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Abstract. Today, when Java is entering the 
embedded market it needs performance en-
hancements more than ever. Large-scale enter-
prise applications would also benefit from 
better code optimization techniques. 

In this paper we present the results of opti-
mization with an optimizing framework we 
have developed. We measure the impact of 
different optimizations on run times in different 
execution environments and propose further 
enhancements. 
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1. Introduction 
 

Execution environments for Java can be im-
plemented in a few different ways. Two basic 
variants are virtual machines [1,2] and Java 
processors [3]. 

Contemporary Java virtual machines use 
interpretation combined with Just In Time 
(JIT) compilation for the execution of Java 
bytecodes. JIT compilers have to compromise 
between the time spend for code optimizations 
and the time left for program execution. The 
Jalapeno VM [2] spends around 93 percent of 
execution time running application code. Such 
a high percentage means that little time is left 
for JIT compiler and code optimization. 

The short time frame left for code optimiza-
tion prohibits the implementation of expensive 
code analyses and optimizations in JIT virtual 
machines and motivates better compiler opti-
mization techniques. 

As Java is becoming more popular in em-
bedded devices, where processors are usually 
far less powerful, only the cheapest and the 
most effective optimizations can be supported. 
Expensive optimizations can be implemented 
in a compiler or in a separated optimizing 
package. We have devised a framework for 
Java bytecode optimization that can be used as 
a part of compiler or as a separate application.  

Results also apply to JIT optimizing com-
sepa

pilers. The framework is completely written in 
Java and it takes compiled Java class files as its 
input. After reading all the classes, the frame-
work recovers the high-level structure of the 
program from its bytecode representation.  

An abstract representation of the program is 
further analyzed and transformed into a more 
appropriate form for optimization. Analyses 
and transformations can be combined in an 
arbitrary way as far as certain dependency con-
straints are satisfied. For example, Build-
StackMap analysis has to precede the trans-
formation to the register representation of byte-
codes that is further used for different optimi-
zations. All precedence constraints are checked 
inside the framework. New analyses and trans-
formations can be added easily. 

 In our research we evaluate the effect of 
our optimizing package on the average run 
times of the chosen Java applications. We have 
chosen a subset of JavaGrande [9] large-scale, 
computationally intensive benchmarks for 
measuring the effect of our optimizing pack-
age. Although such benchmarks are not con-
sidered as typical Java applications, we foresee 
that Java will have to handle more multimedia 
and encrypted content that is computationally 
demanding. Such applications are also a more 
probable load for an average user than compil-
ers and parser generators that are often used to 
illustrate Java performance enhancements. 
Computationally intensive benchmarks are not 
forgiving even the smallest imperfections in 
code optimization what makes them very good 
code quality indicators.  

Because of a large number of loops in code 
a small change in code can result in large 
speedups or slowdowns. 

  The main contributions of this paper are: 
- a proposal of an extensible and modular ar-

chitecture for optimization frameworks 
- an elaboration of the register-stack code 

transformation and the color-graph local 
variable allocation algorithm effects 

 



2. Framework 
 
2.1. Architecture 
 

We have based our design on standard pro-
gramming patterns [4]. The basic control class 
is implemented as a Mediator Pattern. All 
transformations and analyses are performed 
upon containers that can contain Java pack-
ages, classes or methods. UML diagram of the 
framework architecture is shown in Fig.1. 
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Figure 1. Framework UML diagram 
 

  All analyses, like control-flow and data-
flow, subclass Analysis interface. A new cur-
rent analysis can be set with a call to 
setAnalysis method with analysis type as a 
parameter. Subsequent calls to analyse() 
method with a container reference will append 
information produced by the current analysis to 
the container.  Some analyses have order con-
straints that are checked before each analysis is 
performed. For example, data-flow analysis 
must precede color graph construction. 

  Classes that implement the 
Transformation interface make necessary 
updates of the program code and perform 
transformations between different code repre-
sentations.  

  Relations between transformations and 
analyses form a complex directed graph. Since 
every transformation and analysis has to de-
clare precedence constraints, the framework 
performs automatic verification of the optimi-
zation sequence.   

  To add a new transformation or analysis it 
is ample to subclass a suitable interface, de-
clare precedence constraints and determine 
input and output representations. This way, 
almost all the effort can be directed to implem- 

entation of the needed functionality. This ar-
chitecture will enable us to explore tangled 
Java optimizations faster and more efficiently.  

