
Bytecode Optimization

Domagoj Babić, Zvonimir Rakamarić
FER - Faculty of Electrotechnics and Computing, Zagreb, Croatia

{dbabic, zrakamar}@rasip.fer.hr

Abstract. Today, when Java is entering the
embedded market it needs performance en-
hancements more than ever. Large-scale enter-
prise applications would also benefit from
better code optimization techniques.

In this paper we present the results of opti-
mization with an optimizing framework we
have developed. We measure the impact of
different optimizations on run times in different
execution environments and propose further
enhancements.

Keywords. Bytecode optimization, Java,
optimization framework

1. Introduction

Execution environments for Java can be im-
plemented in a few different ways. Two basic
variants are virtual machines [1,2] and Java
processors [3].

Contemporary Java virtual machines use
interpretation combined with Just In Time
(JIT) compilation for the execution of Java
bytecodes. JIT compilers have to compromise
between the time spend for code optimizations
and the time left for program execution. The
Jalapeno VM [2] spends around 93 percent of
execution time running application code. Such
a high percentage means that little time is left
for JIT compiler and code optimization.

The short time frame left for code optimiza-
tion prohibits the implementation of expensive
code analyses and optimizations in JIT virtual
machines and motivates better compiler opti-
mization techniques.

As Java is becoming more popular in em-
bedded devices, where processors are usually
far less powerful, only the cheapest and the
most effective optimizations can be supported.
Expensive optimizations can be implemented
in a compiler or in a separated optimizing
package. We have devised a framework for
Java bytecode optimization that can be used as
a part of compiler or as a separate application.

Results also apply to JIT optimizing com-
sepa

pilers. The framework is completely written in
Java and it takes compiled Java class files as its
input. After reading all the classes, the frame-
work recovers the high-level structure of the
program from its bytecode representation.

An abstract representation of the program is
further analyzed and transformed into a more
appropriate form for optimization. Analyses
and transformations can be combined in an
arbitrary way as far as certain dependency con-
straints are satisfied. For example, Build-
StackMap analysis has to precede the trans-
formation to the register representation of byte-
codes that is further used for different optimi-
zations. All precedence constraints are checked
inside the framework. New analyses and trans-
formations can be added easily.

 In our research we evaluate the effect of
our optimizing package on the average run
times of the chosen Java applications. We have
chosen a subset of JavaGrande [9] large-scale,
computationally intensive benchmarks for
measuring the effect of our optimizing pack-
age. Although such benchmarks are not con-
sidered as typical Java applications, we foresee
that Java will have to handle more multimedia
and encrypted content that is computationally
demanding. Such applications are also a more
probable load for an average user than compil-
ers and parser generators that are often used to
illustrate Java performance enhancements.
Computationally intensive benchmarks are not
forgiving even the smallest imperfections in
code optimization what makes them very good
code quality indicators.

Because of a large number of loops in code
a small change in code can result in large
speedups or slowdowns.

 The main contributions of this paper are:
- a proposal of an extensible and modular ar-

chitecture for optimization frameworks
- an elaboration of the register-stack code

transformation and the color-graph local
variable allocation algorithm effects

2. Framework

2.1. Architecture

We have based our design on standard pro-
gramming patterns [4]. The basic control class
is implemented as a Mediator Pattern. All
transformations and analyses are performed
upon containers that can contain Java pack-
ages, classes or methods. UML diagram of the
framework architecture is shown in Fig.1.

+setAnalysis()
+setTransformation()
+analyse()
+transform()

Mediator

1

ClassContainer

PackageContainer

MethodContainerContainer

interface
Analysis

interface
Transformation

analyse

transform

Figure 1. Framework UML diagram

 All analyses, like control-flow and data-
flow, subclass Analysis interface. A new cur-
rent analysis can be set with a call to
setAnalysis method with analysis type as a
parameter. Subsequent calls to analyse()
method with a container reference will append
information produced by the current analysis to
the container. Some analyses have order con-
straints that are checked before each analysis is
performed. For example, data-flow analysis
must precede color graph construction.

 Classes that implement the
Transformation interface make necessary
updates of the program code and perform
transformations between different code repre-
sentations.

 Relations between transformations and
analyses form a complex directed graph. Since
every transformation and analysis has to de-
clare precedence constraints, the framework
performs automatic verification of the optimi-
zation sequence.

 To add a new transformation or analysis it
is ample to subclass a suitable interface, de-
clare precedence constraints and determine
input and output representations. This way,
almost all the effort can be directed to implem-

entation of the needed functionality. This ar-
chitecture will enable us to explore tangled
Java optimizations faster and more efficiently.

 Although some of frameworks mentioned
in related work section describe basic frame-
work architecture, according to our knowledge,
none have addressed extensibility and modu-
larity in-depth as we did. These features are
extremely important if a large number of opti-
mization possibilities are to be explored.

