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Abstract — The biggest challenges in using Blind Source 

Separation (BSS) algorithms, such as those based on 

Independent Component Analysis (ICA), arise from the inability 

to determine the reliability of the resulting independent 

components (signals). In sensitive areas, such as machinery 

diagnostics, such uncertainties could also have a negative impact 

on decision-making processes. For that reason, any additional 

confirmation that yields a better understanding of BSS 

algorithm capabilities and the issues that may arise from using 

this method in solving audio-based diagnostic problems is 

desirable. In this paper, the focus is placed on On Load Tap 

Changer (OLTC) audio-based diagnostics. The dominant audio 

signals that mix with the carrier of the useful diagnostic 

material, in this case, express stationary character. Given the 

fact that the targeted OLTC audio fingerprint usually 

represents a highly non-stationary signal that appears only in a 

certain period when compared to these interferences, it is 

possible to develop a source separation method based on a 

simple modeling approach. For that purpose, in this paper, a 

non-linear latest square curve fitting method was used for the 

extraction of the OLTC audio fingerprint, which was then used 

as a reference for testing the source separation efficiency of 

several different ICA algorithms. 
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I. INTRODUCTION  

Blind Source Separation algorithms based on Independent 
Components Analysis prove to be very useful and effective in 
solving various problems in different areas, including audio 
processing, biomedical signal processing, image processing, 
telecommunications, etc. A very good review of BSS 
application specifics in different areas can be found in several 
chapters of the Handbook of BSS: ICA and applications [1]. 
Over the years, many different ICA algorithms have been 
developed. The ICALAB [2][3], a MATLAB Toolbox for 
signal processing (Ver. 3), used for ICA-based blind source 
separation in this paper, incorporates various ICA algorithms, 

such as: Fixed Point or FastICA algorithm [4], POWERICA 
(Power iteration for ICA) [5],  EFICA (Efficient Variant of 
FastICA) [6], NG-FICA (Natural Gradient - Flexible ICA) [7], 
ThinICA [8], ERICA (Equivariant Robust Independent 
Component Analysis) [9], UNICA (Unbiased qNewton 
algorithm for Independent Component Analysis) [10], etc. 

When it comes to audio-based machinery diagnostics, 
usually the problem comes down to isolating the useful audio 
signal from the audio mixture simultaneously formed by the 
targeted source and different “interfering” audio sources. The 
ability to isolate targeted audio signals enables the application 
of different diagnostic methods in order to validate the current 
“health” of the machine. The biggest challenge that arises here 
lies in the inability to determine the reliability of the BSS 
algorithm results. The above problem also reflects the 
reliability of the diagnostic results in the condition assessment 
process. An alternative to this approach could be found in the 
analog or digital filtering of the recorded audio signal mixture. 
However, this approach is often ineffective as the useful and 
the interfering signals can overlap over a certain frequency 
range, which prevents full removal of the external 
interference. Additional problems with the filtering approach 
arise from its inability to precisely define filter parameters and 
the proper thresholds. Such an approach would require the 
usage of adjustable filters for different situations. Also, 
additional problems occur with filtering the non-stationary 
signals, which can often be encountered in practice. For these 
reasons, taking into the consideration that the signal recording 
for the purpose of audio based machinery diagnostics is often 
performed in an uncontrolled environment, where different 
audio sources can be randomly activated, BSS seems to be the 
more logical approach to solving problems related to the 
audio-based machinery condition assessment. 

In [11], the authors identify two major problems in the 

application of the ICA: (1) the finite sample size that induces 

statistical errors in the estimation process and (2) the real data 

never exactly follows the ICA model. Real audio mixtures are 

always affected by different factors starting with the 
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imperfection of the recording system itself, to the delays and 

distortions resulting from reflections and absorptions of 

sound waves by different surfaces during their propagation in 

the analyzed space. However, there exist several developed 

methods that can help in estimating the performance of the 

ICA algorithm. In [11][12], the authors describe the statistical 

method for validating the independent components’ reliability 

based on observing the results derived from the repeated 

application of the ICA algorithm on the given data set with 

different initial values. The basic idea behind the procedure is 

in observing the density of the clusters of the estimates 

formed by their mutual similarities. A similar procedure can 

be used in the estimation of the algorithm stability through 

the usage of the differently bootstrapped data sets. It should 

be noted that over the years, several different approaches 

addressing ICA components' reliability for different areas of 

application, such as those described in [13] and [14], have 

been developed. 

