<table>
<thead>
<tr>
<th>Co-Chairs:</th>
<th>Members:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. D.Sc. Georgi Popov, DHC, Technical University of Sofia, BG</td>
<td>Acad. Igor Bychkov Institute for System Dynamics and Control Theory SB RAS RU</td>
</tr>
<tr>
<td>Prof. Dr. Dr. Jivka Ovtcharova, DHC, Karlsruhe Institute of Technology, GE</td>
<td>Cor. member Alexey Beliy National Academy of Sciences of Belarus BY</td>
</tr>
<tr>
<td></td>
<td>Cor. member Svetozar Margenov Bulgarian Academy of Science BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Alexander Afanasyev Institute for Information Transmission Problems RU</td>
</tr>
<tr>
<td></td>
<td>Prof. Alexander Guts Omsk State University RU</td>
</tr>
<tr>
<td></td>
<td>Prof. Andrzej Golabczak Technical University of Lodz PL</td>
</tr>
<tr>
<td></td>
<td>Prof. Andrey Firsov Saint-Petersburg Polytechnic University RU</td>
</tr>
<tr>
<td></td>
<td>Prof. Bobek Shuklev Ss. Cyril and Methodius University of Skopje MK</td>
</tr>
<tr>
<td></td>
<td>Prof. Boris Gordon Tallinn University of Technology EE</td>
</tr>
<tr>
<td></td>
<td>Prof. Branko Sirok University of Ljubljana SI</td>
</tr>
<tr>
<td></td>
<td>Prof. Claudio Melchiorri University of Bologna IT</td>
</tr>
<tr>
<td></td>
<td>Prof. Cveta Martinovska Goce Delchev University, Stip MK</td>
</tr>
<tr>
<td></td>
<td>Prof. Dale Dzemydiene Mykolas Romeris University, Vilnius LT</td>
</tr>
<tr>
<td></td>
<td>Prof. Dimitar Yonchev Free Bulgarian University, Sofia BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Dimitrios Vlachos Aristotle University of Thessaloniki GR</td>
</tr>
<tr>
<td></td>
<td>Prof. Dragan Perakovic University of Zagreb HR</td>
</tr>
<tr>
<td></td>
<td>Prof. Galina Nikolcheva Technical University of Sofia BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Galina Zhavoronkova National Aviation University UA</td>
</tr>
<tr>
<td></td>
<td>Prof. Gerard Lyons National University of Ireland, Galway IE</td>
</tr>
<tr>
<td></td>
<td>Dr. Giovanni Pappalettera Politecnico di Bari IT</td>
</tr>
<tr>
<td></td>
<td>Prof. Henrik Carlsen Technical University of Denmark DK</td>
</tr>
<tr>
<td></td>
<td>Prof. Idilia Bachkova University of Chemical Technology and Metallurgy BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Idit Avrahami Ariel University IL</td>
</tr>
<tr>
<td></td>
<td>Prof. Inocentiu Maniu Politehnica University of Timisoara RO</td>
</tr>
<tr>
<td></td>
<td>Prof. Jurii Bazhal National University of Kyiv-Mohyla Academy UA</td>
</tr>
<tr>
<td></td>
<td>Prof. Jürgen Köbler University of Offenburg DE</td>
</tr>
<tr>
<td></td>
<td>Prof. Jiří Maryska Technical University of Liberec CZ</td>
</tr>
<tr>
<td></td>
<td>Prof. Katia Vutova Institute of electronics, Bulgarian Academy of Sciences BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Lappalainen Kauko University of Oulu FI</td>
</tr>
<tr>
<td></td>
<td>Dr. Liviu Jalba SEE C Manufacture Program RO</td>
</tr>
<tr>
<td></td>
<td>Prof. Luigi del Re Johannes Kepler University, Linz AT</td>
</tr>
<tr>
<td></td>
<td>Prof. Majid Zamani Technical University of Munich DE</td>
</tr>
<tr>
<td></td>
<td>Prof. Martin Eigner Technical University of Kaiserslautern DE</td>
</tr>
<tr>
<td></td>
<td>Dipl.-Kfm. Michael Grethler Karlsruhe Institute of Technology DE</td>
</tr>
<tr>
<td></td>
<td>Prof. Michael Valasek Czech Technical University in Prague CZ</td>
</tr>
<tr>
<td></td>
<td>Prof. Miljana Suknovic University of Belgrade RS</td>
</tr>
<tr>
<td></td>
<td>Prof. Miodrag Dasic University of Belgrade RS</td>
</tr>
<tr>
<td></td>
<td>Prof. Mladen Velev Technical University of Sofia BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Murat Alanyali TOBB University of Economics and Technology TR</td>
</tr>
<tr>
<td></td>
<td>Prof. Naïsa Yusupova Ufa State Aviation Technical University RU</td>
</tr>
<tr>
<td></td>
<td>Prof. Nina Bijedic Dzemal Bijedic University of Mostar BA</td>
</tr>
<tr>
<td></td>
<td>Prof. Ninoslav Marina University of Information Science and Technology – Ohrid MK</td>
</tr>
<tr>
<td></td>
<td>Prof. Olga Zaborovskaia State Inst. of Econom., Finance, Law and Technologies RU</td>
</tr>
<tr>
<td></td>
<td>Prof. Pavel Kovach University of Novi Sad RS</td>
</tr>
<tr>
<td></td>
<td>Prof. Petar Kolev University of Transport Sofia BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Peter Korondi Budapest University of Technology and Economics HU</td>
</tr>
<tr>
<td></td>
<td>Prof. Peter Sincak Technical University of Košice SK</td>
</tr>
<tr>
<td></td>
<td>Prof. Petra Bittrich Berlin University of Applied Sciences DE</td>
</tr>
<tr>
<td></td>
<td>Prof. Predrag Dasic High Technical Mechanical School, Trstenik RS</td>
</tr>
<tr>
<td></td>
<td>Prof. Radu Dogaru University Politehnica of Bucharest RO</td>
</tr>
<tr>
<td></td>
<td>Prof. Raicho Ilarionov Technical University of Gabrovo BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Raoul Turmanidze Georgian Technical University GE</td>
</tr>
<tr>
<td></td>
<td>Prof. René Beigang Technical University of Kaiserslautern DE</td>
</tr>
<tr>
<td></td>
<td>Prof. Rozeta Miho Polytechnic University of Tirana AL</td>
</tr>
<tr>
<td></td>
<td>Prof. Sasho Guergov Technical University of Sofia BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Seniye Umit Oktay Firat Marmara University, Istanbul TR</td>
</tr>
<tr>
<td></td>
<td>Prof. Sreten Savicevic University of Montenegro ME</td>
</tr>
<tr>
<td></td>
<td>Prof. Stefan Stefanov Technical University of Sofia BG</td>
</tr>
<tr>
<td></td>
<td>Prof. Svetan Ratchev University of Nottingham UK</td>
</tr>
<tr>
<td></td>
<td>Prof. Svetlo Svetkovski St. Cyril and St. Methodius University of Skopje MK</td>
</tr>
<tr>
<td></td>
<td>Prof. Tomislav Sarić University of Osijek HR</td>
</tr>
<tr>
<td></td>
<td>Prof. Vasile Cartoceanu Technical University of Moldova MD</td>
</tr>
<tr>
<td></td>
<td>Prof. Vidosav Majstorovic Technical University of Belgrade RS</td>
</tr>
<tr>
<td></td>
<td>Prof. Vjaceslav Bobrov Riga Technical University LV</td>
</tr>
<tr>
<td></td>
<td>Prof. Vladislav Aliksieiev Lviv Polytechnic National University UA</td>
</tr>
</tbody>
</table>
THEMATIC FIELDS
TECHNOLOGICAL BASIS OF “INDUSTRY 4.0”
DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”
BUSINESS & “INDUSTRY 4.0”
SOCIETY & “INDUSTRY 4.0”