2.2. Containers

Containers can represent Java code in sev-
eral different representations similar to repre-
sentations in Soot framework [5]. When class
files are read, the framework creates a byte-
code level representation (BLR) for easier
handling of packages, classes and methods.

 BLR is an intermediate form that may also
be used for disassembling class files.

 Stack level representation (SLR) is used
for control-flow and data-flow analysis and it
is similar to Soot's Baf representation. We also
use SLR for a graph-coloring analysis that re-
duces the number of used local variables and
for peephole optimization.

To use standard code optimization tech-
niques [6], stack code has to be transformed to
three- address instruction form [that is called
register level representation and is similar to
Soot’s Jimple]. Most of the optimizations are
performed on the register level representation
(RLR).

RLR is used as a basis for optimizations
such as common sub-expression elimination,
constant folding and dead code elimination.

3. Transformations and optimizations

According to Pugh [7], Java memory model
prohibits some compiler optimizations. Pugh
proposes a relaxed memory model that we use
for our optimizations. An object field access or
update cannot be moved across synchroniza-
tion boundaries or synchronization points like
running a new thread. We impose a strict order
on write operations and permit read reordering
if data dependencies allow it. Any method call
between field referencing instructions might
have a side effect, so we conservatively do not
reorder such instructions.

We plan to implement side effect analysis
in the future. Accepting these rules, the opti-

mizer cannot create invalid code for single
processor machines, neither for properly syn-
chronized multiprocessor programs.

Another problem in Java optimization are
exceptions. Currently, all athrow instructions
mark the end of the control flow block in our
framework. An instruction that can throw an
exception must not be moved outside of its
catch block. More relaxed alternative to this
rule is proposed in [8].

 3.1. SLR to RLR

For transformation from SLR to RLR we
use the stack map built by the dataflow analy-
sis. Local variables can be mapped directly to
three address instructions that are further used
for code optimization. Temporary registers,
used for storing values from the stack, are
referenced by the slot index. Currently, the
framework determines only the basic types of
data in local variable and temporary registers.
Example of SLR to RLR transformation:

SLR RLR
iconst_1 #0int = 1
iconst_2 #1int = 2
iadd #0int = #0int + #1int
store x x = #0int

3.2. RLR to SLR

A sequence of bytecodes is defined for
every register instruction in RLR. Example of
RLR to SLR transformation:

RLR SLR
#0int = #0int + #1int load #0int
x = #0int load #1int
 iadd
 store #0int
 load #0int
 store x

It is obvious that such a transformation will

generate load-store pairs that can be elimi-
nated. We apply peephole optimization to such
code to eliminate load-store pairs and to ex-
change expensive code patterns with cheaper
ones.

Transformation from RLR to SLR leaves a
messy code that has to be cleaned up using
peephole optimization. At the moment, only
basic pattern substitutions are performed.
Some slow instruction sequences re-
main.separator

These patterns are easily optimized in JIT
compiler and do not have an impact on JIT
run-times. Interpreter, on the other way, cannot
optimize them what results in slower execution
times.

3.3. Optimizations

Implemented copy propagation optimiza-
tion is local and propagates values only
through basic control flow blocks. It scans all
the instructions in the block and creates the list
of (variable, value) pairs. If a variable from
the list of pairs is later found on the right side
of the association, it can be substituted with the
value. The same optimization is applied to
fields in objects.

The common sub-expression analysis scans
bytecodes and creates (expression, local
variable) pairs. If the same expression is later
used, local variable can be used instead. For
every instruction x=expression1, the pair list is
searched for any expression equal to
expression1. If there is such a pair (loc_var_y,
expression1), x=expression1 is substituted
with x=local_var_y.

Before running dead code elimination, we
do the dataflow and the variable aliveness
analysis on the code. If a local variable is not
alive in the next instruction that means it is not
used and we purge the instruction if it does not
have any side effects. Our framework also
performs constant folding.

The type analysis and the side-effect analy-
sis [8] would enhance the efficiency of copy
propagation and common sub-expression
elimination, and we are currently implement-
ing them.

Studying the results of the aliveness analy-
sis, we have noticed that local variables can be
allocated in less slots then javac (SUN JDK
v1.4.0.) compiler does.

 For that purpose we have devised a heu-
ristic modification of graph-coloring algorithm
that is similar to one presented in [12] with the
difference that we do not reconnect node to
graph once it is disconnected. Colors are allo-
cated before disconnection.

 Soot [5] framework uses interference
graphs for this purpose and reports slowdowns
caused by basic code transformations that in-
clude local variable packing and transforma-
tion from stack code to register code and back.
They have not reported separate results for
local variable packing and representation trans-

formations, as we will. According to our
knowledge, other frameworks have not
addressed these issues.