 

However, in some sensitive areas, such as machinery 

condition assessment, the above-mentioned methods may be 

considered inadequate for validating the BSS algorithm 

performance. The reliability of the output data will affect the 

reliability of the diagnostic method and can directly affect the 

decision on whether the tested object needs to be repaired or 

replaced. Again, such a decision can lead to increased and 

unwanted machinery maintenance costs or, in the worst-case 

scenario, become ineffective in preventing potential damage 

and life-threatening situations. For that reason, in cases like 

this, it is desirable to extend the ICA reliability test method 

by any available means. 

 

II. SPECIFICITIES IN SEPARATING SIGNALS RELATED TO 

OLTC DIVERTER SWITCH OPERATION 

The focus of this paper is on the extraction of the audio 

signal produced by the OLTC diverter switch operation, 

which has been proved to be the carrier of the useful 

diagnostic material [15]. In the previous paper on this topic 

[16], one of the possible testing method, proposed is 

recording the OLTC audio fingerprints on a completely de-

energized transformer in a quiet and isolated environment and 

the usage of these records as a reference for comparison with 

the estimates derived from applying the FastICA algorithm to 

the signal mixtures recorded on the active transformer. 

However, the problem with the proposed method is that the 

most active transformers are placed outside and it would be 

very hard to obtain satisfying conditions for recording the 

referent signals that could be used for ICA performance 

testing. On the other hand, referent signals taken from the 

newly produced transformers in the laboratory/factory 

environment do not necessarily need to coincide with the 

audio signals taken on the already installed OLTC of the 

same type, since again these records can be affected by many 

factors, including their age, number of operations or relative 

position to different rigid structures (such as walls or other 

machinery). Even in cases when the above would not be true, 

the absence of the adequate database with the referent audio 

fingerprints for different OLTC types would still present a 

problem. For that reason, another method for the verification 

of ICA algorithm performance is proposed here. Namely, the 

OLTC audio fingerprint interesting for analysis for diagnostic 

purposes represents a characteristic non-stationary signal that 

appears in a short time interval and afterward goes 

completely silent. Figure 1 shows a typical OLTC diverter 

switch audio fingerprint recorded on the de-energized 

transformer placed in a relatively quiet and isolated 

environment. 

 
Figure 1Typical OLTC audio fingerprint 

 

When the transformer is energized, the OLTC audio 

fingerprint becomes “polluted” with the different sound 

signals produced by the transformer or nearby machinery. To 

confirm the above, several microphones were installed near 

the OLTC of the energized transformer. Several audio 

recordings, each corresponding with one OLTC TAP 

transition were captured by the multi-channel Tascam DR-

680 field audio recorder. The OLTC was controlled manually 

by the system operator. A special permit issued by the electric 

utility was needed to perform such a test. Figure 2 shows the 

transformer test site, while Figure 3 shows the recorded 

signal mixtures. 

 

     
Figure 2 Transformer test site 

 
Figure 3 Audio signal mixture recorded on the active transformer 

 

By analyzing the recorded signal mixtures, one can easily 
spot a portion of the signal that can be related to the OLTC 
diverter switch operation. Under the assumption that no new 
audio sources are activated during this short time interval, the 
recorded audio mixture can be divided into active and non-
active OLTC diverter switch zones. 



The basic idea is to model the part of the signal mixture 

where the OLTC diverter switch is not active and to use this 

modeled signal as a reference for testing the performance of 

the ICA algorithm. It should be noted that such a reference 

could also be used for a semi-blind source separation 

algorithm (such as constrained independent components 

analysis – CICA [17]). However, one should be careful when 

addressing the signal mixture this way, since the assumption 

regarding the new audio sources does not have to be satisfied 

always. A typical example of the random sound source that 

can be encountered in the test field is a sound produced by 

nearby birds. However, under the given assumption, the 

output of the signal model can help not only to verify the 

reliability of ICA results but also to select the appropriate 

parameters for the ICA algorithm (such as the number of 

input signals, time frame, nonlinearity, fine-tuning, selected 

approach, etc.). In this case, a non-linear least squares curve 

fitting method was used to model the surrounding audio 

signal mixture and also for the extraction of the referent 

signal. 

