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Abstract. We realise the Hamiltonians of contact interactions in quan-
tum mechanics within the framework of abstract Friedrichs systems. In
particular, we show that the construction of the self-adjoint (or even only
closed) operators of contact interaction supported at a fixed point can be
associated with the construction of the bijective realisations of a suitable
pair of abstract Friedrich operators. In this respect, the Hamiltonians
of contact interaction provide novel examples of abstract Friedrich sys-
tems.
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1. Introduction

In this work we make a bridge between two seemingly distant mathematical
subjects, which are instead much closer than what has appeared so far in the
literature: the Hamiltonians of contact (or ‘point’, or ‘zero-range’) interac-
tions in quantum mechanics on the one hand, and the Friedrichs systems of
partial differential equations on the other.

The former are so-called singular perturbations of elliptic differential
operators on Rd, which serve as models for quantum particles subject to an
interaction – the actual ‘perturbation’ of the free Hamiltonian – supported
on manifolds of positive co-dimension. The latter are systems of first order
coupled partial differential equations that are equivalent to certain boundary
value problems on domains with suitable boundary conditions.

It is in fact the understanding of the role of the boundary, as we shall
show, that allows one to recognise contact interaction Hamiltonians as special
classes, and in this respect novel examples, of Friedrichs systems. In turn, we

This work was partially supported by the Croatian Science Foundation project 9780 We-
ConMApp and by the 2014-2017 MIUR-FIR grant no. RBFR13WAET.



2 Marko Erceg and Alessandro Michelangeli

will give evidence of how one can exploit properties of abstract Friedrichs sys-
tems, recently discussed in the literature, in order to qualify the self-adjoint
realisation of a contact interaction Hamiltonian, thus providing yet another
(and new) approach to the subject, in addition to the well-established alter-
native approaches based on operator theory, quadratic forms, non-standard
analysis, renormalisation, etc.

We organise our material starting with a background Section on Fried-
richs systems on a Hilbert space (Section 2) followed by a background Section
on quantum Hamiltonians of contact interactions (Section 3). In Section 4 we
establish the general setting for our correspondence between the two classes
of operators, and in Sections 5 and 6 we develop such a correspondence in
detail for the contact interaction Hamiltonians of δ-type and of δ′-type in one
dimension. In complete analogy, in Section 7 we discuss three-dimensional
contact interaction Hamiltonians realised as abstract Friedrichs systems. We
conclude our presentation with a brief mention to further examples and with
a few final remarks in Section 8.

In order to illustrate the intimate bridge announced at the beginning,
we choose a presentation where step by step the application of Friedrichs
system methods is discussed, so as to reconstruct the considered family of
Hamiltonians of contact interactions. For the benefit of the reader, we then
recapitulate all the intermediate results in a couple of review statements, see
Summary 5.5 and Summary 6.5 below.

Before proceeding, let us fix a few details on our (otherwise essentially
standard) notation. By L we denote a complex Hilbert space with scalar
product 〈 · | · 〉L, which we take to be linear in the first and anti-linear in the
second entry. For a densely defined linear operator A : L → L we denote by
domA, A, A∗ its domain, closure (if it exists), and adjoint, respectively. For
V ⊆ L, the restriction of A to V is denoted by A|V . If A = A∗, then A is
said to be self-adjoint, while the infimum of its spectrum is called the bottom.
The identity operator is denoted by 1. 1Λ denotes instead the characteristic
function of the set Λ. For a direct sum between two vector spaces we use the
symbol u. We write 	 for the orthogonal difference in order to express in
which Hilbert space the orthogonal complement is taken. The total derivative
of function u, d

dxu, in short we denote by u̇.

2. Background: Friedrichs systems on a Hilbert space

In this Section we focus on the notion of the Friedrichs system on a Hilbert
space.

What is today customarily referred to as Friedrichs systems is a wide
variety of differential equations of mathematical physics, including classical
elliptic, parabolic, and hyperbolic equations, which can be re-written in a
suitable form, originally identified by Friedrichs in his research on symmetric
positive systems [21]. More precisely, for a given open and bounded set Ω ⊆
Rd with Lipschitz boundary ∂Ω, let the matrix functions Ak ∈W 1,∞(Ω)r×r
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and C ∈ L∞(Ω)r×r satisfy Ak = A∗k and

(∃µ0 > 0) C + C∗ +

d∑
k=1

∂kAk > 2µ0I a.e. on Ω .

Then the first-order differential operator T : L2(Ω)r −→ D′(Ω)r defined by

Tu :=

d∑
k=1

∂k(Aku) + Cu (2.1)

is called the (classical) Friedrichs operator, while (for given f ∈ L2(Ω)r)
the first-order system of partial differential equations Tu = f is called the
(classical) Friedrichs system.

The general problem for such systems is the well-posedness in a suitable
regularity class and for suitable boundary conditions, thus the existence and
uniqueness of the solution, as well as its continuous dependence on given
data.

Recently, this has become of particular relevance in numerical analysis
[24, 25, 17], as Friedrichs systems turned out to provide a conveniently unified
framework for numerical solutions to partial differential equations of different
types. This aim of ample versatility has also naturally led to formulate the
differential problem relative to classical Friedrichs systems in an abstract
form on a Hilbert space [20, 4] (see Definition 2.1 below), in order to exploit
powerful and general operator-theoretic methods, applicable to each concrete
version. Important recent results concern well-posedness results [20, 2, 4], the
representations of boundary conditions [2], the connection with the classical
theory [3, 4, 5, 6], applications to various initial or boundary value problems of
elliptic, hyperbolic, and parabolic type [7, 14, 16, 17, 26], and the development
of different numerical schemes [12, 13, 15, 17, 18, 19].

Let us revisit the main features of such an abstract formulation of
Friedrichs systems on a Hilbert space.

Definition 2.1 ([20, 4]). A densely defined linear operator T on a complex
Hilbert space L is called an abstract Friedrichs operator if it admits another

(densely defined) linear operator T̃ on L with the following properties:

(T1) T and T̃ have a common domain D, which is dense in L, satisfying

〈Tφ | ψ 〉L = 〈φ | T̃ψ 〉L , φ, ψ ∈ D ;

(T2) there is a constant c > 0 for which

‖(T + T̃ )φ‖L 6 c‖φ‖L , φ ∈ D ;

(T3) there exists a constant µ0 > 0 such that

〈 (T + T̃ )φ | φ 〉L > 2µ0‖φ‖2L , φ ∈ D .

The pair (T, T̃ ) is called a joint pair of abstract Friedrichs operators. (The

definition is indeed symmetric in T and T̃ .)
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In fact (see, e.g., [8, Theorem 7]), T and T̃ in the definition above are
closable operators with

domT = dom T̃ and dom T̃ ∗ = domT ∗ . (2.2)

Theorem 2.2. (see, e.g., [8, Theorem 8]). Let T and T̃ be two densely de-

fined linear operators on a complex Hilbert space L. Then (T, T̃ ) is a joint

pair of abstract Friedrichs operators on L if and only if T ⊆ T̃ ∗, T̃ ⊆ T ∗,

and T + T̃ is an everywhere defined, bounded, self-adjoint operator in L with

strictly positive bottom. The sole conditions T ⊆ T̃ ∗ and T̃ ⊆ T ∗ are actually
equivalent to condition (T1).

Thus, for A0 := T and A′0 := T̃ , where (T, T̃ ) is a joint pair of abstract

Friedrichs operators, one has A1 := (A′0)∗ = T̃ ∗ and A′1 := (A0)∗ = T ∗.
Based on this and on (2.2), one naturally defines the following.

Definition 2.3 ([8]). A joint pair of closed abstract Friedrichs operators on a
Hilbert space L is a pair (A0, A

′
0) of closed operators on L satisfying

A0 ⊆ (A′0)∗ =: A1 and A′0 ⊆ (A0)∗ =: A′1 , (2.3)

and such that A0 + A′0 is bounded on L and extends to an everywhere de-
fined, bounded, self-adjoint operator in L with strictly positive bottom. The
corresponding domains are denoted by

W0 := domA0 = domA′0 and W := domA1 = domA′1 . (2.4)

The abstract boundary value problem for a Friedrichs operator is deter-
mined by a subspace V ⊆ L, with D ⊆W0 ⊆ V ⊆W , on which the problem

(A1|V )u = T̃ ∗u = f has a unique solution u ∈ V , for each given f ∈ L.

The choice of V is the direct analogue, for a concrete Friedrichs system
(2.1), to the choice of a boundary condition on ∂Ω. More precisely, in [20, 4] it
was recognised that conditions on V that are sufficient to make A1|V : V → L
an isomorphism (with V equipped with the graph-norm topology of A1), and
thus, equivalently, to make A1|V : V → L a bijection with bounded and
everywhere defined inverse on L, correspond to selecting boundary conditions
for a concrete Friedrichs system (2.1) that give rise to maximally chosen
boundary maps with a definite sign. This is precisely the type of boundary
condition occurring in a vast class of classical (concrete) Friedrichs systems
of interest, thus making this type of choice particularly relevant.

Elaborating further such abstract boundary conditions in the framework
of Definitions 2.1 and 2.3 above one sets the following Definitions 2.4 and 2.6.