PROCEEDINGS

ORGANIZER
SCIENTIFIC-TECHNICAL UNION OF MECHANICAL ENGINEERING
“INDUSTRY 4.0”

108 Rakovski str., 1000 Sofia
office@industry-4.eu
www.industry-4.eu
CONTENTS

TECHNOLOGICAL BASIS OF “INDUSTRY 4.0”

ASSESSMENT OF READINESS FOR „INDUSTRY 4.0”

MODEL-BASED APPROACH OF A DECISION PROCESSING UNIT IN A SMART WOOD-PROCESSING COMPANY
M.Sc. Staliniski D., Prof. Dr.-Ing. Scholz D. .. 118

COMPUTER-AIDED MECHATRONIC DEVICES: AESTHETIC DESIGN WITH AN EMPHASIS ON GENERALIZED GOLDEN RATIO

DIGITAL MODELS APPLICATION IN INTELLECTUAL PACKAGING MANUFACTURING
Prof. dr. Palchevskiy B. .. 127

HARMONIC COMPONENTS OF ELECTRIC DRIVES WITH FREQUENCY CONTROL FOR CENTRIFUGAL MECHANISMS
Assoc. Prof. Rachev S. PhD, Assist. Prof. Lyubomir Dimitrov PhD, Eng. MSc. Ivaylo Dimitrov Ivanov .. 132

