of the other process.
These relationships between processes are best
described by directed acyclic graph.

.
2 Java & real time

One of the most interesting Java advantages is
possibility of portable real time software. That
advantage comes from the architecture of Java
runtime. Besides development of portable
software, it is possible to integra

(Java Native Interface).

va bytecode) on the host machine. Due to
interpretation, Java code run much slower than

code compiled specifically for host architecture.
To overcome this problem JIT (Just In Time)
compilers have been introduced. JIT compilers
add more non-determinism to application
execution, which is una

tems. One of the possible solutions is to
recompile Java bytecode statically to native
code, but this constrains portability, one of the
Java's most important features.

2.1 Java bytecode structure

Java bytecode [8,10] holds information
essential to Java runtime environment for
creating and executing Java application.
Consequence or rigid requests for portability and
security is absence of any kin
m

From perspective of real-time
im

a bytecode mostly consists of instructions that
have predictable worst-case execution time, but
there are also a few whose worst-case execution
time cannot be predicted (lookupswitch and
tableswitch). Although percentage of these
instructions in bytecode is very small, they

k at predictability of hard real time
application.

2.2 Embedded concurrent programming

support

Java's concurrent programming support is big
advantage in development of real time
applications. To achieve predictability in real
time applicat
m

Java real-time threads support only a part of

s
read package written on top of SunOS system

version 4.1.3.
Synchronization is one of the basic elements

of multitasking environment because it enables
threads to coordinate their ac

nipulating shared resources. Main method of
synchronization in Java is based on Hoare's
monitor. POSIX defines other synchronization
primitives like mutex, semaphores, message
queues, etc. bu

ny mechanisms. Other mechanisms can easily
be implemented. In real time Java specification
semantics of synchronized keyword is expanded
to avoid priority inversion problem and wait
queues supports defined priorities. "Priority

Ai Si Fi Di

Ci

inheritance" algorithm is suggested as a possible
solution of priority inversion.

Scheduling is also a part of standard Java
specification that had to be modified. In standard
specification in the case of threads competing for
the same resource, generally advantage is given
to the process with higher priority, but it is also
possible for thread of lower priority to get the
resource. It is obvious that real time systems
need more rigid semantics. Also there are not
eno

ew
bjects are created in memory part called "heap",

cts
at are not needed any more is done

aut

areas can contain references to objects in heap

t
pre

r applications that need to make some
hanges on the system very quickly and without

2.5

Platform independency has a drawback
e cannot be accessed

irectly. For embedded applications this is a
pro

itten in C/C++ or some other language of
use

er interface that displays
information about current system state

sses in

ugh priority levels (only 10). RT Java
Specification [12] defines "fixed priority"
scheduling protocol and 38 levels of priority.

2.3 Automatic memory management

Automatic memory management relieves
programmer from burden of memory allocation
and deallocation. Besides, explicit memory
allocation and deallocation can be a source of
serious and hard to detect errors. In Java n
o
and deallocation of memory allocated to obje
th

omatically by run-time component called
"garbage collector" (GC). Garbage collectors
have big disadvantage from the aspect of hard
real-time systems – they introduce lateness and
unpredictability. In today's Java implementations
GC is implemented as a high priority thread
which is run when the memory use reaches
certain limit. Execution time of "stop and copy"
garbage collecting algorithm depends on the
heap size, and execution time of "mark and
sweep" algorithm depends on quantity of dead
objects in heap memory. Consequence of above
facts is that the precise moment of GC start
cannot be determined. GC run duration is also
unknown. For soft-real time systems, multimedia
and interactive applications, GC algorithms
called incremental collectors (memory is
deallocated in small steps) and generation
collectors (objects in memory are divided in
generations and younger generations are
deallocated more often) are more appropriate.
These algorithms show good performance in
soft-real time systems, but for hard real-time
systems no strict time guarantees can be given.