Definition 2.4 ([8]). Let (A0, A
′
0) be a joint pair of closed abstract Friedrichs

operators on a Hilbert space L. The boundary form associated with (A0, A
′
0)

is the map D : W ×W → C defined by

(∀w,w′ ∈W ) D[w,w′] := 〈A1w | w′ 〉L − 〈w | A′1w′ 〉L .
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Lemma 2.5. ([20, Lemma 2.3 and 2.4] and [4, Lemma 1]). The boundary form
is symmetric, i.e.,

(∀w,w′ ∈W ) D[w,w′] = D[w′, w]

(whence, in particular, D[w,w] ∈ R), and

(∀w0 ∈W0)(∀w′ ∈W ) D[w0, w
′] = D[w′, w0] = 0 .

Definition 2.6 ([8]). Let (A0, A
′
0) be a joint pair of closed abstract Friedrichs

operators on a Hilbert space L. Let V and Ṽ be subspaces of L such that

W0 ⊆ V ⊆ W and W0 ⊆ Ṽ ⊆ W ,

and with the additional properties that A1|V and A′1|Ṽ are mutually adjoint
(thus, in particular, A1|V and A′1|Ṽ are closed operators on L) and that the
boundary form satisfies

(∀u ∈ V ) D[u, u] = 〈A1u | u 〉L − 〈u | A′1u 〉L > 0 ,

(∀ v ∈ Ṽ ) D[v, v] = 〈A1v | v 〉L − 〈 v | A′1v 〉L 6 0 .
(2.5)

Then the pair (A1|V , A′1|Ṽ ) is called an adjoint pair of bijective realisations
with signed boundary map relative to the given (A0, A

′
0).

One may observe that if V = Ṽ , i.e., if the domains of two operators
of the considered adjoint pair of bijective realisations with signed boundary
map are equal, then in (2.5) we have equalities.

In [8], in collaboration with N. Antonić, we solved the until then unan-
swered problem, given a joint pair of closed abstract Friedrichs operators
(A0, A

′
0), of whether bijective realisations of A0 with signed boundary map

do exist, with which multiplicity, and possibly according to which general
classification. The essentially complete answer is the following.

Theorem 2.7. ([8, Theorem 13]). Let (A0, A
′
0) be a joint pair of closed ab-

stract Friedrichs operators on the Hilbert space L and denote by (A1, A
′
1) the

corresponding pair of adjoint operators (2.3).

(i) There exists an adjoint pair of bijective realisations with signed boundary
map relative to (A0, A

′
0). Moreover, there is an adjoint pair (Ar, A

∗
r ) of

bijective realisations with signed boundary map relative to (A0, A
′
0) such

that

W0 + kerA′1 ⊆ domAr and W0 + kerA1 ⊆ domA∗r .

(ii) If both kerA1 6= {0} and kerA′1 6= {0}, then the pair (A0, A
′
0) admits un-

countably many adjoint pairs of bijective realisations with signed bound-
ary map. On the other hand, if either kerA1 = {0} or kerA′1 = {0},
then there is exactly one adjoint pair of bijective realisations with signed
boundary map relative to (A0, A

′
0). Such a pair is precisely (A1, A

′
0)

when kerA1 = {0}, and (A0, A
′
1) when kerA′1 = {0}.

(iii) An explicit (constructive) classification of all adjoint pairs of bijective
realisations with signed boundary map relative to (A0, A

′
0) is given by

Theorem 2.9 below.
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Our actual formulation of the classification mentioned in Theorem 2.7(iii)
requires the language of Grubb’s extension theory of densely defined and
closed operators on Hilbert space [22]. For convenience, we cast the main
features of this theory in the following Theorem.

Theorem 2.8. ([22, Chapter II] and [23, Chapter 13]). Let (A0, A
′
0) and

(A1, A
′
1) be two pairs of mutually adjoint, closed and densely defined operators

in L satisfying

A0 ⊆ (A′0)∗ = A1 and A′0 ⊆ (A0)∗ = A′1 ,

which admit a further pair (Ar, A
∗
r ) of reference operators that are closed,

satisfy A0 ⊆ Ar ⊆ A1, equivalently A′0 ⊆ A∗r ⊆ A′1, and are invertible with
everywhere defined bounded inverses A−1

r and (A∗r )−1.

(i) There are decompositions

domA1 = domArukerA1 and domA′1 = domA∗rukerA′1 , (2.6)

the corresponding projections

pr : domA1 → domAr , pk : domA1 → kerA1 ,

pr′ : domA′1 → domA∗r , pk′ : domA′1 → kerA′1 ,
(2.7)

satisfying

pr = A−1
r A1 , pr′ = (A∗r )−1A′1 ,

pk = 1− pr , pk′ = 1− pr′ ,
(2.8)

and being continuous with respect to the graph norms.
(ii) There is a one-to-one correspondence between all pairs of mutually ad-

joint operators (A,A∗) with A0 ⊆ A ⊆ A1, equivalently A′0 ⊆ A∗ ⊆ A′1,
and all pairs of densely defined mutually adjoint operators B : V → W
and B∗ : W → V, with domains domB ⊆ V and domB∗ ⊆ W, where
V and W run through all closed subspaces of kerA1 and kerA′1. The
correspondence is given by

domA =
{
u ∈ domA1 : pku ∈ domB , PW(A1u) = B(pku)

}
,

domA∗ =
{
v ∈ domA′1 : pk′v ∈ domB∗ , PV(A′1v) = B∗(pk′v)

}
,

(2.9)

and conversely, by

domB = pk domA , V = domB , B(pku) = PW(A1u) ,

domB∗ = pk′ domA∗ , W = domB∗ , B∗(pk′v) = PV(A′1v) ,
(2.10)

where PV and PW are the orthogonal projections from L onto V and
W.

(iii) In the correspondence above, A is injective, resp. surjective, resp. bijec-
tive, if and only if so is B.
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(iv) When AB corresponds to B as above, then

domAB =

w0 + (Ar)
−1(Bν + ν′) + ν

∣∣∣∣∣∣
w0 ∈ domA0

ν ∈ domB
ν′ ∈ kerA′1 	W

 ,

AB(w0 + (Ar)
−1(Bν + ν′) + ν) = A0w0 +Bν + ν′

(2.11)

and

dom(AB)∗ =

w′0 + (A∗r )−1(B∗µ′ + µ) + µ′

∣∣∣∣∣∣
w′0 ∈ domA′0
µ′ ∈ domB∗

µ ∈ kerA1 	 V

 ,

(AB)∗(w′0 + (A∗r )−1(B∗µ′ + µ) + µ′) = A′0w
′
0 +B∗µ′ + µ ,

(2.12)

and, moreover,

(AB)∗ = AB∗ .

Observe that our notation is chosen in such a way that p denotes the
projection induced by a direct sum decomposition, whereas P denotes the
orthogonal projection onto a closed subspace. Furthermore, the non-primed
ν’s or µ’s all belong to kerA1, whereas their primed counterparts belong to
kerA′1. Let us also remark that kerA′1 	W denotes the orthogonal comple-
ment of W in kerA′1, and respectively for kerA1 	 V. For the trivial choice
V =W = {0} one has AB = Ar.

We can now provide the complete formulation of Theorem 2.7(iii).

Theorem 2.9. ([8, Theorem 18]). Let (A0, A
′
0) be a joint pair of closed ab-

stract Friedrichs operators, and let (Ar, A
∗
r ) be an adjoint pair of bijective

realisations of (A0, A
′
0) with signed boundary map. Let (AB , A

∗
B) be a generic

pair of closed extensions A0 ⊆ AB ⊆ A1, A′0 ⊆ A∗B ⊆ A′1, according to the
notation of the parametrisation given in Theorem 2.8. Let pk and pk′ be the
projections (2.7) identified by direct decompositions (2.6). With reference to
the following two sets of ‘mirror’ conditions, namely

(∀ ν ∈ domB)
(∀ ν′ ∈ kerA′1 	W)

{
〈 ν | A′1ν 〉L − 2Re〈 pk′ν | Bν 〉L 6 0

〈 pk′ν | ν′ 〉L = 0
(2.13)

and

(∀µ′ ∈ domB∗)
(∀µ ∈ kerA1 	 V)

{
〈A1µ

′ | µ′ 〉L − 2Re〈B∗µ′ | pkµ
′ 〉L 6 0

〈µ | pkµ
′ 〉L = 0 ,

(2.14)

one has these conclusions.

(i) Any of the following three facts,
(a) conditions (2.13) and (2.14) hold true, or
(b) condition (2.13) holds true and B : domB →W is a bijection, or
(c) condition (2.14) holds true and B∗ : domB∗ → V is a bijection,

is sufficient for (AB , A
∗
B) to be another adjoint pair of bijective realisa-

tions with signed boundary map relative to (A0, A
′
0).

(ii) Assume further that domAr = domA∗r . Then the following properties
are equivalent:
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(a) (AB , A
∗
B) is another adjoint pair of bijective realisations with signed

boundary map relative to (A0, A
′
0);

(b) the mirror conditions (2.13) and (2.14) are satisfied.