III. TIME-FREQUENCY ANALYSIS OF THE RECORDED AUDIO 

SIGNAL MIXTURE  

It has already been noted that one portion of the recorded 

signal mixture expresses a high non-stationary character. For 

that reason, a Wavelet-based approach was selected as a 

signal analysis method. Discrete Wavelet Transform (DWT) 

is based on the discretization of the dilation or scale (a) and 

translation (b) parameters introduced by the continuous 

wavelet transform (CWT), which for a finite-energy signal 

s(t) is defined as the integral of a signal s(t) multiplied by the 

scaled and shifted versions of a carrier wavelet function [18]: 

            
 

  
   

   

 
                

 

 

 

where a and b represent scaling and translation parameters, 

respectively.  

 

In its discrete form, the dilation parameter is usually 

substituted by the dyadic scale 2
m
, m ∈ Z, m > 0, while the 

translation parameter b is represented by n·2
m
, where the 

variable n now defines the time shift [19]: 

 

  
      

 

          
 

This transformation is often based on a series of 

interconnected low-pass filters that decompose signals into a 

series of low frequency approximating and high-frequency 

detail coefficients. The method is known as multiresolution 

analysis and the transformation is represented by: 
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Here, using DWT the recorded signals were decomposed 

at level 8, and the Sym2 mother wavelet function was 

intuitively selected to perform this decomposition. Figure 4 

shows one of the decomposed signal mixtures.  

 

 
Figure 4 Signal decomposition at level 8 

 
Analysis of the approximation and the detail coefficients 

shows that the signal overlap is most evident in d5-d7 (lower 
frequency section) and that some high-frequency noise is 
presented over the entire analyzed interval, which is most 
evident in high-frequency detail coefficients d1. 

IV. IDENTIFICATION OF THE INTERESTING SIGNAL FRAMES 

AND EXTRACTION OF THE REFERENT OLTC FINGERPRINT  

Further analysis required separation of the stationary and 

non-stationary signal parts (time frames which can be related 

to the active and non-active OLTC diverter switch operation).  

As it is always useful to define the procedure that is going to 

perform the given task automatically, a simple method for 

separating the two zones is described here: first, the first 

derivative with respect to the time step n of the signal was 

calculated over the entire analyzed time interval. Figure 5 

shows the resulting signal.  

 
Figure 5 First derivative of the recorded signal mixture  

 

The resulting signal, that contains       samples, was 

now buffered into the       no-overlapping data segments 

(frames), each containing n=M/N samples. In case the signal 

length is not divisible by the number of buffers, the last frame 

is zero-padded. For each frame, the mean and variance are 

calculated, according to: 

      
 

 
   

       

     

 



     
 

 
            

       

     

 

 
where              

 
The basic idea is to observe the absolute value of the 

difference between mean and variance over the entire time 

interval, which is expected to change as the stationarity of the 

signal is increasing/decreasing. Figure 6 shows the resulting 

diagram obtained by the described procedure, with selected 

M=100. 

 
Figure 6 The difference between mean and variance in the defined frames 

 

Now, with the proper selection of the threshold, it is easy 

to identify the targeted signal frames. Here, a threshold is 

selected according to: 

 

                                    
 

where     is the signal shown in Figure 6.  

 

Signal     is now divided into three frames: frame T (that 

represents the Targeted active OLTC signal frame) and 

frames S1 and S2 (that represent signal intervals related to the 

surrounding interfering sounds). The idea is to use signal 

portions in the non-active OLTC time frames as a prediction 

data set to predict the signal values in the frame T where the 

OLTC audio source is active. The predicted signal values can 

then be used for extraction of the OLTC audio fingerprint. 