RT Java Specification defines, beside heap
memory, additional memory areas that are not
deallocated by standard mechanisms. Strict
access, assignment and allocation rules prevent
dangling references and protect pointer security.
Objects allocated in these additional memory

memory area. This is a way of making memory
areas inaccessible for GC and of insuring tha

dictability of executing code situated in these
areas can be maintained. This code has higher
priority than GC thread. Problem of this objects
not being deallocated automatically is not
important for hard real-time systems because
only small amount of code is kept in this areas –
that code changes rarely and does not use a lot of
memory.

2.4 Dynamic behavior

Java enables code changes that can happen
"on the fly" because classes can be inserted in
system dynamically. This feature is useful in
applications with high flexibility requirements.
This feature can be used also in hard real time
systems fo
c
interruption of running system.

 Java security

Every class file that is thoroughly analyzed
and verified before loading what gives Java
bases systems very high security. Anyway,
dynamic loading has unpredictable timing, so
some real-time java systems use static loading
[22].

because system hardwar
d

blem. Applications must have ability to
access hardware if they want to implement
device drivers, interrupt routines, etc. But Java
offers elegant solution in form of JNI (Java
Native Interface). This way application parts can
be wr

r choice. RT Java Specification defines two
classes for raw memory access directly from
Java code: RawMemoryAccess and
PhysicalMemory.

3 Real-time scheduling simulator

Real time scheduling simulator is application
written completely in Java, that simulates
simplified Java real-time thread scheduling. It is
a multithreaded simulator that consists of two
components:

1. Graphical us

(number and parameters of all proce

system, processes feasibility, system time
and processor usage information).

2. Simulation kernel that accepts new
processes in system, schedules threads and
tests feasibility of a given thread

 kernel

Th
indepe
be ch
Fig.
simula

3.1

 the

sy e
sy
process generation can be controlled.
Thr es

ith Gauss distribution with its mean value set

1. ication number
2. Deadline – the time until process has to be

light is
on
sig
proces

n the virtual processor represented by
Pr

iodic as
ell as aperiodic processes. Typically periodic

cal control activities with
gid time constraints. Aperiodic processes are

typ

composition. Objects that present
aperiodic processes are generated
dynamically and their feasibility is
computed. If process is feasible it's being
scheduled for execution. Simulated
makes dynamic decisions about
scheduling based on current system status.
ese two components are implemented
ndently. That means that any of them can
anged without influence to another one.
3 shows simplified block model of
tion system.

GUI

Figure 3. Block model of simulation system

Description and characteristics of
processes in the system

Only aperiodic processes can appear in
stem. Maximum number of processes in th
stem at any moment is 15, and intensity of new

eadGenerator class generates process
w
by user. Relative process parameters are:

Process ID – process identif

completed
3. Cost – is the amount of time needed to

complete process computation on a given
processor without any interruption

Simulator evaluates process feasibility in a
given timeframe. Light indicator displays
feasibility result for every process (green

if process is feasible). Same way of
nalization is used to show currently running

s.

Every process is represented as
RealTimeThread object that remembers
parameters relevant for simulation. This class
also implements utilities for parameter retrieval
called by GUI methods. Every process is
executed o

ocessorEngine class. ProcessorEngine takes
thread objects from FIFO queue, executes
processes and calculates current processor usage.
Data about processor usage are forwarded to
Graphical user interface and ProcessInfoPanel
object is responsible for their displaying.