4. Performance evaluation

4.1. Benchmarks

For measuring the effect of our analyses
and transformations, we have used benchmarks
from JavaGrande benchmark suite. These
benchmarks are computationally demanding
Java applications that are available freely from
the Internet [9]. We have chosen a subset of
applications that have large processor power
requirements, since our main intension is to cut
on execution time applying code optimizations.
All benchmarks we used are named in Table 1.
Benchmark numbers from the table are used
later as axis labels in speed-up bar graphs.

Table 1. Benchmarks

No Benchmark Code size [kb]
1 Crypt 8
2 FFT 8
3 LUFact 9
4 Series 26
5 SOR 14
6 SparseMatmult 6
7 RayTracer 6
8 Search 6

Crypt performs IDEA encryption and de-

cryption of an array of 20M entries. FFT per-
forms a one-dimensional forward transform of
8.4M complex numbers exercising complex
arithmetic and trigonometric functions. LUFact
is a Java version of popular Linpack bench-
mark that solves 1k X 1k linear system using
LU factorization followed by a triangular
solve. Series computes 100k fourier coeffi-
cients and exercises transcendental and trigo-
nometric functions. SOR performs 100 itera-
tions of successive over-relaxation on a 1500 X
1500 grid. SparseMatmult performs a 100k X
100k sparse matrix multiplication. RayTracer
renders 3D scene containing 64 spheres at a
resolution of 150 X 150 pixels. Search (also
known as Fhourstones) solves positions in the
game of connect-4 played on a 7x6 board.

The platform used for running benchmarks is
Intel Klamath 333 MHz, 384 MB RAM and
RH Linux v7.2, SUN Java v1.4.0 virtual ma-
chin

chine. We use Linux time command to get the
CPU time spent in benchmark execution in
user mode.

 We have created a TCL script that runs
benchmarks, computes confidence intervals,
compares results with Javac v.1.4.0 compiled
code runtimes and generates a report. Script
runs benchmarks 10 times and computes 95%
confidence intervals. We could not measure
any statistically significant difference between
results obtained on lightly and heavily loaded
machine. Anyway, we tried to keep the ma-
chine lightly loaded while benchmarks were
running. Virtual machine start-up time is in-
cluded in every execution time and for all
benchmarks.

 We decided to test our optimizations also
with pure interpreted execution, because inter-
preters are better solution for some problems,
for example where predictability is needed, and
because we assume that the same optimizations
that benefit interpreters would benefit direct
Java execution on Java processors.

4.2. Results

 The influence of basic SLR-RLR and
RLR-SLR transformations is shown on Fig.2.
Black bars represent JIT runtimes and hatched
bars interpretation execution time. As de-
scribed earlier, these transformations are nec-
essary before any other optimizations can be
performed and for creating stack code from
register level representation. These transfor-
mations increase the number of unnecessary
instructions that can be partially eliminated
using peephole optimization. Another impor-
tant effect is that local variables are allocated
in ad-hoc manner and some slots might be
empty.

Figure 2. Basic transformations influence

 The effect of remapping local variables

with color-graph algorithm is shown in Fig. 3.

Figure 3. Graph-coloring effect

 J4 means JIT execution speedup for

benchmark number 4, the letter I is for inter-
preted execution. Black bar means that
speedup is not statistically significant with
95% confidence interval.

 Although some benchmarks perform bet-
ter, it is surprisingly to see that more compact
variable mapping can lead to large slowdowns,
especially for JIT execution. Our heuristic
graph-coloring algorithm achieved the average
reduction of 0,44 local variable slots per
method. Dense local variable mapping can
result in more code register dependencies in
JIT generated native code leading to less in-
struction level parallelism and slower code
execution. The heuristic algorithm does not
give special priorities to local variables in
loops what can result in removing local vari-
ables used in loops in further slots. Currently
we are working on a smarter local variable
mapping.

 In Fig.4. we present combined results from
representation transformations and graph-color
local variable mapping. One of negative ef-
fects, namely sparse local variable mapping,
has been corrected with graph-coloring, so we
get better runtimes than in Fig. 2, especially for
JIT execution. Significant negative impact of
graph coloring on RayTracer benchmark has
remained.

Figure 4. Combined effect

 Run-times of benchmarks optimized with
our framework without color-graph optimiza-
tion are illustrated in Fig. 5.

Figure 5. Optimized code speed-up

It’s easy to see that optimizations have al-

ways a beneficial effect comparing it with
artifacts created with basic necessary code
transformations shown in Fig. 2. The effect of
both optimizations and color-graph local vari-
ables mapping is illustrated in Fig. 6.