ORGANIC COMBINATION OF CONVERGING NBIC-TECHNOLOGIES AND SMART TEMP ADVANCED TECHNOLOGIES OF INDUSTRY 4.0
I. Matyushenko, Dr. Sc. of Economics, Professor, O. Azarenkova, PhD .. 135

SMART SERVICES AS SCENARIOS FOR DIGITAL TRANSFORMATION
Antonova A. .. 139

DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”

INNOVATION POTENTIAL OF AUGMENTED TECHNOLOGIES IN INDUSTRIAL CONTEXT
Asst. Prof. Dr. Eng. Nedeltcheva Galia Novakova .. 159

EFFEKTIIVNE PUSTI POVSRENEH DOLOVECHNOSTI MEDICINSKIH NAR TRENIJ
R.S. Turmanidze, S.Ye.Sheikin, G. Z. Popkhadze .. 164

CONFORMAL COOLING CHANNELS IN INJECTION MOLDING TOOLS – DESIGN CONSIDERATIONS
Ognen Tuteski M.Sc., Atanas Kocov PhD, Jasmina Caloska PhD, Zoran Spiroski PhD .. 168

INFLUENCE OF CARBON NANOTUBES AND GRAPHENE ON THERMAL AND ELECTROMAGNETIC PROPERTIES OF PLA NANOCOMPOSITES
Assist. Prof. Angelova P., Prof. D.Sc. Dr. Kotsilkoiva R., Prof. Dr. Kuzhir P. .. 172

INVESTIGATION OF RHEOLOGICAL AND SURFACE PROPERTIES OF POLY(LACTIC)ACID POLYMER / CARBON NANOFLUFFER NANOCOMPOSITES AND THEIR FUTURE APPLICATIONS
PhD student Ivanova R., Prof. D.Sc. Kotsilkoiva R. .. 176

AERIATION OF CULTURE MEDIA WITH POWDER DISPERSERS WHEN CULTIVATING YEAST CULTURES DURING MILK WHEY PROCESSING
Prof., Dr. Eng., Cor. Member of NAS of Belarus Ilyushchanka A.F., Head of the Lab. Charniak I.N., PhD of Eng., Doc. Kusin R.A., PhD of Eng., Yakimovich N.N., Res. Shunkevich A. .. 181
GAS TURBINE UPGRADE WITH HEAT REGENERATOR - NUMERICAL ANALYSIS OF ADVANTAGES AND DISADVANTAGES
Ph.D. Mrzljak Vedran, Student Perčić Gregor, Prof. PhD. Prpić-Oršić Jasna ... 184

APPLICATION OF MODERN TECHNOLOGIES AND DEVELOPMENTS IN THE RECONSTRUCTION OF "GRAF IGNATIEV" BLVD.
Prof. PhD. Eng. Todorov S., Eng. Mihaylov D. ... 188

INFRARED OPTICAL SENSORS IN BUILDING AUTOMATION
Iureva R. PhD, Timko A. ... 192

PREPARATION AND CHARACTERIZATION OF NANOSTRUCTURED FERRIC HYDROXYPHOSPHATE ADJUVANTS
N. Angelova M.Sc., G. Yordanov Ph.D. D.Sc. ... 195

ANAЛИЗ НА ВЪЗМОЖНОСТТЕ ЗА ИЗПОЛЗВАНЕ НА ТЕРМОПЛЕМЕНА СИСТЕМА С РАДИАЦИОНЕН ИЗПАРИТЕЛ ЗА ОТОПЛЕНИЕ НА СТРАДИ И ЗАГРЯВАНЕ НА ГОРЕНЦА ВОДА ЗА БИТОВИ НУЖДИ (ГБН)
eng. Traicho Trayanov ... 199

MICRO-HARDNESS OF BORIS DIFFUSION LAYERS FORMED OF SEMI PERMEABLE POWDER-METALURGICAL MATERIALS FROM THE SYSTEM Fe-C-Cu
Assoc Prof. Mitev, I., Ph.D., Eng.Vinev,I., doktorant .. 206

EXPLORING THE POSSIBILITY OF LASER CUTTING WITH CO2 LASER ON FELT IN THE RANGE FROM 1W TO 26W POWER
Chief Ass. Prof. PhD eng. Dolchinkov N., Ass. Prof. PhD Shiterev Y., Student Lilianova St., Student Boganova D., Cadet Peneva M., Cadet Linkov L., Student Nedialkov D. ... 209

EXAMINING THE POSSIBILITY OF MARKING AND ENGRAVING OF TEXTIEL USING CO2 LASER
Ass. Prof. PhD Shiterev Y., Chief Ass. Prof. PhD eng. Dolchinkov N., Student Lilianova St., Student Boganova D., Cadet Peneva M., Cadet Linkov L., Student Nedialkov D. .. 212