  Although some of frameworks mentioned 
in related work section describe basic frame-
work architecture, according to our knowledge, 
none have addressed extensibility and modu-
larity in-depth as we did. These features are 
extremely important if a large number of opti-
mization possibilities are to be explored. 
 
2.2. Containers 
 

Containers can represent Java code in sev-
eral different representations similar to repre-
sentations in Soot framework [5]. When class 
files are read, the framework creates a byte-
code level representation (BLR) for easier 
handling of packages, classes and methods. 

  BLR is an intermediate form that may also 
be used for disassembling class files. 

  Stack level representation (SLR) is used 
for control-flow and data-flow analysis and it 
is similar to Soot's Baf representation. We also 
use SLR for a graph-coloring analysis that re-
duces the number of used local variables and 
for peephole optimization. 

To use standard code optimization tech-
niques [6], stack code has to be transformed to 
three- address instruction form [that is called 
register level representation and is similar to 
Soot’s Jimple]. Most of the optimizations are 
performed on the register level representation 
(RLR). 

RLR is used as a basis for optimizations 
such as common sub-expression elimination, 
constant folding and dead code elimination. 
 

3. Transformations and optimizations 
 

According to Pugh [7], Java memory model 
prohibits some compiler optimizations. Pugh 
proposes a relaxed memory model that we use 
for our optimizations. An object field access or 
update cannot be moved across synchroniza-
tion boundaries or synchronization points like 
running a new thread. We impose a strict order 
on write operations and permit read reordering 
if data dependencies allow it. Any method call 
between field referencing instructions might 
have a side effect, so we conservatively do not 
reorder such instructions. 

We plan to implement side effect analysis 
in the future. Accepting these rules, the opti-



mizer cannot create invalid code for single 
processor machines, neither for properly syn-
chronized multiprocessor programs.  

Another problem in Java optimization are 
exceptions. Currently, all athrow instructions 
mark the end of the control flow block in our 
framework. An instruction that can throw an 
exception must not be moved outside of its 
catch block. More relaxed alternative to this 
rule is proposed in [8]. 

 
 3.1. SLR to RLR 
 

For transformation from SLR to RLR we 
use the stack map built by the dataflow analy-
sis. Local variables can be mapped directly to 
three address instructions that are further used 
for code optimization. Temporary registers, 
used for storing values from the stack, are 
referenced by the slot index. Currently, the 
framework determines only the basic types of 
data in local variable and temporary registers. 
Example of SLR to RLR transformation: 

 
SLR          RLR 
iconst_1     #0int = 1 
iconst_2     #1int = 2 
iadd         #0int = #0int + #1int 
store x      x = #0int 
 
3.2. RLR to SLR 
 

A sequence of bytecodes is defined for 
every register instruction in RLR. Example of 
RLR to SLR transformation: 

 
RLR                    SLR 
#0int = #0int + #1int  load #0int 
x = #0int              load #1int 
                       iadd 
                       store #0int 
                       load #0int 
                       store x 

 
It is obvious that such a transformation will 

generate load-store pairs that can be elimi-
nated. We apply peephole optimization to such 
code to eliminate load-store pairs and to ex-
change expensive code patterns with cheaper 
ones. 

Transformation from RLR to SLR leaves a 
messy code that has to be cleaned up using 
peephole optimization. At the moment, only 
basic pattern substitutions are performed. 
Some slow instruction sequences re-
main.separator 

These patterns are easily optimized in JIT 
compiler and do not have an impact on JIT 
run-times. Interpreter, on the other way, cannot 
optimize them what results in slower execution 
times.  
 
3.3. Optimizations 
 

Implemented copy propagation optimiza-
tion is local and propagates values only 
through basic control flow blocks. It scans all 
the instructions in the block and creates the list 
of (variable, value) pairs. If a variable from 
the list of pairs is later found on the right side 
of the association, it can be substituted with the 
value. The same optimization is applied to 
fields in objects. 

The common sub-expression analysis scans 
bytecodes and creates (expression, local 
variable) pairs. If the same expression is later 
used, local variable can be used instead. For 
every instruction x=expression1, the pair list is 
searched for any expression equal to 
expression1. If there is such a pair (loc_var_y, 
expression1), x=expression1 is substituted 
with x=local_var_y. 