3.2 Scheduling

Scheduling problem deserves great attention.
Our simulator accepts only aperiodic processes.
In real real-time systems there can be per
w
processes execute criti
ri

ically event driven and can be hard, soft and
non-real time. In hybrid system the goal of the
system is to execute all hard real-time processes
in time and to execute soft real-time processes
with the best performance. In this kind of system
periodic processes are scheduled based on their
fixed priorities (for example Rate Monotonic
algorithm schedules processes based on their
time periods), while aperiodic processes are
scheduled using server (Polling server,
Deferrable server, Sporadic server, Slack
stealing) or using background scheduler. In our
simulator processes are generated dynamically
and on-line scheduling algorithm is
implemented. EDF (Earliest Deadline First)
algorithm was chosen for referent
implementation, because it is optimal algorithm
regarding maximal lateness. Real time Java
simulator supports simple scheduling algorithm
change. Complete scheduling logic is defined in
the Comparator object. In the case of EDF
implementation, its subclass EDFComparator is
used. To implement any other aperiodic
scheduling algorithm, it is sufficient to subclass
and implement Comparator class, which is used
for scheduling. Similar mechanism of priority
changing is implemented in Spring distributed
real time system [1]. Illustrative description of
this concept is shown on Fig. 4.

OPERATING SYSTEM

RTJava Simulation Kernel

java.lang.Thread javax.Swing

Java VM

DISPATCH

COMPARATOR
CURRENT SET OF

PROCESSES

Figure 4. Comparator scheduling logic

Class called Scheduler is used in our system

NEW PROCESS

to dea

3.3

For the purpose of measuring system time,
ependent actions and

nalyses of time constraints inside system, we
cre

stem time.

time
inside

Graphical user interface is used to give

m status
urrently active processes, feasible processes,

pro

generation. Minimal number or processes

defined in class

•

terruption

•

ionSystemParameters.

basic
Main

1. play

creenshot of this window.

2.

3. indow (TimerPanel)

l with process scheduling.

 System time

coordinating time d
a

ated SystemClock class. Because time is
essential part of real time system, part that is
used for making decisions, special attention was
dedicated to designing this part of the system.
This class is used by many components, so it was
necessary to enable concurrent access to this
class. Main functions of SystemClock class are:

1. Registration of deadline point
2. Signalization of missed deadline
3. Communication with component for

graphical displaying of sy
(TimerPanel class).

Role of the system clock is essential in real-
systems. Fig. 5 illustrates dependencies
 the system.

ProcesorEngine Scheduler

Figure 5. System clock dependencies

3.4 Graphical user interface

SystemClock

ThreadGenerator GUI.MainWindow

graphical insight to the simulation syste
(c

cesses that have missed deadline, system
time, processor utilization) and to assist in
changing system parameters. User changeable
system parameters are:

• Intensity – mean intensity of process

is 0 and maximal number is 15. These
values are
SimulationSystemParameters.
Cost – mean run time cost of generated
processes. In simulated environment this
corresponds to the minimal time the
process must execute without in
to complete.
Deadline – mean deadline value for
generated processes. Maximal deadline
value is 150 time units, and it is defined in
class Simulat

Graphical user interface is organized in 3
windows, and they are contained in

Window class:
Process information dis
(ThreadsInfoPanel) is used for adjusting
and displaying basic system parameters.
Fig. 6 shows s
One can notice lights that indicate current
state of all 15 processes in system: active –
active panel, feasible – feasible panel and
miss deadline – miss deadline panel
(indicates that process missed its
deadline). Other displayed parameters are
process id, cost, deadline and sliders for
adjusting intensity, average cost and
average deadline.
CPU utilization window Processor-
InfoPanel – shows processor utilization
percentage information.
System clock w
shows system time.

Figure 6. ThreadsInfoPanel window

3.5 Further development

Because of inherent limitation of current Java
time system

eeds, we simulated only a part of complete
pro

Java offers many interesting features for
al-time and embedded

pplications. Many problems regarding real time
pro

re
des

1. G. C. Buttazzo, Hard Real-Time
stems, Kluwer Academic

Publishers, Boston, 2000.

mic Publishers,

3.

ime Systems: EDF and Related

4.

 with Java Technology,

6.

0.