LASER MARKING AND CUTTING OF PLEXIGLAS WITH CO2
Ass. Prof. PhD Shiterev Y., Chief Ass. Prof. PhD eng. Dolchinkov N., Student Lilianova St., Student Boganova D., Cadet Peneva M., Cadet Linkov L., Student Nedialkov D. ... 215

ИЗСЛЕДВАНЕ НАПРЕЖЕНИЯТА, ВЪЗНИКВАЩИ В РАМАТА НА РОЛКОВИ КЪНКИ ПРИ СВОБОДНО ПРИЕМЯВАНЕ.
Инж. Алексов К., Проф. д-р Тодоров С. .. 218

MATERIAL-SCIENCE ASPECTS OF FORMATION AND EVOLUTION OF DAMAGES WHICH DEFINE THE RESOURCE EXPLOITATION OF ALUMINUM STRUCTURES OF AIRPLANES
Prof. Dr. Chernega S., eng. Abolihiina H. .. 221

EXPERIMENTAL AND SIMULATION DETERMINATION OF FRICTION COEFFICIENT BY USING THE RING COMPRESSION TEST
Assist. Prof. Yankov E., Ph.D. .. 223

BUSINESS & “INDUSTRY 4.0”

THE ROLE OF RFID TECHNOLOGY IN THE INTELLIGENT MANUFACTURING
Asst. Prof. Zeba G. PhD, M.Sc. Čičak M., Prof. Dabić M. PhD ... 226

THE DETERMINATION OF UTILIZATION LEVELS OF INDUSTRIAL 4.0 TECHNOLOGIES A REVIEW ON GARMENT ENTERPRISES OPERATING IN TRABZON
Prof. Dr. Çankaya F., Research A. Tiryaki D. .. 230

SMART MANUFACTURING AND CLOUD COMPUTING: VISION AND STATE-OF-THE-ART
Assoc. Prof. Pavel Vitiemov PhD ... 234

INTELLIGENT KNOWLEDGE MANAGEMENT IN THE SECTOR OF WASTE DISPOSAL ENTERPRISES
Prof. dr hab. Sztangret I. ... 237

MARKET ORIENTATION AND BUSINESS PERFORMANCE FROM BEHAVIOURAL PERSPECTIVE - THE CASE OF SLOVAKIA
Dr. Budinska, S., Associate Prof. Taborecka-Petrovicova, J. .. 243

BUSINESS SUCCESS OF INCUBATED STARTUPS
Ing. Richard Bednár, PhD. .. 248
OPPORTUNITIES TO ENHANCE ENERGY EFFICIENCY AND EVALUATION OF ENERGY PROJECTS IN INDUSTRIAL ENTERPRISES
Assistant Prof. Valeva K. PhD., Associate Prof. Alexieva-Nikolova V. PhD. .. 255

ФОРМИРОВАНИЕ ПОЛИТИКИ ЭКОНОМИЧЕСКОЙ БЕЗОПАСНОСТИ ГОСУДАРСТВА В УСЛОВИЯХ ГЛОБАЛИЗАЦИИ
Postgraduate Ukrainsev V. ... 260

САМООРГАНИЗАЦИЯ КАК СОВРЕМЕННЫЙ ЭТАП УПРАВЛЕНИЯ
A.S. Krygyn, D.S. Krygyn - PhD students .. 264

ПЛАНИРОВАНИЕ КАК НЕОБХОДИМЫЙ ИНСТРУМЕНТ В СИСТЕМЕ ОБРАЗОВАНИЯ
Senior Lecturer, Kirilina M. Economics ... 266

SOCIETY & „INDUSTRY 4.0”

INTERNATIONAL COMPARISON OF UNIVERSITY EDUCATION QUALITY ON THE BASE OF MODELING VALUE INDEX
Prof. Alieksieiev I. D.Sc., Assoc. Prof. Mazur A. PhD, Assoc. Prof. Alieksieiev V. PhD .. 269

THE SHADOW ASPECTS OF CRITICAL THINKING FOR LEADERSHIP, SOCIETY AND INDUSTRY 4.0
doc. Ing. Mgr. Ullrich D. Ph.D., MBA, PhDr. Ing. Pokorný V. MBA, Mgr. Sládek P. ... 274

RISK MANAGEMENT IN CONTEXT OF INDUSTRY 4.0
Dr.h.c. mult. prof. Ing. Sinay J., DrSc., Ing. Kotianová Z., Ph.D., Ing. Glatz J., PhD. ... 279

BUSINESS CRISIS AND THEIR IMPACT ON ENTREPRENEURSHIP IN BULGARIA
Associate Prof. Alexieva-Nikolova V. PhD., Assistant Prof. Valeva K. PhD. .. 282