 

Samples from any of the frames S1 or S2 can be used in 

the non-linear curve fitting process. However, the selection 

criterion here is based on the number of samples. The zone 

that contains more samples is selected as the one for the 

further analysis. A new data set sn(n), n=1,2,...,N is now used 

as the input data for curve fitting. A targeted curve is 

represented as the Fourier series model, as follows: 

 

          

 

   

                    

 

A non-linear least squares curve fitting method was used to 

fit sinusoidal curve     to the given data set    . The goal is to 

estimate set of model parameters                   
         , by minimizing last square (LS) error criterion [20]: 

 

                          
 

As the LS error, in this case, is highly non-linear, the 

implementation of the Levenberg-Marquardt algorithm in 

Matlab was used to solve the given problem. After several 

initial attempts, it was concluded that the method modeled the 

frequency content above 100 Hz quite well. Under a 

reasonable assumption (author's note) that the frequency 

content below 100 Hz is not the carrier of the useful 

diagnostic material, it was concluded that high pass digital 

filter (HPF), with selected cut-off frequency of 100 Hz, and 

48dB slope, can be used to remove the low frequency 

harmonics. Figure 7 (up) shows the original signal samples 

and the estimate over the entire interval S1, while the residual 

plot is shown in Figure 7 (down). 

 

 
Figure 6 Original signal, signal estimate (up) and the residuals (down) 

 

After filtering, the obtained R-square value, for the 

presented case, was over 0.95, which practically means that 

the estimated curve fits explains over 95% of the total 

variation in the data about the average. The resulting signal 

    was now used for the extraction of the referent OLTC 

fingerprint, through the procedure graphically described in 

Figure 7.  

 
 

Figure 7 OLTC fingerprint extraction procedure 

 

V. TESTING PERFORMANCE OF DIFFERENT ICA 

ALGORITHMS ON SIGNALS RECORDED ON THE ACTIVE 

TRANSFORMER  

As previously noted, a microphone array, consisting of six 

condenser microphones, placed at a distance of some 20 cm 

from each other, was used to simultaneously record audio 

signal mixtures during each OLTC TAP operation on a 

YNa0(d5) transformer. After initial signal analysis, it was 

concluded that the record captured by the first microphone 

quite differs from the other five signals. For that reason, this 

record is labeled as unreliable and disregarded for the further 

analysis. The remaining five records were used as input 

signals for the different ICA algorithms.   
 



 

 

 

 

 

 

 

 

 

The method used for testing the performance of different 
ICA algorithms for extraction of the OLTC diverter switch 
audio fingerprint can be described as follows: 

(1) Apply digital filter, with selected 100 Hz cut-off 
frequency and 48 dB slope, to all captured signal 
mixtures             . Record the filtered signals 
               . 

(2) Find the signal mixture                          
that is mostly correlated with others. Use this signal as 
an input for the extraction procedure of the referent 
OLTC fingerprint (as described in IV). Record the 
referent OLTC fingerprint       

(3) Apply different ICA algorithms to all signal mixtures 
               . Use the Monte Carlo (MC) option 

to execute 100 trials for the selected ICA algorithm 
with a randomly generated matrix. Record mean 
values of MC ICA estimates (independent 
components - IC’s) as the  new data set 
                   

(4) Isolate frame T (see IV) from the referent OLTC      

and the obtained independent components 
                  . Record the new data set       , 

                     . 

(5) Find root-mean-square (RMS) envelopes for each 
signal in the defined T frame. Use a window with a 
length of 20 samples. 

(6) Find both Pearson and Spearman correlation 
coefficients between the RMS envelope of the referent 
OLTC fingerprint and the envelopes of the 
independent components, according to [21]: 

Pearson:         
                

   

                   
   

  

where    and    represent sample means of {  } and  
{  }. 

Spearman:           
    

  
   

       
 

where   , i=1,2,…,n represent differences in the ranks 
of     and    (               . Actually, it can 
be stated that the Spearman correlation coefficient  

 

 

 

 

 

 

 

 

 

represents the Pearson correlation coefficient applied 
to the ranks R. 

(7) Find the maximum Pearson and Spearman correlation 
coefficient between the referent signal and the 
different ICA estimates. This value represents the 
correlation coefficient for the targeted estimate. Use 
these values to compare the performance of different 
ICA algorithms. 