Summarising, the whole class of adjoint pairs of bijective realisations of a
given joint pair (A0, A

′
0) of abstract Friedrichs operators is fully characterised

by Theorem 2.8 with respect to a reference pair (Ar, A
∗
r ) (which may be

chosen conveniently, and in any case it exists, as guaranteed by Theorem
2.7(i)). In addition, the qualification of the special (and relevant) sub-class
of bijective realisations of (A0, A

′
0) with signed boundary map is provided

by Theorem 2.9, if (Ar, A
∗
r ) is taken to be a pair of bijective realisations of

(A0, A
′
0) with signed boundary map and with the property domAr = domA∗r .

3. Quantum particle subject to a one centre contact
interaction

Next to the previous background on abstract Friedrichs systems, let us con-
cisely revisit in this Section the mathematical model for a quantum particle in
Rd, d ∈ {1, 2, 3}, subject to an interaction of zero range supported in a point
x0 ∈ Rd. For convenience, we take x0 = 0. Our discussion extends with natu-
ral changes to the case of finitely or infinitely many centres x0, x1, x2, ... ∈ Rd
and to keep it as clean as possible we only consider the one-centre case.

As long as the particle is a point particle without internal degrees of
freedom, a quantum Hamiltonan of zero range interaction localised at the
point x0 = 0 is a self-adjoint extension, with respect to the Hilbert space
L2(Rd), of the restriction of negative Laplacian on smooth functions com-
pactly supported away from the origin −∆|C∞c (Rd\{0}), so as to model a par-
ticle that moves freely as long as its wave function is supported away from
the interaction centre. In fact, if d > 4, then −∆|C∞c (Rd\{0}) is already essen-
tially self-adjoint and its unique self-adjoint realisation, its operator closure,
is the self-adjoint negative Laplacian with domain H2(Rd), whereas when
d ∈ {1, 2, 3} such an operator admits non-trivial self-adjoint extensions, each
of which describes a physically inequivalent model.

The construction, the classification, and the study of such self-adjoint
realisations is completely understood in the literature, by a number of al-
ternative means, ranging from operator and extension theory to quadratic
form theory, limiting procedures of Schrödinger operators with finite range
potentials ‘shrinking’ to a delta-like profile, renormalisation procedures of
the coupling constant of the delta-like interaction, as well as methods of non-
standard analysis. A comprehensive overview may be found in [1] and in the
end-of-chapter notes and references therein.

We refer to [1] for the formulation of the Theorems below. Also, we
discuss explicitly dimensions d = 1 and d = 3, which correspond to deficiency
indices (2, 2) and (1, 1) respectively, while the case d = 2 resembles very much
the case d = 3.
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Theorem 3.1 (One-dimensional case).

(i) With respect to the Hilbert space L2(R),

H̊ := − d2

dx2
, dom H̊ := C∞c (R\{0}) (3.1)

defines a symmetric, positive, and densely defined operator with the ad-
joint given by

H̊∗ := − d2

dx2
, dom H̊∗ := H2(R\{0})

and with deficiency indices (2, 2), i.e.,

dim ker(H̊∗ ± i1) = dim ker(H̊∗ + 1) = 2 .

In fact,

ker(H̊∗ + 1) = span{ψ1, ψ2} ,
ψ1(x) := 1[0,+∞)(x) e−x

ψ2(x) := 1(−∞,0](x) ex .

Thus, H̊ admits a four (real) parameter family of self-adjoint extensions.
(ii) The one-parameter family {−∆α |α ∈ (−∞,+∞]} of operators defined

by

−∆α := − d2

dx2
,

dom(−∆α) :=

{
g ∈ H2(R\{0}) ∩H1(R) such that

ġ(0+)− ġ(0−) = αg(0)

} (3.2)

is a sub-family of self-adjoint extensions of H̊ (the so-called ‘ δ-type
extensions’). For each −∆α one has

σess(−∆α) = σac(−∆α) = [0,+∞) , σsc(−∆α) = ∅ ,

σp(−∆α) =

{
{−α2/4} if α ∈ (−∞, 0)

∅ if α /∈ (−∞, 0) ,

the corresponding eigenvalue when α ∈ (−∞, 0) being non-degenerate
with normalised eigenfunction

√
−α2 eα|x|/2. The special case α = 0

corresponds to the self-adjoint negative Laplacian − d2

dx2 with domain

H2(R), whereas the case α = +∞ yields the homogeneous Dirichlet
boundary condition at the origin and corresponds to the ‘decoupled’
Hamiltonian

dom(−∆∞) = {g ∈ H2(R\{0}) ∩H1(R)) : g(0) = 0}
= H2

0 (R−)⊕H2
0 (R+) ,

−∆∞ = − d2

dx2
⊕− d2

dx2
,

i.e., −∆∞ is the direct sum of the negative Dirichlet Laplacians on each
half line.
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(iii) The one-parameter family {Ξβ |β ∈ (−∞,+∞]} of operators defined by

Ξβ := − d2

dx2
, dom(Ξβ) :=

 g ∈ H2(R\{0}) such that
ġ(0+) = ġ(0−) =: ġ(0)
g(0+)− g(0−) = βġ(0)

 (3.3)

is a sub-family of self-adjoint extensions of H̊ (the so-called ‘ δ′-type
extensions’). For each Ξβ one has

σess(Ξβ) = σac(Ξβ) = [0,+∞) , σsc(Ξβ) = ∅ ,

σp(Ξβ) =

{
{−4/β2} if β ∈ (−∞, 0)

∅ if β /∈ (−∞, 0) ,

the corresponding eigenvalue when β ∈ (−∞, 0) being non-degenerate

with normalised eigenfunction
√
−β8 sgn(x) e2|x|/β. The special case β =

0 corresponds to the self-adjoint negative Laplacian − d2

dx2 with domain

H2(R), whereas the case β = +∞ yields the homogeneous Neumann
boundary condition at the origin and corresponds to the ‘decoupled’
Hamiltonian

dom(Ξ∞) = {g ∈ H2(R\{0}) : ġ(0+) = ġ(0−) = 0}
= {g ∈ H2(R−) : ġ(0−) = 0} ⊕ {g ∈ H2(R+) : ġ(0+) = 0} ,

Ξ∞ = − d2

dx2
⊕− d2

dx2
,

i.e., Ξ∞ is the direct sum of the negative Neumann Laplacians on each
half line.

It is worth remarking that the operator closure of H̊ has domain

dom(H̊) = H2
0 (R\{0}) = {g ∈ H2(R) : g(0) = ġ(0) = 0} .

The ‘ δ-type extensions’ −∆α extend also the closed symmetric operator act-

ing as − d2

dx2 on the domain {g ∈ H2(R) : g(0) = 0}, which is larger than

dom(H̊), and whose adjoint is the operator acting as − d2

dx2 on the domain

H2(R\{0}) ∩H1(R), which is smaller than dom(H̊∗).

Theorem 3.2 (Three-dimensional case).

(i) With respect to the Hilbert space L2(R3),

H̊ := −∆ , dom H̊ := C∞c (R3\{0}) (3.4)

defines a symmetric, positive, and densely defined operator with the ad-
joint given by

H̊∗ := −∆ , dom H̊∗ := {g ∈ H2
loc(R3\{0}) ∩ L2(R3) : ∆g ∈ L2(R3)}

and with deficiency indices (1, 1), i.e.,

dim ker(H̊∗ ± i1) = dim ker(H̊∗ + 1) = 1 .
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In fact,

ker(H̊∗ + 1) = span{ψ0} , ψ0(x) :=
e−|x|

|x|
.

Thus, H̊ admits a one (real) parameter family of self-adjoint extensions.
(ii) With respect to canonical isomorphism (partial wave decomposition)

L2(R3) ∼=
∞⊕
`=0

U−1L2(R+,dr)⊗ span{Y`,−`, . . . , Y`,`} ,

where x ≡ rω, r := |x|, ω ∈ S2 give the polar coordinates for x ∈ R3,
the Y`,m’s form the orthonormal basis of spherical harmonics for L2(S2),
and U : L2(R+, r2dr) → L2(R+,dr) is the unitary operator defined by

(Uf)(r) := rf(r), the operator H̊ reduces as

H̊ =

∞⊕
`=0

U−1h` U ⊗ 1 ,

where each h` acts on L2(R+,dr) as

h` = − d2

dr2
+
`(`+ 1)

r2

with domain

domh0 = H2
0 (R+) =

{
φ ∈ L2(R+)

∣∣∣∣φ, φ̇ ∈ ACloc(R+), φ̈ ∈ L2(R+),

φ(0+) = φ̇(0+) = 0

}
,

domh` =

{
φ ∈ L2(R+)

∣∣∣∣ φ, φ̇ ∈ ACloc(R+),

−φ̈+ `(`+ 1)r−2φ ∈ L2(R+)

}
, ` > 1 .

For ` > 1 each h` is self-adjoint and in fact ⊕∞`=1h` is precisely the
component of the self-adjoint negative Laplacian on the sector of an-
gular momentum ` > 1. h0 is symmetric, positive, and densely defined
in L2(R+) with deficiency indices (1, 1), hence admits a one-parameter
family of self-adjoint extensions.