Before running dead code elimination, we 
do the dataflow and the variable aliveness 
analysis on the code. If a local variable is not 
alive in the next instruction that means it is not 
used and we purge the instruction if it does not 
have any side effects. Our framework also 
performs constant folding. 

The type analysis and the side-effect analy-
sis [8] would enhance the efficiency of copy 
propagation and common sub-expression 
elimination, and we are currently implement-
ing them. 

Studying the results of the aliveness analy-
sis, we have noticed that local variables can be 
allocated in less slots then javac (SUN JDK 
v1.4.0.) compiler does.  

  For that purpose we have devised a heu-
ristic modification of graph-coloring algorithm 
that is similar to one presented in [12] with the 
difference that we do not reconnect node to 
graph once it is disconnected. Colors are allo-
cated before disconnection.  

  Soot [5] framework uses interference 
graphs for this purpose and reports slowdowns 
caused by basic code transformations that in-
clude local variable packing and transforma-
tion from stack code to register code and back. 
They have not reported separate results for 
local variable packing and representation trans- 



formations, as we will. According to our 
knowledge, other frameworks have not 
addressed these issues.  
 
4. Performance evaluation 
 
4.1. Benchmarks 
 

For measuring the effect of our analyses 
and transformations, we have used benchmarks 
from JavaGrande benchmark suite. These 
benchmarks are computationally demanding 
Java applications that are available freely from 
the Internet [9]. We have chosen a subset of 
applications that have large processor power 
requirements, since our main intension is to cut 
on execution time applying code optimizations. 
All benchmarks we used are named in Table 1. 
Benchmark numbers from the table are used 
later as axis labels in speed-up bar graphs. 

 
Table 1. Benchmarks 

No Benchmark Code size [kb] 
1 Crypt 8 
2 FFT 8 
3 LUFact 9 
4 Series 26 
5 SOR 14 
6 SparseMatmult 6 
7 RayTracer 6 
8 Search 6 

 
Crypt performs IDEA encryption and de-

cryption of an array of 20M entries.  FFT per-
forms a one-dimensional forward transform of 
8.4M complex numbers exercising complex 
arithmetic and trigonometric functions. LUFact 
is a Java version of popular Linpack bench-
mark that solves 1k X 1k linear system   using 
LU factorization followed by a triangular 
solve. Series computes 100k fourier coeffi-
cients and exercises transcendental and trigo-
nometric functions. SOR performs 100 itera-
tions of successive over-relaxation on a 1500 X 
1500 grid. SparseMatmult performs a 100k X 
100k sparse matrix multiplication. RayTracer 
renders 3D scene containing 64 spheres at a 
resolution of 150 X 150 pixels. Search (also 
known as Fhourstones) solves positions in the 
game of connect-4 played on a 7x6 board. 

The platform used for running benchmarks is 
Intel Klamath 333 MHz, 384 MB RAM and 
RH Linux v7.2, SUN Java v1.4.0 virtual ma-
chin

chine. We use Linux time command to get the 
CPU time spent in benchmark execution in 
user mode.  

  We have created a TCL script that runs 
benchmarks, computes confidence intervals, 
compares results with Javac v.1.4.0 compiled 
code runtimes and generates a report. Script 
runs benchmarks 10 times and computes 95% 
confidence intervals. We could not measure 
any statistically significant difference between 
results obtained on lightly and heavily loaded 
machine. Anyway, we tried to keep the ma-
chine lightly loaded while benchmarks were 
running. Virtual machine start-up time is in-
cluded in every execution time and for all 
benchmarks. 

  We decided to test our optimizations also 
with pure interpreted execution, because inter-
preters are better solution for some problems, 
for example where predictability is needed, and 
because we assume that the same optimizations 
that benefit interpreters would benefit direct 
Java execution on Java processors. 
 
4.2. Results 
 

   The influence of basic SLR-RLR and 
RLR-SLR transformations is shown on Fig.2. 
Black bars represent JIT runtimes and hatched 
bars interpretation execution time. As de-
scribed earlier, these transformations are nec-
essary before any other optimizations can be 
performed and for creating stack code from 
register level representation. These transfor-
mations increase the number of unnecessary 
instructions that can be partially eliminated 
using peephole optimization. Another impor-
tant effect is that local variables are allocated 
in ad-hoc manner and some slots might be 
empty.  