ИННОВАЦИОННОЕ НАПРАВЛЕНИЕ ПОВЫШЕНИЯ ЭКОНОМИЧЕСКОЙ И СОЦИАЛЬНОЙ ЭФФЕКТИВНОСТИ ОБЩЕСТВЕННЫХ СИСТЕМ В ТРУДАХ ОСНОВОПОЛОЖНИКОВ МАРКСИЗМА
В.Н. Григорьев ... 286

НЕКОТОРЫЕ АСПЕКТЫ ТЕОРИИ И МЕТОДОЛОГИИ ПРИРОДООБОБУНОГО УПРАВЛЕНИЯ
As. Prof. PhD Yegorova-Gudkova T. .. 290

ОПТИМИЗИРАНЕ НА МЕБЕЛИНАТА СИСТЕМА ВЪВ ВАРНЕНСКИТЕ УЧИЛИЩА, СЪОБРАЗЕНА С НУЖДИТЕ НА УЧЕНИЦИТЕ ОТ І-ІV КЛАС
Ае. д-р Добрева, Д. Н., Доц. д-р Мурзова, Ц. Р., Проф. д-р Братанов, Пл. В. ... 292
GAS TURBINE UPGRADE WITH HEAT REGENERATOR - NUMERICAL ANALYSIS OF ADVANTAGES AND DISADVANTAGES

PhD. Mrzljak Vedran¹, Student Perčić Gregor¹, Prof. PhD. Prpić-Oršić Jasna¹
¹Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
E-mail: vedran.mrzljak@riteh.hr, gpercic@riteh.hr, jasna.prpic-orsic@riteh.hr

Abstract: The paper presents analysis of industrial gas turbine and its upgrade with heat regenerator. Based on a gas turbine operational data from a thermal power plant (base process) it was investigated advantages and disadvantages of heat regenerator implementation in the gas turbine process. Regenerator efficiencies were varied between 75% and 95%. Heat regenerator causes decrease of gas turbine fuel consumption up to 0.621 kg/s with a simultaneous increase in gas turbine process efficiency up to 10.52%. The main disadvantages of heat regenerator implementation are decrease in turbine cumulative and useful power along with decrease in the cumulative amount of heat released from the process.

KEYWORDS: GAS TURBINE, HEAT REGENERATOR, POWER, FUEL CONSUMPTION, EFFICIENCY

1. Introduction

Gas turbines are today widely used for power (and heat) production as stand-alone devices [1] and [2], or in combined [3] and cogeneration plants [4]. Scientists are intensively investigating improvements of such systems in which the gas turbine is essential operation element. The most used improvement of such power plants is integration of solar systems. As an example, Ameri and Mohammadzadeh [5] investigated a novel solar integrated combined cycle power plant, while Dabwan and Mokheimer [6] analyzed optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant.

An interesting investigation of combined cycle power plants presents Kang et al. [7] which provide energy analysis of a particle suspension solar combined cycle power plant. Energy, exergy and economic (3E) analysis of integrated solar direct steam generation combined cycle power plant presented Adibhatla and Kaushik [8].

In this paper is investigated operation of gas turbine when the heat regenerator is implemented in its process. Heat regeneration process brings several advantages and disadvantages in the gas turbine process. The most important advantages are reduction of fuel consumption and significant increase in gas turbine process efficiency. This analysis and its results can be applied on any stand-alone gas turbine in power plants or in marine systems.

2. Base gas turbine process

Gas turbine base process operates according to the schema from Fig. 1. Turbo-compressor compresses air from the atmosphere and delivers it to combustion chambers. In the combustion chambers are produced combustion gases (heat addition by fuel combustion) and at the combustion chamber outlet maximum process temperature occurs. Combustion gases prepared at the combustion chamber outlet enters to the gas turbine and expanded. After expansion, combustion gases are released from the gas turbine process to the atmosphere (or can be used for any heating purposes due to a high enough temperature). Temperature-specific entropy diagram of the base gas turbine process is presented in Fig. 2.

3. Equations for the gas turbine base process analysis

All the equations for base gas turbine process analysis can be found in [9] and [10]. For each operating point of any gas turbine process (consequentially for the base gas turbine process) specific enthalpy of operating medium is calculated as:

\[h = c_p \cdot T \]

where \(c_p \) is the specific heat capacity of operating medium at constant pressure and \(T \) is current operating medium temperature. Specific heat capacity at constant pressure \(c_{p, air} \) is a function of current temperature and is calculated by using polynomials presented in [11] for air, according to Eq. 2 and for combustion gases \(c_{p, cg} \), according to Eq. 3:

\[c_{p, air}(T) = 1.0484 - 0.0003837 \cdot T + \frac{9.45378}{10^7} \cdot T^2 - \frac{5.49031}{10^9} \cdot T^3 + \frac{7.92981}{10^{14}} \cdot T^4 \]

(2)

\[c_{p, cg}(T) = 0.936087 + \frac{0.010749}{10^5} \cdot T + \frac{0.0172103}{10^5} \cdot T^2 - \frac{0.07247}{10^9} \cdot T^3 \]

(3)

In both polynomials (Eq. 2 and Eq. 3) temperature \(T \) must be inserted in (K) to obtain \(c_p \) in (kJ/kg·K).