(iii) The self-adjoint extensions of h0 form the family {h0,α |α ∈ (−∞,+∞]},
where

h0,α = − d2

dr2
,

domh0,α =

{
φ ∈ L2(R+)

∣∣∣∣φ, φ̇ ∈ ACloc(R+), φ̈ ∈ L2(R+),

φ̇(0+) = 4παφ(0+)

}
.

(3.5)

In turn, {−∆α |α ∈ (−∞,+∞]}, with −∆α := h0,α ⊕ (⊕∞`=1h`), is the

family of all self-adjoint extensions of H̊ on L2(R3). For each −∆α one
has

σess(−∆α) = σac(−∆α) = [0,+∞) , σsc(−∆α) = ∅ ,

σp(−∆α) =

{
{−(4πα)2} if α ∈ (−∞, 0)

∅ if α /∈ (−∞, 0) ,
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the corresponding eigenvalue when α ∈ (−∞, 0) being non-degenerate
with normalised eigenfunction

√
−α e4πα|x|/|x|. The special case α =

+∞ corresponds to the self-adjoint negative Laplacian on L2(R3) with
domain H2(R3).

4. Contact interactions realised as Friedrichs systems: set-up

We are going to establish the following connection between the subjects of
Sections 2 and 3, which we find new and particularly informative. Let us first
formulate it in an informal way.

Outline:

(i) The operator H̊ considered in Theorem 3.1 or 3.2 is in one-to-one cor-
respondence to a joint pair of abstract Friedrichs operators;

(ii) the contact interaction Hamiltonians, namely the self-adjoint extensions

of H̊, are in one-to-one correspondence to an adjoint pair of abstract
closed Friedrichs operators;

(iii) the quest, by means of Friedrichs systems methods, of the bijective real-
isations of the joint pair of abstract Friedrichs operators corresponding
to H̊ produces, in a novel and independent way, the family of invertible
self-adjoint extensions of H̊;

(iv) moreover, the bijective realisations with signed boundary map of the

joint pair of abstract Friedrichs operators corresponding to H̊ yield the
subclass of self-adjoint extensions of H̊ with empty point spectrum, that
is, the repulsive (non-confining) Hamiltonians of contact interactions.

Let us develop the above programme in the one-dimensional case first,
and set up the needed preliminaries.

4.1. Order reduction

Step (i) requires an obvious but crucial reduction of the order of the
differential operator, in order to match the conditions (T1) and (T2) of Def-
inition 2.1. Indeed, (3.1) defines a second order, symmetric, and unbounded

differential operator H̊ on L2(R3): as such, the pair (T, T̃ ) = (H̊, H̊) clearly

satisfies (T1), for (T1) is tantamount as T ⊆ T̃ ∗ and T̃ ⊆ T ∗ (Theorem

2.2), but fails to satisfy (T2), which is a boundedness requirement on T + T̃
and is only possible if in that sum an exact cancellation occurs between the

unbounded parts of T and T̃ . This latter phenomenon is rather typical of

suitable odd-order differential operators T for which (T1) reads T̃ = −T +B
for some bounded operator B – which is precisely what happens in the pro-
totypical case of formula (2.1).
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This suggests to rather think of the second order, scalar differential
problem f = H̊u, where u ∈ C∞c (R3 \{0}), as the first order and matrix-
valued differential problem(

u̇
f

)
= S

(
−u̇
u

)
=

(
0 d

dx
d

dx 0

)(
−u̇
u

)
, S := σ

d

dx
,

where σ = σ1 =

(
0 1
1 0

)
is the first 2×2 Pauli matrix. This way, the pair

(T, T̃ ) = (S,−S) obviously satisfies conditions (T1) and (T2). Condition

(T3) of Definition 2.1 only fails to hold because T + T̃ = O, which would be
immediately cured by a non-restrictive shift of S, e.g., considering the pair

(T, T̃ ) = (S + 1,−S + 1), which can be obtained by shifting H̊ to H̊ + 1 on
the first place. In fact, it will be convenient in our discussion to exploit the
freedom of a generic shift of S.

Let us therefore introduce on the Hilbert space

L := L2(R)⊕ L2(R) (4.1)

the densely defined operators Tλ : L → L and T̃λ : L → L, for arbitrary
λ > 0, defined by

Tλ := σ
d

dx
+ λ1

T̃λ := −σ d

dx
+ λ1

domTλ := dom T̃λ := C∞c (R\{0})⊕ C∞c (R\{0}) .

(4.2)

Thus, for a generic u =

(
u1

u2

)
∈ L,

Tλu =

(
u̇2 + λu1

u̇1 + λu2

)
.

Next, we introduce the linear map

Φ : L(L2(R)⊕ L2(R)) −→ L(L2(R)) ,

dom Φ(A) :=
{
u ∈ L2(R) : (∃ ! vu ∈ L2(R))

(
vu
u

)
∈ domA ∩ kerP1A

}
,

Φ(A)u := P2A

(
vu
u

)
,

(4.3)

where L(X) is the space of linear (not necessarily bounded) maps on the
vector space X and Pj : L2(R)⊕L2(R)→ L2(R), j ∈ {1, 2}, is the orthogonal
projection onto the j-th component of L.

Then we have the following Lemma, whose proof is straightforward and
thus omitted.
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Lemma 4.1. Let λ > 0.

(i) The pair (Tλ, T̃λ) is a joint pair of abstract Friedrichs operators on the
Hilbert space L.

(ii) Given u ∈ L2(R), u ∈ dom Φ(Tλ) if and only if u ∈ C∞c (R\{0}), and

Φ(Tλ)u = λ−1(H̊ + λ2
1)u .

In other words, the equality

Φ(Tλ) = λ−1(H̊ + λ2
1)

is valid as an identity of operators on L. Therefore:

• the correspondence 1
λ (H̊ +λ21) 7→ Tλ amounts to pass from the second

order differential operator of interest, to a first order differential operator
that is part of a joint pair of abstract Friedrichs operators on L;
• the converse procedure of this order reduction is provided by the map
Tλ 7→ Φ(Tλ) = 1

λ (H̊ + λ21).

Next, let us search for self-adjoint extensions of H̊ on L2(R) (and in

fact, more generally, for closed extensions of H̊) by reducing H̊ to the pair

(Tλ, T̃λ), determining the relevant adjoint realisations of such a pair on L,

and then lifting, via the map Φ, each such realisation to an extension of H̊.
To this aim, let us set up in the following Subsection the analysis of (the

operator closure of) the pair (Tλ, T̃λ).

4.2. Analysis of the auxiliary joint pair of abstract Friedrichs operators

Let us define

Aλ,0 := Tλ ,

A′λ,0 := T̃λ ,

Aλ,1 := T̃ ∗λ ,
A′λ,1 := T ∗λ .

(4.4)

Then

domAλ,0 = domA′λ,0 = H1
0 (R\{0})⊕H1

0 (R\{0}) =: W0

domAλ,1 = domA′λ,1 = H1(R\{0})⊕H1(R\{0}) =: W ,
(4.5)

and (Aλ,0, A
′
λ,0) is a joint pair of closed abstract Friedrichs operators accord-

ing to Definition 2.3.
As a weak differential operator, Aλ,1, respectively A′λ,1, acts formally as

Tλ, respectively T̃λ:

Aλ,1u = σ
d

dx
u + λu , A′λ,1u = −σ d

dx
u + λu .

The boundary form associated with the pair (Aλ,0, A
′
λ,0) (Definition 2.4)

is obtained by integration by parts: for any u ≡
(
u1

u2

)
and v ≡

(
v1

v2

)
in W ,

D[u, v] = 〈Aλ,1u | v 〉L − 〈 u | A′λ,1v 〉L
= −

(
u2(0+)v̄1(0+)− u2(0−)v̄1(0−)

)
−
(
u1(0+)v̄2(0+)− u1(0−)v̄2(0−)

)
,
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where u(0±) := limx→0± u(x). Clearly, D does not depend on λ.
There is a natural choice for an adjoint pair (Aλ,r, A

∗
λ,r) of bijective

realisations with signed boundary map relative to (Aλ,0, A
′
λ,0), in the sense of

Definition 2.6: indeed, choosing the subspaces

V := Ṽ := H1(R)⊕H1(R) , (4.6)

it is immediately seen that W0 ⊆ V ⊆ W , W0 ⊆ Ṽ ⊆ W , that corre-
spondingly Aλ,1|V and A′λ,1|V are mutually adjoint operators, and that the
boundary form D vanishes on V , this latter fact following from the continuity
of any H1(R)-function. Therefore,

Aλ,r := Aλ,1|V and A∗λ,r = A′λ,1|V (4.7)

form an adjoint pair of bijective realisations with signed boundary map rel-
ative to (Aλ,0, A

′
λ,0), with domAλ,r = domA∗λ,r = V .

As an advantage of the abstract theory reviewed in Section 2, given the
data (Aλ,0, A

′
λ,0) and (Aλ,r, A

∗
λ,r),

• the whole class of adjoint pairs of (bijective) realisations of (Aλ,0, A
′
λ,0)

is constructively given by the classification of Theorem 2.8(ii);
• the whole sub-class of adjoint pairs of bijective realisations with signed

boundary map relative to (Aλ,0, A
′
λ,0) is constructively given by the clas-

sification of Theorem 2.9(ii), i.e., by the fulfilment of the mirror condi-
tions (2.13)–(2.14).