Second Edition,

9.
Addison-Wesley,

10.
e, McGraw-Hill, 1999.

ide, John

12
ation for Java,

13
ns. on Nuclear

14.
ress Report, Sun

15
 of Real-Time Java.

ibuted

17

ase Execution Time Analysis

19
ime Java, The

20.
mputing.

m Based

22.
er, T. Ungerer, A Multithreaded

23
 Real-Time Java.

97.

implementation regarding real
n

blem related to scheduling. Further
development of Real-time scheduling simulator
should support simulation of both periodic and
aperiodic processes, to make better insight into
the problem.

4 Conclusion

programmer of re
a

gramming in Java need more research. As a
programming language, Java has many
advantages over C or C++, but today's Java
implementations still have many disadvantages
for usage in real-time systems. The most
important disadvantages are GC unpredictability,
slowness in comparison with C/C++ and the
absence of direct memory access instructions.

When programming Web applications, games
and interactive applets, Java features like
portability and high level of abstraction a

irable. Real-Time Java specification reflects
the intention to adjust Java to the needs of real-
time applications. Performance of interpreted
Java code is bad, but solutions are available in
the form of JIT compilers, ahead of time
compilers and static linkage of Java classes. Built
in support for multithreading enables simple
development of multitasking applications.
Automatic memory management also represents
a big challenge to real time systems.

5 Literature

Computing Sy

2. R. Rajkumar, Synchronization in Real
Time Systems: Priority Inhertiance
Approach, Kluwer Acade
1991.
J. Stankovic, M. Spuri, K. Ramamritham,
G. C. Butazzo, Deadline Scheduling for
Real T
Algorithms, Kluwer Academic Publishers,
1998.
J. W. S. Liu, Real-Time Systems, Prentice
Hall, 1998.

5. B. Lewis, D. J. Berg, Multithreaded
Programming
Prentice Hall, 2000.
D. Lea, Concurrent Programming in Java,
Prentice Hall, 2000.

7. H. M. Dietel, Operating Systems,
Addison-Wesley, 199

8. T. Lindholm, F. Yellin, The Java Virtual
Machine Specification,
Addison-Wesley, 1999.
J. Gosling, B. Joy, G. Steele, The Java
Language Specification,
2000.
 B. Venners, Inside the Java Virtual
Machin

11. E. Giguere, Java 2 Microedition: A
Professional Developer’s Gu
Wiley & Sons, 2000.

. G. Bollella, J. Gosling, D. Hardin, The
Real-Time Specific
Addison-Wesley, 2000.

. E. Bertolissi, C. Preece, Java in Real-time
Application, IEEE Tra
Science, Vol. 45, 1996.
 W. Foote, Real-time Extenisions to the
Java Platform A Prog
Microsystems.

. K. Nilsen, Issues in the Design and
Implementation

16. A. Di Stefano, C. Santoro, A Java Kernel
for Embedded Systems in Distr
Process Control, IEEE Concurrency,
October-December, 2000.

. K. Nilsen, Invited Note: Java for Real-
Time.

18. G. Bernat, A. Burns, A. Wellings, Portable
Worst-C
Using Java Byte Code.

. E. D. Jensen, A Proposed Initial Approach
to Distributed Real-T
MITRE Corporation.
 C. Lizzi, Enabling Deadline Scheduling
for Java Real-Time Co

21. G- Hilderink, A. Bakkers, J. Broenink, A
Distributed Real-Time Java Syste
on CSP.
 U. Brinkschulte, C. Krakowski, J.
Kreuzing
Java Microcontroller for Thread-Oriented
Event-Handling.

. G. Xydas’, J. Tassel, Experimentation in
CPU control with

24. G. A. Agha, Concurrent Java, IEEE
Concurrency, October-December 19

	Introduction
	Basic terms

	Java & real time
	Java bytecode structure
	Embedded concurrent programming support
	Automatic memory management
	Dynamic behavior
	Java security

	Real-time scheduling simulator
	Description and characteristics of processes in the system
	Scheduling
	System time
	Graphical user interface
	Further development

	Conclusion
	Literature