According to Fig. 1 and Fig. 2, the operating parameters of the gas turbine base process are:

- Turbo-compressor power:

\[P_{TC} = \dot{m}_{air} \cdot (h_2 - h_1) = \dot{m}_{air} \cdot \left(T_2 \cdot c_{p,2} - T_1 \cdot c_{p,1} \right) \]

(4)
- Turbine developed power:

\[P_T = \dot{m}_g \cdot (h_3 - h_4) = \dot{m}_g \cdot (T_3 \cdot c_{p,3} - T_4 \cdot c_{p,4}) \]

(5)

- Useful power:

\[P_{US} = P_T - P_{TC} \]

(6)

- The amount of heat delivered in combustion chambers by fuel:

\[Q_{DEL-CC} = \dot{m}_g \cdot (h_3 - h_2) = \dot{m}_g \cdot (T_3 \cdot c_{p,3} - T_2 \cdot c_{p,2}) \]

(7)

- The cumulative amount of heat released from the gas turbine process:

\[Q_{REL} = \dot{m}_g \cdot (h_4 - h_1) = \dot{m}_g \cdot (T_4 \cdot c_{p,4} - T_3 \cdot c_{p,3}) \]

(8)

- Useful heat released from the process:

\[Q_{REL,US} = \dot{m}_g \cdot (h_4 - h_{433.15}) = \dot{m}_g \cdot (T_4 \cdot c_{p,4} - 433.15 K \cdot c_{p,433.15}) \]

(9)

Useful heat released from the process is the heat amount which can be used for any additional heating. Combustion gases with temperature lower than 433.15 K cannot be used for additional heating because it will cause significant low-temperature corrosion.

- Gas turbine process efficiency:

\[\eta_{GT} = \frac{P_{US}}{Q_{DEL-CC}} = \frac{P_T - P_{TC}}{Q_{DEL-CC}} \]

(10)

- Combustion chamber efficiency:

\[\eta_{CC} = \frac{Q_{REL-CC}}{LHV \cdot \dot{m}_g} = \frac{\dot{m}_g \cdot (T_3 \cdot c_{p,3} - T_2 \cdot c_{p,2})}{LHV \cdot \dot{m}_g} \]

(11)

where LHV is the lower heating value of used fuel in (kJ/kg) and \(\dot{m}_g \) is combustion chambers fuel mass flow in (kg/s).

- Specific fuel consumption:

\[SFC = \frac{\dot{m}_g}{P_{US}} = \frac{\dot{m}_g}{P_1 - P_{TC}} \]

(12)

4. Operating parameters of the gas turbine base process

Base gas turbine operating process, without additional heat regenerator implementation, is similar to process from [11]. Pressure drops in combustion chambers and at the turbine outlet are neglected. In accordance to Fig. 1 and Fig. 2, the operating parameters of the base gas turbine process are presented in Table 1.

Table 1. Operating parameters of the gas turbine base process

<table>
<thead>
<tr>
<th>Operating point*</th>
<th>Temperature (K)</th>
<th>Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>293.15</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>608.15</td>
<td>11.68</td>
</tr>
<tr>
<td>3</td>
<td>1263.15</td>
<td>11.68</td>
</tr>
<tr>
<td>4</td>
<td>773.15</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Air mass flow: 119.97 kg/s
Used fuel: Natural gas
Fuel lower heating value (LHV): 50000 kJ/kg
Fuel mass flow: 2.79 kg/s
Combustion gases mass flow**: 122.76 kg/s

* According to Fig. 1 and Fig. 2
** Combustion gases mass flow is the sum of air mass flow and fuel mass flow

5. Upgrade of the base turbine base process with a heat regenerator

Heat regenerator implemented in the base gas turbine process can be recuperative or regenerative heat exchanger. In the gas turbine processes, heat regenerators are mounted before combustion chambers, Fig. 3. Combustion gases from the gas turbine outlet are used in the heat regenerator with an aim to heat the air before its entrance into combustion chambers. In such way, air is additionally heated before combustion chambers, therefore, to obtain the same peak temperature of combustion gases in the combustion chambers will be used less fuel. On the other side, one part of heat from combustion gases at the turbine outlet will be utilized for additional heating. Based on a several analysis, implementation of heat regenerator decreases gas turbine fuel consumption and significantly increases gas turbine process efficiency. This investigation will present the range of fuel savings and process efficiency increase, along with analysis of other gas turbine operation parameters when heat regenerator of various efficiencies is implemented in the base gas turbine process.