In order to apply Theorems 2.8 and 2.9 to the present case, let us de-
termine the relevant kernels and projections. It is straightforward to see that

kerAλ,1 = span{νννλ,1, νννλ,2}
kerA′λ,1 = span{ννν′λ,1, ννν′λ,2} ,

(4.8)

where

νννλ,1(x) := 1(−∞,0)

(
−eλx
eλx

)
νννλ,2(x) := 1(0,+∞)

(
e−λx

e−λx

) ννν′λ,1(x) := 1(−∞,0)

(
eλx

eλx

)
ννν′λ,2(x) := 1(0,+∞)

(
−e−λx
e−λx

)
.

(4.9)

The vectors νννλ,1, νννλ,2, ννν
′
λ,1, ννν

′
λ,2 are pairwise orthogonal in L and

‖νννλ,1‖L = ‖νννλ,2‖L = ‖ννν′λ,1‖L = ‖ννν′λ,2‖L =
1√
λ
.

Furthermore, with respect to the choice (4.7) forAλ,r, the (non-orthogonal)
projections pλ,k : domAλ,1 → kerAλ,1 and pλ,k′ : domA′λ,1 → kerA′λ,1 de-

fined in (2.6)–(2.7) act in the present case as

pλ,ku = C1(u)νννλ,1 + C2(u)νννλ,2

pλ,k′u = −C2(u)ννν′λ,1 − C1(u)ννν′λ,2 ,
(4.10)

where

C1(u) := 1
2 (u1(0+)− u1(0−))− 1

2 (u2(0+)− u2(0−))

C2(u) := 1
2 (u1(0+)− u1(0−)) + 1

2 (u2(0+)− u2(0−)) .
(4.11)
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In particular, (4.9) and (4.10) imply

pλ,k(ννν′λ,1) = −νννλ,2 , pλ,k(ννν′λ,2) = −νννλ,1 ,
pλ,k′(νννλ,1) = −ννν′λ,2 , pλ,k′(νννλ,2) = −ννν′λ,1 .

(4.12)

Following the extension scheme of Theorems 2.8 and 2.9, the next step is
the qualification of the pairs (Bλ, B

∗
λ) of densely defined and mutually adjoint

operators Bλ : Vλ → Wλ and B∗λ : Wλ → Vλ, with domains domBλ ⊆ Vλ
and domB∗λ ⊆ Wλ, where Vλ and Wλ are closed subspaces of kerAλ,1 and
kerA′λ,1.

Since dim kerAλ,1 = dim kerA′λ,1 = 2, such Vλ and Wλ can be zero-,
one-, or two-dimensional, and Bλ is necessarily bounded. For the present
discussion, it is relevant to focus on the case dimVλ = dimWλ = 1. In fact,
one has the following.

Lemma 4.2. Let λ > 0. For fixed a1, a2 ∈ C with |a1|2 + |a2|2 = 1, let

Vλ := span{a1νννλ,1 + a2νννλ,2} (4.13)

be a generic one-dimensional subspace of kerAλ,1, let Wλ be a one-dimen-
sional subspace of kerA′λ,1, and let Bλ : Vλ → Wλ be a (bounded) linear

operator, with domBλ := Vλ. Then condition (2.13) is satisfied if and only if

Wλ = span{a2ννν
′
λ,1 + a1ννν

′
λ,2} (4.14)

and
Bλ(a1νννλ,1 + a2νννλ,2) = z(a2ννν

′
λ,1 + a1ννν

′
λ,2) (4.15)

with z ∈ C such that
Re z 6 −λ . (4.16)

Proof. Let ννν = a1νννλ,1 + a2νννλ,2 ∈ Vλ. Condition (2.13) consists of two re-
quirements: the requirement 〈 pλ,k′ννν | ννν′ 〉L = 0, ννν′ ∈ kerA′λ,1 	 Wλ, reads

pλ,k′ννν ⊥ kerA′λ,1	Wλ, which is equivalent to−a1ννν
′
λ,2−a2ννν

′
λ,1 = pλ,k′ννν ∈ Wλ,

where we used (4.12). Thus, as Wλ is taken to be one-dimensional, such a
requirement is equivalent to Wλ having the form (4.14). As a linear map be-
tween one-dimensional spaces, Bλ must then have the form (4.15) for some
z ∈ C. Since

〈ννν | A′λ,1ννν 〉L = 〈 a1νννλ,1 + a2νννλ,2 | A′λ,1(a1νννλ,1 + a2νννλ,2) 〉L
= 〈 a1νννλ,1 + a2νννλ,2 | (Aλ,1 +A′λ,1)(a1νννλ,1 + a2νννλ,2) 〉L
= 2λ ‖a1νννλ,1 + a2νννλ,2‖2L = 2

(indeed, Aλ,1 +A′λ,1 = 2λ · 1) and

〈 pλ,k′ννν | Bλννν 〉L = 〈 pλ,k′(a1νννλ,1 + a2νννλ,2) | Bλ(a1νννλ,1 + a2νννλ,2) 〉L

= −z 〈 a1ννν
′
λ,2 + a2ννν

′
λ,1 | a2ννν

′
λ,1 + a1ννν

′
λ,2 〉L = − z

λ

(having used again (4.12), (4.15), and the orthonormality properties), then
the other requirement of condition (2.13), namely 〈ννν | A′λ,1ννν 〉L−2Re〈 pλ,k′ννν |
Bλννν 〉L 6 0, reads 2(1 + Re z

λ ) 6 0, which is equivalent to (4.16). �
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Corollary 4.3. Any triple (Vλ,Wλ, Bλ) satisfying (4.13), (4.14), and (4.15)
with condition (4.16) identifies, through formulas (2.11)–(2.12), an adjoint
pair (ABλ , A

∗
Bλ

) of bijective realisations with signed boundary map relative to
(Aλ,0, A

′
λ,0).

Proof. It follows from an immediate application of Theorem 2.9, since con-
dition (i)-(b) therein is fulfilled, owing to Lemma 4.2 above. �

In the following, we shall discuss two special classes of operators Bλ :
Vλ → Wλ: each class gives rise to a distinguished family of bijective re-
alisations (ABλ , A

∗
Bλ

) of (Aλ,0, A
′
λ,0), and for each such family the map Φ

produces a collection of operators Φ(ABλ) that form a distinguished class of

closed extensions of 1
λ (H̊ + λ21) on L2(R). This will yield, in particular, the

class of self-adjoint ‘δ-type’ extensions and the class of self-adjoint ‘δ′-type’
extensions of H̊.

5. Bijective realisations of Friedrichs operators and 1D
‘δ-extensions’

Motivated by Corollary 4.3, let us choose a1 = a2 in Lemma 4.2 and hence
let us for fixed λ > 0 consider the case

Vλ = span{νννλ,1 + νννλ,2}
Wλ = span{ννν′λ,1 + ννν′λ,2}
Bλ : Vλ →Wλ

Bλ(νννλ,1 + νννλ,2) = z (ννν′λ,1 + ννν′λ,2) for a fixed z ∈ C .

(5.1)

Proposition 5.1.

(i) Associated with the operator Bλ : Vλ → Wλ defined in (5.1), via the
correspondence (2.9), is the operator ABλ = Aλ,1|domABλ

on the Hilbert
space L, whose domain is given by

domABλ =

{(
u1

u2

)
∈ H1(R\{0})⊕H1(R) :

u1(0+)− u1(0−) =
2λ

z + λ
u2(0)

}
,

(5.2)

as well as the operator A∗Bλ = AB∗λ = A′λ,1|domA∗Bλ
on L, whose domain

is given by

domA∗Bλ =

{(
u1

u2

)
∈ H1(R\{0})⊕H1(R) :

u1(0+)− u1(0−) = − 2λ

z + λ
u2(0)

}
.

(5.3)

(ii) The pair (ABλ , A
∗
Bλ

) is an adjoint pair of bijective realisations of the
abstract Friedrichs operators (Aλ,0, A

′
λ,0) if an only if z 6= 0 in (5.1).
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(iii) The pair (ABλ , A
∗
Bλ

) has signed boundary map if and only if Re z 6 −λ
in (5.1).

Remark 5.2. In the case z = −λ the conditions in (5.2) and (5.3) are under-
stood as u2(0) = 0, implying domABλ = domA∗Bλ = H1(R\{0})⊕H1

0 (R\{0}).
The same applies to (5.4) and (5.5) below, which in this special case z = −λ
involve the space H2(R\{0}) ∩H1

0 (R\{0}).

Proof of Proposition 5.1. Let u ≡
(
u1

u2

)
∈ domABλ ⊆ W . In particular,

u1, u2 ∈ H1(R\{0}). Owing to (2.9), pλ,ku ∈ domBλ = Vλ = span{νννλ,1 +
νννλ,2}: thus, (4.10) reads C1(u) = C2(u) which is by (4.11) equivalent to
u2(0−) = u2(0+) =: u2(0), that is, u2 is continuous at the origin and hence
belongs toH1(R), which in turn is the same as to say that C1(u) = 1

2 (u1(0+)−
u1(0−)). As a consequence,

Bλ(pλ,ku) = Bλ(C1(u)νννλ,1+C1(u)νννλ,2) = 1
2 (u1(0+)−u1(0−)) z (ννν′λ,1+ννν′λ,2) .