Figure 6. Optimized code with color-graph

optimization

 The average speed-up for JIT execution is
4.17% and speed-up computed as a weighted
arithmetic mean is 13.81%. Only statistically
significant values were included in computa-
tion. The weighted arithmetic mean is so large
because Series benchmark represents 72.2% of
total execution time for all benchmarks and has
16.89% speed-up. Such a mean tells us how
much is the total run time for chosen bench-
mark kernel reduced, but 4.17% is a more reli-
able speed-up measure. It is interesting to note
that the negative effect of graph coloring for
the RayTracer (J7) benchmark is optimized
away.

 Interpreted execution times are slowed
down 9.62% on average and weighted arith-
metic mean is 5.55%. Although optimizations
have ameliorated the negative impact of basic
transformations (SLR2RLR and RLR2SLR), it
is not enough to achieve the interpreted execu-
tion speed-up. The main reasons are code size

increase and inefficient code patterns resulting
from basic transformations. Our average
speed-up is comparable to results presented in
[5], although we use different benchmarks. In
interpreted execution our results are worse than
in [5] because computationally intensive
benchmarks are more sensitive to code imper-
fections.

5. Related work

 There are a few Java optimization frame-
works like Soot [10], Briki [11] and Cream [8].
Soot is the most advanced framework that
includes the side effect analysis [13] and
method inlining [14]. The architecture of Soot
is not described in detail, but representations
are explained. Briki optimizes array and field
layout and does not implement any other op-
timizations. Cream has completely different
architecture, without clearly defined represen-
tations and implements very detailed side ef-
fect analysis. All these frameworks work on
compiled class files.

 There are also other possibilities for Java
optimization. A promising approach is attribute
annotation to class files. These attributes give
virtual machine more information about pro-
gram. Significant speed-ups have been demon-
strated in [15]. The major shortcoming of this
approach is that most of virtual machines do
not support these additional attributes.

 Compiling Java to native code achieves
the best performance but at the cost of port-
ability [16].

6. Conclusion

A new architecture for optimization frame-
works is proposed. The system is written com-
pletely in Java and it is easily extensible be-
cause of its modular architecture. We have
described the design, functionality and effi-
ciency of our framework.

We have analyzed the influence of basic
transformations that are necessary for further
optimizations and measured the influence of
different ways to map local variables in slots.

Benchmarks we have used are computa-
tionally intensive and very sensitive to code
quality. Our next goal is to improve the code
quality of basic transformations and local vari-
ables mapping.

6. Literature
[1] Tim Lindholm, Frank Yellin. The Java

Virtual Machine Specification. Addison-
Wesley; 1999.

[2] Matthew Arnold, Stephen Fink, David
Grove, Michael Hind, Peter F. Sweeney.
Adaptive Optimization in the Jalapeno JVM.
3rd ACM Workshop on Feedback-Directed
and Dynamic Optimization; 2000.

[3] U. Brinkschulte, C. Krakowski, J. Kreuz-
inger, Th. Ungerer. A multithreaded Java
Microcontroller for Thread-Oriented Real-
Time Event-Handling. IEEE PACT; 1999.

[4] Erich Gamma, Richard Helm, Ralph John-
son, John Vlissides. Design Patterns. Addi-
son-Wesley; 1995.

[5] Raja Vallee Rai, Phong Co, Etienne
Gagnon, Laurie Hendren, Patrick Lam, Vijay
Sundaresan. Soot - a Java Bytecode Optimi-
zation Framework. Proceedings of CASCON
'99; 1999.

[6] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and
Tools. Addison-Wesley; 1985.

[7] William Pugh. Fixing the Java Memory
Model. ACM Java Grande Conference;
1999.

[8] Lars R. Clausen. A Java Bytecode Opti-
mizer Using Side-effect Analysis. Journal
Concurrency: Practice and Experience; 1997.

[9] http://www.epcc.ed.ac.uk/javagrande/
[10] Raja Vallée-Rai. The Jimple Framework,

Sable Technical Report, McGill University;
1998.

[11] Michal Cierniak, Wei Li. Optimizing Java
Bytecodes. Concurrency: Practice and Ex-
perience; 1997.

[12] Dick Grune, Henri E. Bal. Modern Com-
piler Design. John Wiley; 2000.

[13] Chrislain Razafimahefa. A Study Of Side-
Effect Analyses For Java. Thesis, McGill
University; 1999.

[14] Vijay Sundaresan, Practical Techniques
For Virtual Call Resolution in Java. Thesis,
McGill University; 1999.

[15] Patrice Pominville, Feng Qian, Raja
Vallée-Rai, Laurie Hendren, Clark Ver-
brugge. A Framework for Optimizing Java
Using Attributes. Computational Complex-
ity; 2001.

[16] Robert Fitzgerald, Todd B. Knoblock,
Erik Ruf, Bjarne Steensgaard, David Tarditi.
Marmot: An Optimizing Compiler. Software
– Practice and Experience, 1999.

	{dbabic, zrakamar}@rasip.fer.hr