![Fig. 3. Base gas turbine process upgraded with heat regenerator](https://example.com/fig3.png)

Temperature-specific entropy diagram of the gas turbine process with implemented heat regenerator is presented in Fig. 4. One part of heat contained in combustion gases (4 - 4R) is used for air heating after compression (2 - 2R). Air with temperature \(T_{3R} \) enters in combustion chambers.

![Fig. 4. T-s diagram of the base gas turbine process with heat regenerator upgrade](https://example.com/fig4.png)

In the literature [12] is found that heat regenerator’s efficiency (\(\eta_{rad} \)) frequently used in gas turbine power plants, varies between 75% and 95% what is adopted in this analysis. Heat regenerator efficiency is used to calculate the temperature of air after regenerator (\(T_{3R} \), Fig. 4). Temperature \(T_{3R} \) is calculated according to Fig. 4 by an equation:

\[T_{3R} = T_2 \cdot \frac{c_{p,2}}{c_{p,2R}} + \frac{\eta_{rad}}{c_{p,2R}} \left(T_4 \cdot c_{p,4} - T_2 \cdot c_{p,2} \right) \]

(13)

where \(c_{p,2R} \) is calculated as an average value of specific heat capacities at constant pressure between operating points 2 and 3, Fig. 4.
The air mass flow and combustion chamber efficiency remain the same in the process with heat regenerator as in the base gas turbine process. Heat regenerator decreases fuel mass flow used in the combustion chambers, so the fuel mass flow of the gas turbine process with heat regenerator is now calculated as:

\[m_{fg,reg} = \frac{m_{fg} \cdot (h_1 - h_{fg})}{LHV \cdot \eta_{CC} - (h_1 - h_{fg})} = \frac{m_{fg} \cdot (T_1 \cdot c_{p,3} - T_{2R} \cdot c_{p,2R})}{LHV \cdot \eta_{CC} - T_1 \cdot c_{p,3} + T_{2R} \cdot c_{p,2R}} \]

(14)

In the gas turbine process with heat regenerator, turbo-compressor power, turbine developed power and useful power are calculated with the same equations as in the base process. As the heat regenerator causes a change in fuel mass flow, the combustion gases mass flow has also changed what influenced turbine developed power and useful power.

The amount of heat delivered in combustion chambers by fuel when the heat regenerator is applied is calculated according to Fig. 4 by an equation:

\[Q_{DEL,CC,reg} = m_{fg} \cdot (h_3 - h_{2R}) = m_{fg} \cdot (T_1 \cdot c_{p,3} - T_{2R} \cdot c_{p,2R}) \]

(15)

The cumulative amount of heat released from the gas turbine process and useful heat released from the process with heat regenerator is calculated by using the same equations as for base gas turbine process (with a note that combustion gases mass flow is changed by implementing heat regenerator). Gas turbine process efficiency and specific fuel consumption also have the same equations in a process with heat regenerator as in the base gas turbine process.

6. Results of heat regenerator implementation in the gas turbine base process

In all of the figures which presented the results of conducted analysis, the change in gas turbine operating parameters during heat regenerator implementation is presented in relation to regenerator efficiency. Regenerator efficiencies were varied from 75% up to 95% what is an expected range of efficiency for the most practically applicable heat regenerators. The base gas turbine process does not include heat regenerator, so in the figures from this section operating parameters of the base process is shown with regenerator efficiency equal to 0%.

Fig. 5 presented reduction in gas turbine fuel consumption when the heat regenerator is implemented in the process. It can be seen that implementation of heat regenerator significantly reduces fuel consumption, even in the case of the lowest observed regenerator efficiency of 75%. Increase in regenerator efficiency causes further decrease of gas turbine fuel consumption.

Fuel savings are presented in comparison with the base gas turbine process. For the lowest observed heat regenerator efficiency of 75% fuel savings amount 0.491 kg/s. Increase in heat regenerator efficiency resulted in an increase in fuel savings. The highest fuel savings are obtained for the highest observed regenerator efficiency equal to 95% and amounts 0.621 kg/s.

Reduction of fuel consumption caused by heat regenerator will result with the decrease of combustion gases mass flow. As the gas turbine operates between two constant temperatures and two constant pressures, decrease of combustion gases mass flow will result with a decrease in turbine cumulative developed power, Fig. 6.