 
Figure 2. Basic transformations influence 

 
  The effect of remapping local variables 

with color-graph algorithm is shown in Fig. 3.  



 
Figure 3. Graph-coloring effect 

 
 J4 means JIT execution speedup for 

benchmark number 4, the letter I is for inter-
preted execution. Black bar means that 
speedup is not statistically significant with 
95% confidence interval.  

  Although some benchmarks perform bet-
ter, it is surprisingly to see that more compact 
variable mapping can lead to large slowdowns, 
especially for JIT execution. Our heuristic 
graph-coloring algorithm achieved the average 
reduction of 0,44 local variable slots per 
method. Dense local variable mapping can 
result in more code register dependencies in 
JIT generated native code leading to less in-
struction level parallelism and slower code 
execution. The heuristic algorithm does not 
give special priorities to local variables in 
loops what can result in removing local vari-
ables used in loops in further slots. Currently 
we are working on a smarter local variable 
mapping.  

 In Fig.4. we present combined results from 
representation transformations and graph-color 
local variable mapping. One of negative ef-
fects, namely sparse local variable mapping, 
has been corrected with graph-coloring, so we 
get better runtimes than in Fig. 2, especially for 
JIT execution. Significant negative impact of 
graph coloring on RayTracer benchmark has 
remained. 

 
Figure 4. Combined effect 

 
 

  Run-times of benchmarks optimized with 
our framework without color-graph optimiza-
tion are illustrated in Fig. 5. 

 
Figure 5. Optimized code speed-up 

 
It’s easy to see that optimizations have al-

ways a beneficial effect comparing it with 
artifacts created with basic necessary code 
transformations shown in Fig. 2. The effect of 
both optimizations and color-graph local vari-
ables mapping is illustrated in Fig. 6.  

 
Figure 6. Optimized code with color-graph 

optimization 
 

  The average speed-up for JIT execution is 
4.17% and speed-up computed as a weighted 
arithmetic mean is 13.81%. Only statistically 
significant values were included in computa-
tion. The weighted arithmetic mean is so large 
because Series benchmark represents 72.2% of 
total execution time for all benchmarks and has 
16.89% speed-up. Such a mean tells us how 
much is the total run time for chosen bench-
mark kernel reduced, but 4.17% is a more reli-
able speed-up measure. It is interesting to note 
that the negative effect of graph coloring for 
the RayTracer (J7) benchmark is optimized 
away. 

  Interpreted execution times are slowed 
down 9.62% on average and weighted arith-
metic mean is 5.55%. Although optimizations 
have ameliorated the negative impact of basic 
transformations (SLR2RLR and RLR2SLR), it 
is not enough to achieve the interpreted execu-
tion speed-up. The main reasons are code size 



increase and inefficient code patterns resulting 
from basic transformations. Our average 
speed-up is comparable to results presented in 
[5], although we use different benchmarks. In 
interpreted execution our results are worse than 
in [5] because computationally intensive 
benchmarks are more sensitive to code imper-
fections.  
 
5. Related work 
 

  There are a few Java optimization frame-
works like Soot [10], Briki [11] and Cream [8]. 
Soot is the most advanced framework that 
includes the side effect analysis [13] and 
method inlining [14]. The architecture of Soot 
is not described in detail, but representations 
are explained. Briki optimizes array and field 
layout and does not implement any other op-
timizations. Cream has completely different 
architecture, without clearly defined represen-
tations and implements very detailed side ef-
fect analysis. All these frameworks work on 
compiled class files. 

  There are also other possibilities for Java 
optimization. A promising approach is attribute 
annotation to class files. These attributes give 
virtual machine more information about pro-
gram. Significant speed-ups have been demon-
strated in [15]. The major shortcoming of this 
approach is that most of virtual machines do 
not support these additional attributes.  

  Compiling Java to native code achieves 
the best performance but at the cost of port-
ability [16]. 

  
6. Conclusion 
 

A new architecture for optimization frame-
works is proposed. The system is written com-
pletely in Java and it is easily extensible be-
cause of its modular architecture. We have 
described the design, functionality and effi-
ciency of our framework.  

We have analyzed the influence of basic 
transformations that are necessary for further 
optimizations and measured the influence of 
different ways to map local variables in slots.     

Benchmarks we have used are computa-
tionally intensive and very sensitive to code 
quality. Our next goal is to improve the code 
quality of basic transformations and local vari-
ables mapping. 
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