Moreover,

PWλ
(Aλ,1u) = ‖ννν′λ,1 + ννν′λ,2‖−2〈Aλ,1u | ννν′λ,1 + ννν′λ,2 〉L (ννν′λ,1 + ννν′λ,2)

= λ
(
u2(0)− 1

2 (u1(0+)− u1(0−)
)

(ννν′λ,1 + ννν′λ,2)

because ‖ννν′λ,1 + ννν′λ,2‖2 = 2
λ by orthogonality, and because

〈Aλ,1u | ννν′λ,1 〉L =
〈(u̇2 + λu1

u̇1 + λu2

)
| 1(−∞,0)

(
eλx

eλx

)〉
L

=

∫ 0

−∞

(
u̇2(x) + λu1(x) + u̇1(x) + λu2(x)

)
eλx dx

= u2(0−) + u1(0−)

and analogously 〈Aλ,1u | ννν′λ,2 〉L = u2(0+) − u1(0+). Therefore, with the

identity u2(0−) = u2(0+) =: u2(0), the property PWλ
(Aλ,1u) = Bλ(pλ,ku)

prescribed by (2.9) is equivalent to

u2(0) = z+λ
2λ

(
u1(0+)− u1(0−)

)
. (*)

When z = −λ, (*) implies u2(0) = 0, and hence u2 ∈ {f ∈ H1(R) : f(0) =
0} = H1

0 (R\{0}), whereas it does not add further restrictions to the condition
u1 ∈ H1(R \ {0}), and the conclusion is (5.2) for the case z = −λ (see
Remark 5.2). When instead z 6= −λ, then (*) together with the properties
u1 ∈ H1(R\{0}) and u2 ∈ H1(R) implies (5.2) for the case z 6= −λ. Formula
(5.3) can be established through a completely analogous reasoning, or also
by determining A∗B directly from AB .

This completes the proof of part (i). Part (ii) is an immediate application
of Theorem 2.8(iii). Part (iii) is a direct consequence of Lemma 4.2. �

Next, let us lift the pairs (ABλ , A
∗
Bλ

) of the class fixed by (5.1) to pairs

(Φ(ABλ),Φ(A∗Bλ)) of operators on L2(R), by means of the map Φ introduced
in (4.3).
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Proposition 5.3. Let Bλ,z : Vλ →Wλ be an operator of the type (5.1) for some
z ∈ C, and let ABλ,z and A∗Bλ,z be the corresponding operators described in

Proposition 5.1.

(i) Via the map Φ introduced in (4.3) one has

dom Φ(ABλ,z ) =
{
u ∈ H2(R\{0}) ∩H1(R) :

u̇(0+)− u̇(0−) = − 2λ2

z + λ
u(0)

}
Φ(ABλ,z )u = λ−1(−ü+ λ2u) ,

(5.4)

and

dom Φ(A∗Bλ,z ) =
{
u ∈ H2(R\{0}) ∩H1(R) :

u̇(0+)− u̇(0−) = − 2λ2

z + λ
u(0)

}
Φ(A∗Bλ,z )u = λ−1(−ü+ λ2u) .

(5.5)

(ii) Φ(ABλ,z ) = Φ(A∗Bλ,z ) on L2(R) if and only if z ∈ R.

(iii) If z 6= 0, then the operators Φ(ABλ,z ) and Φ(A∗Bλ,z ) are mutually adjoint

on L2(R).
(iv) The two conditions

• z 6= 0 and Φ(ABλ,z ) is self-adjoint,
• z ∈ R \ {0},

are equivalent. The same equivalence holds replacing Φ(ABλ,z ) by Φ(A∗Bλ,z ).

Proof. (i) Let u ∈ L2(R). It follows from (4.3) that u ∈ dom Φ(ABλ,z ) if

and only if

(
− 1
λ u̇
u

)
∈ domABλ,z , and u ∈ dom Φ(A∗Bλ,z ) if and only if(

1
λ u̇
u

)
∈ domA∗Bλ,z , in which case Φ(ABλ,z )u = Φ(A∗Bλ,z )u = 1

λ (−ü + λ2u).

Matching this with (5.2) and (5.3) produces at once (5.4) and (5.5).

(ii) By part (i) the action of Φ(ABλ,z ) and Φ(A∗Bλ,z ) coincide, while

dom Φ(ABλ,z ) = dom Φ(A∗Bλ,z ) if and only if z ∈ R, so the claim follows.

(iii) Φ(A∗Bλ,z ) ⊆ Φ(ABλ,z )
∗ because, if v ∈ dom Φ(A∗Bλ,z ), then for any

u ∈ dom Φ(ABλ,z ) one has

〈Φ(ABλ,z )u | v 〉L2(R) =
〈
P2ABλ,z

(
− 1
λ u̇
u

)
| v
〉
L2(R)

=
〈
ABλ,z

(
− 1
λ u̇
u

)
|
(

1
λ v̇
v

)〉
L

=
〈(− 1

λ u̇
u

)
| A∗Bλ,z

(
1
λ v̇
v

)〉
L

=
〈
u | P2A

∗
Bλ,z

(
1
λ v̇
v

)〉
L2(R)

= 〈u | Φ(A∗Bλ,z )v 〉L2(R),
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where in the first and the last equality we used the definition of Φ (4.3), in

the second and the fourth identities P1ABλ,z

(
− 1
λ u̇
u

)
= P1A

∗
Bλ,z

(
1
λ v̇
v

)
= 0,

and in the third

(
1
λ v̇
v

)
∈ domA∗Bλ,z . Conversely, let v ∈ dom Φ(ABλ,z )

∗ and

let z 6= 0. Then there exists η ∈ L2(R) such that

〈Φ(ABλ,z )u | v 〉L2(R) = 〈u | η 〉L2(R)

for any u ∈ dom Φ(ABλ,z ). Since z 6= 0, A∗Bλ,z is bijection. Hence, A∗Bλ,z w =(
0
η

)
for some w ∈ domA∗Bλ,z . In fact, necessarily w =

(
1
λ ẇ
w

)
for some

w ∈ dom Φ(A∗Bλ,z ), because P1A
∗
Bλ,z

w = 0. Therefore,

〈u | η 〉L2(R) =
〈(− 1

λ u̇
u

)
|
(

0
η

)〉
L

=
〈(− 1

λ u̇
u

)
| A∗Bλ,z

(
1
λ ẇ
w

)〉
L

=
〈
ABλ,z

(
− 1
λ u̇
u

)
|
(

1
λ ẇ
w

)〉
L

=
〈
P2ABλ,z

(
− 1
λ u̇
u

)
| w
〉
L2(R)

= 〈Φ(ABλ,z )u | w 〉L2(R)

for arbitrary u ∈ dom Φ(ABλ,z ). As a consequence, v−w is orthogonal to the
range of Φ(ABλ,z ). Obviously, the surjectivity of ABλ,z implies the surjectivity
of Φ(ABλ,z ), whence v = w ∈ dom Φ(A∗Bλ,z ), that is, Φ(A∗Bλ,z ) ⊇ Φ(ABλ,z )

∗.

The conclusion is Φ(A∗Bλ,z ) = Φ(ABλ,z )
∗. An analogous argument, exchang-

ing the two operators, shows that Φ(ABλ,z ) = Φ(A∗Bλ,z )
∗.

(iv) If z 6= 0 and Φ(ABλ,z ) is self-adjoint on L2(R), then by part (iii)

Φ(ABλ,z ) = Φ(ABλ,z )
∗ = Φ(A∗Bλ,z ) ,

so by part (ii) z ∈ R. Thus, the overall conclusion is z ∈ R \ {0}. Conversely,
for z ∈ R \ {0} by parts (ii) and (iii) follows

Φ(ABλ,z ) = Φ(A∗Bλ,z ) = Φ(ABλ,z )
∗ ,

obtaining that Φ(ABλ,z ) is self-adjoint on L2(R). For Φ(ABλ,z ) the reasoning
is completely analogous. �

With Proposition 5.3, we have identified operators of the form ABλ,z for
generic z ∈ C, and λ > 0.

In fact, the double parametrisation in z and λ is somewhat redundant,
but this is precisely the advantage we wanted to benefit from with carrying
on an arbitrary λ. Indeed, it is easy to see from (5.4) that the boundary
condition remains unaltered if one replaces the pair (λ, z) with (1, z+λλ2 − 1),
and that, correspondingly, one has the identity

Φ
(
AB

1, z+λ

λ2
−1

)
= λΦ(ABλ,z )− (λ2 − 1)1 . (5.6)

This allows us to overcome the (only apparent) restriction that it was needed
to insert in the statement of Proposition 5.3(iii)-(iv), in the proof of which
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we had to use the bijectivity of ABλ,z , which is only available for z 6= 0. If,
for concreteness, we focus on the two families

{Φ(AB1,z ) | z ∈ C} and {Φ(A∗B1,z
) | z ∈ C} ,

then we deduce from Proposition 5.3 the following relevant properties.