When compared with the turbine base process, from Fig. 6 it can be seen that the maximum decrease in turbine cumulative developed power caused by heat regenerator implementation will be in the range of 420 kW for the highest observed regenerator efficiencies. The same trend is visible in the change of gas turbine useful power which will be used for any power consumer operation.

Increase in heat regenerator efficiency resulted in a decrease of turbine cumulative and useful power due to combustion chambers fuel consumption decrease, Fig. 6.

Heating regenerator implementation in the gas turbine process reduces fuel consumption and significantly reduces heat amount delivered by fuel in the combustion chambers in comparison with a base gas turbine process (from 107597.22 kW in the base process to 88658.96 kW in the process with regenerator which efficiency is equal to 75%), Fig. 7. Increase in regenerator efficiency causes further reduction of heat delivered in the combustion chambers by fuel. Regenerator operation also reduces the cumulative amount of heat released by combustion gases from the gas turbine process and simultaneously reduces useful released heat.

In the base gas turbine process, air temperature at the combustion chamber inlet is equal to 608.15 K. Implementation of the heat regenerator increases air temperature at the combustion chamber inlet, which is the primary purpose of heat regeneration process. When heat regenerator has an efficiency of 75%, air temperature at the combustion chamber inlet (air temperature after regenerator) is equal to 702.5 K and increases with an increase in regenerator efficiency, Fig. 8. At the highest regenerator efficiency of 95%, air temperature at the combustion chamber inlet is equal to 738.34 K.

In Fig. 8 is visible that an increase in the air temperature at the combustion chamber inlet is directly proportional to increase in gas turbine process efficiency. Efficiency of the base gas turbine process is equal to 38.45%. Implementation of the heat regenerator increases gas turbine process efficiency to 46.29% when applied the regenerator which efficiency is 75%. The highest gas turbine process efficiency amounts 48.97% and is obtained with a regenerator which efficiency is the highest observed (95%).

![Fig. 5. Gas turbine fuel consumption and fuel savings after regenerator implementation](image)

![Fig. 6. Gas turbine cumulative and useful developed power change in relation to regenerator efficiency](image)

![Fig. 7. Gas turbine delivered and released heat amount change in relation to regenerator efficiency](image)
Specific fuel consumption is calculated as a ratio of fuel consumption and useful produced gas turbine power. The base gas turbine process has specific fuel consumption equal to 242.78 g/kWh, Fig. 9. Implementation of heat regenerator in the gas turbine process reduces specific fuel consumption because fuel consumption decreases faster than useful power, regardless of regenerator efficiency. At the lowest observed regenerator efficiency of 75% specific fuel consumption amounts 201.67 g/kWh, while at the highest observed regenerator efficiency of 95% specific fuel consumption has the lowest value of 190.64 g/kWh, Fig. 9.

- Heat regenerator significantly decreases gas turbine specific fuel consumption.
- Gas turbine with heat regenerator has significantly higher process efficiency when compared to the base gas turbine process.
- Consequentially with fuel consumption reduction, heat consumption.
- Heat regenerator also significantly reduces heat amount delivered by fuel.
- Heat regenerator efficiency causes further reduction of gas turbine fuel consumption.
- Gas turbine with heat regenerator has significantly higher process efficiency when compared to the base gas turbine process.
- Process efficiency increases with the increase in heat regenerator efficiency.
- Heat regenerator significantly decreases gas turbine specific fuel consumption.

The main disadvantages of heat regenerator implementation in any gas turbine process are:
- Heat regenerator implementation resulted in a decrease in gas turbine developed and useful power due to decrease in combustion gases mass flow. Increase in regenerator efficiency causes further decrease in gas turbine developed and useful power.
- The cumulative amount of heat released from the gas turbine process and useful heat released from the process decreases with heat regenerator implementation. Such disadvantage can be very important if the heat released from the gas turbine is used for additional heating purposes.
- In the gas turbine process heat regenerator is not applicable for a large pressure ratio (\(p_2/p_1\)).
- Heat regenerator brings significant additional mass in complete gas turbine process, so it can be applied only in the industrial or marine gas turbines.
- Heat regenerator is a heat exchanger, so it can be expected additional heat transfer and pressure losses (usually with additional maintenance costs).

Finally, for the analyzed base gas turbine process it can be concluded that the implementation of heat regenerator will bring several useful benefits and reduction of operational costs. This conclusion is valid in a situation when the gas turbine operates as a stand-alone power production machine. If such gas turbine operates in combined-cycle power plant, benefits of heat regenerator implementation will be lost due to the additional heat addition (by fuel) in heat recovery steam generator (or more of them).

8. Acknowledgment

This work was supported by the University of Rijeka (contract no. 13.09.1.1.05).

9. References