The described procedure was conducted on 4 different sets 
of records that correspond to 4 different TAP transitions (1-up, 
1-down, 1-down, and 1-up). Table I shows the obtained 
results. The results indicate that, in average, FPICA, 
POWERICA, and NF-FICA had had the best performance 
(almost 0.7 average value of   , and even over 0.7 for    , 

which suggests strong linear correlation). On the other hand, 
the obtained values of correlation coefficients are the lowest 
for ERICA and UNICA.  

The described procedure can also be used to optimize the 
set of input parameters for the selected ICA algorithm. For 
instance, for the selected FPICA algorithm it is desirable to 
determine which non-linearity function is the most suitable for 
a given task. For that reason, the described procedure was 
repeated on the signals recorded during OLTC tap transition 
TAP4: 1-UP, with the different selected non-linearity 
functions (Hyperbolic tangent, Gauss, Cubic, Opt. of cum. 

order 5 and order 6).  Figure 8 shows the obtained    and    

values for each case.  

 

Figure 8 FPICA, different non-linearity functions  
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TABLE I: CORRELATION OF THE REFERENT OLTC FINGERPRINT AND THE TARGETED ICA ESTIMATE 
 TAP1: 1-UP TAP2: 1-DOWN TAP3: 1-DOWN TAP4: 1-UP AVERAGE 4 TAPS 
                               

INITIAL 

CORRELATION 0,4939 0,5416 0,4067 0,4760 0,3702 0,4261 0,4037 0,3815 0,4186 0,4563 
FPICA 0,7073 0,7554 0,6892 0,7330 0,5985 0,6561 0,6391 0,6944 0,6585 0,7097 

POWERICA 0,5760 0,6092 0,7297 0,7192 0,674 0,6967 0,7663 0,7817 0,6865 0,7017 
EFICA 0,6583 0,6948 0,6875 0,7289 0,5804 0,6208 0,5246 0,5334 0,6127 0,6445 

NG-FICA 0,6795 0,7302 0,6808 0,7005 0,667 0,6857 0,7599 0,7693 0,6968 0,7214 
THINICA 0,6577 0,7218 0,6811 0,7287 0,5914 0,6301 0,6270 0,6660 0,6393 0,6866 

ERICA 0,6111 0,6445 0,6945 0,7188 0,5394 0,5778 0,5246 0,5334 0,5924 0,6186 
UNICA 0,6234 0,6517 0,6941 0,7134 0,5504 0,5877 0,5254 0,5309 0,5983 0,6209 

 



The obtained results show that the highest correlation is 
obtained when using Opt. of cum. order 6 as a nonlinearity 
function for FPICA BSS algorithm. 

VI. CONCLUSION  

In audio-based machinery diagnostics, Blind Source 
Separation is mostly used for extraction of the audio signal, 
which is considered to be the carrier of the useful diagnostic 
material, from the audio mixture simultaneously formed by 
the targeted source and different “interfering” audio sources. 
However, in such sensitive areas, the inability to determine the 
reliability of the resulting independent components (signals), 
leads to uncertainties that could also have a negative impact 
on decision-making processes. For that reason, any additional 
confirmation that yields a better understanding of BSS 
algorithm capabilities and the issues that may arise from using 
this method in solving audio-based diagnostic problems is 
desirable. The fact that the targeted OLTC audio fingerprint 
usually represents a highly non-stationary signal that appears 
only in a certain period when compared to the interferences in 
OLTC audio-based diagnostics, is used in this paper for 
developing the method for the extraction of the referent OLTC 
audio fingerprint. The developed method is based on the 
simple modeling approach. This signal was used as a reference 
for testing the performance of various ICA algorithms. The 
method was tested on the audio signals recorded during OLTC 
operation on the active YNa0(d5) transformer. The obtained 
results indicate that, on average, ICA-based Blind Source 
Separation algorithms FPICA, POWERICA, and NF-FICA 
had the best performance. The described procedure can also be 
used to optimize the set of input parameters for the selected 
ICA algorithm. The method could also be improved. For 
instance, by using a different modeling approach, it is 
probably possible to make a better signal prediction, and thus 
improve the "quality" of the reference OLTC print. This can 
be seen as a future work proposal. 
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