Corollary 5.4. Under the assumptions of Proposition 5.3,

(i) one has

dom Φ(AB1,z
) =

{
u ∈ H2(R\{0}) ∩H1(R) :

u̇(0+)− u̇(0−) = − 2

z + 1
u(0)

}
Φ(AB1,z )u = −ü+ u ,

(5.7)

and

dom Φ(A∗B1,z
) =

{
u ∈ H2(R\{0}) ∩H1(R) :

u̇(0+)− u̇(0−) = − 2

z + 1
u(0)

}
Φ(A∗B1,z

)u = −ü+ u ;

(5.8)

(ii) Φ(AB1,z
) = Φ(A∗B1,z

) on L2(R) if and only if z ∈ R;

(iii) Φ(AB1,z
) and Φ(A∗B1,z

) are mutually adjoint on L2(R);

(iv) Φ(AB1,z
) is self-adjoint on L2(R) if and only if z ∈ R. The same holds

for Φ(A∗B1,z
).

Proof. Parts (i) and (ii) follow at once from Proposition 5.3(i)-(ii), as well as
parts (iii) and (iv) when z 6= 0. It remains to discuss the case z = 0, i.e., to
prove that Φ(AB1,0

) is self-adjoint. By (5.6), Φ(AB1,0
) = 2Φ(AB2,2

)−31, and
applying Proposition 5.3(iv), we come to the conclusion. �

Let us collect together all the arguments and results of this Section. The
following Summary makes the outline stated at the beginning of Section 4
explicit for the δ-type extensions.

Summary 5.5 (δ-type closed extensions of H̊ realised as Friedrichs systems).

• There exists a collection of operators Φ(AB1,z
) on L2(R) of the form

(5.7), where B1,z runs in the class (5.1) for z ∈ C and λ = 1, such that

Φ(AB1,z
) is closed (Corollary 5.4(iii)) and H̊ +1 ⊆ Φ(AB1,z

) (Corollary
5.4(i)). Thus,

Cδ :=
{

Φ(AB1,z
)− 1 : z ∈ C

}
is a collection of closed extensions of H̊.
• All the Φ(AB1,z

)’s arising in Cδ, but the exceptional one corresponding
to z = 0 (i.e., to B1,0 = O), are associated to pairs (AB1,z

, A∗B1,z
) that,

by Proposition 5.1(ii), are pairs of bijective realisations of the abstract
Friedrichs operators (A1,0, A

′
1,0) obtained by reducing the second order
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differential operator H̊ + 1 to the first order vector-valued differential
operator T1 of formula (4.2).
• In fact, Cδ has two noticeable sub-families. The sub-family of Cδ selected

by Re z 6 −1 corresponds to the only pairs (AB1,z
, A∗B1,z

) that are

bijective realisations with signed boundary map relative to (A1,0, A
′
1,0),

as follows from Proposition 5.1(iii).
• In turn, the sub-family of Cδ selected by z ∈ R is the maximal sub-

family of self-adjoint operators (Corollary 5.4(iv)). It is precisely the
one-parameter family {−∆α |α ∈ (−∞,+∞]} of operators introduced
in (3.2), since comparing (3.2) and (5.7) gives

Φ(AB1,z
)− 1 = −∆α , α := − 2

z+1 , (5.9)

where α = +∞ is understood to correspond to z = −1.
• We have thus recovered the family of δ-type self-adjoint extensions of
H̊, together with the larger family Cδ of closed extensions of H̊ charac-
terised by the same form u̇(0+)− u̇(0−) = αu(0) of boundary condition
at x = 0 for possibly non-real α’s, and we have done it through a novel
conceptual path, as compared to the traditional methods that had let
to Theorem 3.1(ii), that is, understanding each such extension as an
abstract Friedrichs system.
• Each self-adjoint extension −∆α=−2/(z+1) = Φ(AB1,z

)−1 of the opera-

tor− d2

dx2 |C∞c (R\{0}) is indeed understood as a pair (AB1,z
, A∗B1,z

) of closed

bijective realisations of the underlying Friedrichs pair (T1, T̃1) naturally

associated with − d2

dx2 |C∞c (R\{0}). Most noticeably, the extensions with
α > 0 (z 6 −1), namely the repulsive (non-confining) contact inter-
action Hamiltonians of δ-type, correspond to bijective realisations with
signed boundary map.

6. Bijective realisations of Friedrichs operators and 1D
‘δ′-extensions’

In this Section we discuss a second relevant special case, in complete analogy
to the previous Section (and for this reason we only sketch the analogous
proofs): instead of (5.1) we choose now a1 = −a2 in Lemma 4.2, and hence
we consider the case

Vλ = span{νννλ,1 − νννλ,2}
Wλ = span{ννν′λ,1 − ννν′λ,2}
Bλ : Vλ →Wλ

Bλ(νννλ,1 − νννλ,2) = −z (ννν′λ,1 − ννν′λ,2) for a fixed z ∈ C .

(6.1)

We have the following.
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Proposition 6.1.

(i) Associated with the operator Bλ : Vλ → Wλ defined in (6.1), via the
correspondence (2.9), is the operator ABλ = Aλ,1|domABλ

on the Hilbert
space L, whose domain is given by

domABλ =

{(
u1

u2

)
∈ H1(R)⊕H1(R\{0}) :

u2(0+)− u2(0−) =
2λ

z + λ
u1(0)

}
,

(6.2)

as well as the operator A∗Bλ = AB∗λ = A′λ,1|domA∗Bλ
on L, whose domain

is given by

domA∗Bλ =

{(
u1

u2

)
∈ H1(R)⊕H1(R\{0}) :

u2(0+)− u2(0−) = − 2λ

z + λ
u1(0)

}
.

(6.3)

(ii) The pair (ABλ , A
∗
Bλ

) is an adjoint pair of bijective realisations of the
abstract Friedrichs operators (Aλ,0, A

′
λ,0) if an only if z 6= 0 in (6.1).

(iii) The pair (ABλ , A
∗
Bλ

) has signed boundary map if and only if Re z 6 −λ
in (6.1).

Remark 6.2. In the case z = −λ the conditions in (6.2) and (6.3) are under-
stood as u1(0) = 0, implying domABλ = domA∗Bλ = H1

0 (R\{0})⊕H1(R\{0}).
The same applies to (6.4) and (6.5) below.

Proof of Proposition 6.1. Let u ≡
(
u1

u2

)
∈ domABλ ⊆ W . In particular,

u1, u2 ∈ H1(R\{0}). Owing to (2.9), pλ,ku ∈ domBλ = Vλ = span{νννλ,1 −
νννλ,2}: thus, (4.10) reads C2(u) = −C1(u), which is by (4.11) equivalent to
u1(0−) = u1(0+) =: u1(0), that is, u1 is continuous at the origin and hence
belongs to H1(R). As a consequence,

Bλ(pλ,ku) = Bλ(C1(u)νννλ,1−C1(u)νννλ,2) = 1
2 (u2(0+)−u2(0−)) z (ννν′λ,1−ννν′λ,2) ,

and arguing as in the proof of Proposition 5.1(i) we find

PWλ
(Aλ,1u) = ‖ννν′λ,1 − ννν′λ,2‖−2〈Aλ,1u | ννν′λ,1 − ννν′λ,2 〉L (ννν′λ,1 − ννν′λ,2)

= λ
(
u1(0)− 1

2 (u2(0+)− u2(0−)
)

(ννν′λ,1 − ννν′λ,2) .

Therefore, the property PWλ
(Aλ,1u) = Bλ(pλ,ku) prescribed by (2.9) is equiv-

alent to

u1(0) = z+λ
2λ

(
u2(0+)− u2(0−)

)
, (**)

thus obtaining (6.2). The statement for domA∗Bλ follows in the same manner.
This completes the proof of part (i). Part (ii) is an immediate application of
Theorem 2.8(iii), while part (iii) is a direct consequence of Lemma 4.2. �
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Next, we lift the pairs (ABλ , A
∗
Bλ

) of the class fixed by (6.1) to pairs

(Φ(ABλ),Φ(A∗Bλ)) of operators on L2(R), by means of the map Φ introduced
in (4.3). The result is the following and its proof is completely analogous to
the proof of Proposition 5.3.

Proposition 6.3. Let Bλ,z : Vλ →Wλ be an operator of the type (6.1) for some
z ∈ C, and let ABλ,z and A∗Bλ,z be the corresponding operators described in

Proposition 6.1.

(i) Via the map Φ introduced in (4.3) one has

dom Φ(ABλ,z ) =


u ∈ H2(R\{0}) such that
u̇(0+) = u̇(0−) =: u̇(0) ,

u(0+)− u(0−) = − 2
z+λ u̇(0)


Φ(ABλ,z )u = λ−1(−ü+ λ2u) ,

(6.4)

and

dom Φ(A∗Bλ,z ) =


u ∈ H2(R\{0}) such that
u̇(0+) = u̇(0−) =: u̇(0) ,

u(0+)− u(0−) = − 2
z+λ u̇(0)


Φ(A∗Bλ,z )u = λ−1(−ü+ λ2u) .

(6.5)

(ii) Φ(ABλ,z ) = Φ(A∗Bλ,z ) on L2(R) if and only if z ∈ R.

(iii) If z 6= 0, then the operators Φ(ABλ) and Φ(A∗Bλ) are mutually adjoint

on L2(R).
(iv) The two conditions

• z 6= 0 and Φ(ABλ,z ) is self-adjoint;
• z ∈ R \ {0},

are equivalent. The same equivalence holds replacing Φ(ABλ,z ) by Φ(A∗Bλ,z ).

As in the previous Section, we exploit the redundancy of the double
parametrisation of the operators ABλ,z , and from (6.4) we deduce the oper-
ator identity

Φ
(
AB1,z+λ−1

)
= λΦ(ABλ,z )− (λ2 − 1)1 . (6.6)

We then focus, for concreteness, on the two families

{Φ(AB1,z ) | z ∈ C} and {Φ(A∗B1,z
) | z ∈ C}

and we deduce from Proposition 6.3 the following relevant properties.

Corollary 6.4. Under the assumptions of Proposition 6.3,

(i) one has

dom Φ(AB1,z
) =


u ∈ H2(R\{0}) such that
u̇(0+) = u̇(0−) =: u̇(0) ,

u(0+)− u(0−) = − 2
z+1 u̇(0)


Φ(AB1,z )u = −ü+ u ,

(6.7)
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and

dom Φ(AB1,z
) =


u ∈ H2(R\{0}) such that
u̇(0+) = u̇(0−) =: u̇(0) ,

u(0+)− u(0−) = − 2
z+1 u̇(0)


Φ(A∗B1,z

)u = −ü+ u ;

(6.8)

(ii) Φ(AB1,z ) = Φ(A∗B1,z
) on L2(R) if and only if z ∈ R;

(iii) Φ(AB1,z
) and Φ(A∗B1,z

) are mutually adjoint on L2(R);

(iv) Φ(AB1,z
) is self-adjoint on L2(R) if and only if z ∈ R. The same holds

for Φ(A∗B1,z
).

Proof. Parts (i) and (ii) follow at once from Proposition 6.3(i)-(ii), as well as
parts (iii) and (iv) when z 6= 0. It remains to discuss the case z = 0, i.e., to
prove that Φ(AB1,0) is self-adjoint. By (6.6), Φ(AB1,0) = 2Φ(AB2,−1) − 31,
and applying Proposition 6.3(iv), we come to the conclusion. �

Let us collect together all the arguments and results of this Section. The
following Summary makes the outline stated at the beginning of Section 4
explicit for the δ′-type extensions.

Summary 6.5 (δ′-type closed extensions of H̊ realised as Friedrichs systems).

• There exists a collection of operators Φ(AB1,z ) on L2(R) of the form
(6.7), where B1,z runs in the class (6.1) for z ∈ C and λ = 1, such that

Φ(AB1,z
) is closed (Corollary 6.4(iii)) and H̊ +1 ⊆ Φ(AB1,z

) (Corollary
6.4(i)). Thus,

Cδ′ :=
{

Φ(AB1,z )− 1 : z ∈ C
}

is a collection of closed extensions of H̊.
• All the Φ(AB1,z

)’s arising in Cδ′ , but the exceptional one corresponding
to z = 0 (i.e., to B1,0 = O), are associated to pairs (AB1,z

, A∗B1,z
) that,

by Proposition 6.1(ii), are pairs of bijective realisations of the abstract
Friedrichs operators (A1,0, A

′
1,0) obtained by reducing the second order

differential operator H̊ + 1 to the first order vector-valued differential
operator T1 of formula (4.2).

• In fact, Cδ′ has two noticeable sub-families. The sub-family of Cδ′ se-
lected by Re z 6 −1 corresponds to the only pairs (AB1,z

, A∗B1,z
) that are

bijective realisations with signed boundary map relative to (A1,0, A
′
1,0),

as follows from Proposition 6.1(iii).
• In turn, the sub-family of Cδ′ selected by z ∈ R is the maximal sub-

family of self-adjoint operators (Corollary 6.4(iv)). It is precisely the
one-parameter family {Ξβ |β ∈ (−∞,+∞]} of operators introduced in
(3.3), since comparing (3.3) and (6.7) gives

Φ(AB1,z
)− 1 = Ξβ , β := − 2

z+1 , (6.9)

where β = +∞ is understood to correspond to z = −1.
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• We have thus recovered the family of δ′-type self-adjoint extensions
of H̊, together with the larger family Cδ′ of closed extensions of H̊
characterised by the same form u(0+) − u(0−) = βu̇(0) of boundary
condition at x = 0 for possibly non-real β’s, and we have done it through
a novel conceptual path, as compared to the traditional methods that
had let to Theorem 3.1(iii), that is, understanding each such extension
as an abstract Friedrichs system.
• Each self-adjoint extension Ξβ=−2/(z+1) = Φ(AB1,z )−1 of the operator

− d2

dx2 |C∞c (R\{0}) is indeed understood as a pair (AB1,z , A
∗
B1,z

) of closed

bijective realisations of the underlying Friedrichs pair (T1, T̃1) naturally

associated with − d2

dx2 |C∞c (R\{0}). Most noticeably, the extensions with
β > 0 (z 6 −1), namely the repulsive (non-confining) contact interac-
tion Hamiltonians of δ′-type, correspond to bijective realisations with
signed boundary map.

7. Bijective realisations of Friedrichs operators and 3D point
interactions

In view of the canonical decomposition presented in Theorem 3.2, we develop
in this Section the analogous discussion of Sections 4, 5, and 6, now applied
to the starting operator

h0 = − d2

dr2
, domh0 = H2

0 (R+) , (7.1)

namely the only radial operator which one has to study the self-adjoint
extensions of, in order to qualify the self-adjoint realisations of the three-
dimensional Hamiltonian of contact interaction centred at the origin.

The analogy is stringent with what discussed already for the one-dimen-
sional case, even if the problem now is on the half line, instead of the whole
real line.

Acting on the Hilbert space

L := L2(R+)⊕ L2(R+) (7.2)

we introduce the densely defined closed operators Aλ,0 : L → L and Aλ,0 :
L→ L, for arbitrary λ > 0, defined by

Aλ,0 := σ
d

dx
+ λ1 ,

A′λ,0 := −σ d

dx
+ λ1 ,

domAλ,0 := domA′λ,0
:= H1

0 (R+)⊕H1
0 (R+) =: W0 .

(7.3)
The pair (Aλ,0, A

′
λ,0) is a joint pair of closed abstract Friedrichs operators

(Definition 2.3). The adjoints Aλ,1 := (A′λ,0)∗ and A′λ,1 := A∗λ,0 have domain

domAλ,1 = domA′λ,1 = H1(R+)⊕H1(R+) =: W ,
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and the same weak differential action as Aλ,0 and A′λ,0. The boundary form

associated with (Aλ,0, A
′
λ,0) (Definition 2.4) is obtained by integration by

parts: for any u ≡
(
u1

u2

)
and v ≡

(
v1

v2

)
in W ,

D[u, v] = 〈Aλ,1u | v 〉L − 〈 u | A′λ,1v 〉L = −
(
u2(0+)v̄1(0+) + u1(0+)v̄2(0+)

)
.

Now, choosing the subspaces

V := Ṽ := H1
0 (R+)⊕H1(R+) , (7.4)

it is immediately seen that W0 ⊆ V ⊆ W , W0 ⊆ Ṽ ⊆ W , that corre-
spondingly Aλ,1|V and A′λ,1|V are mutually adjoint operators, and that the
boundary form D vanishes on V . Therefore,

Aλ,r := Aλ,1|V and A∗λ,r = A′λ,1|V (7.5)

form an adjoint pair of bijective realisations with signed boundary map rel-
ative to (Aλ,0, A

′
λ,0), with domAλ,r = domA∗λ,r = V .

The relevant kernels and projections needed in order to apply Theorems
2.8 and 2.9 to the present case are determined straightforwardly as follows.
One has

kerAλ,1 = span{νννλ} and kerA′λ,1 = span{ννν′λ} , (7.6)

where

νννλ(x) :=

(
e−λx

e−λx

)
and ννν′λ(x) :=

(
e−λx

−e−λx
)
, (7.7)

and the vectors νννλ and ννν′λ are pairwise orthogonal in L and ‖νννλ‖L = ‖ννν′λ‖L =
1√
λ

. Further, with respect to the choice (7.5) for Aλ,r, the (non-orthogonal)

projections pλ,k : domAλ,1 → kerAλ,1 and pλ,k′ : domA′λ,1 → kerA′λ,1
defined in (2.6)–(2.7) act in the present case as

pλ,ku = u1(0+)νννλ

pλ,k′u = u1(0+)ννν′λ .
(7.8)

Next, in view of the extension scheme of Theorems 2.8 and 2.9, we
qualify the pairs (Bλ, B

∗
λ) of densely defined and mutually adjoint opera-

tors Bλ : Vλ → Wλ and B∗λ : Wλ → Vλ, with domains domBλ ⊆ Vλ
and domB∗λ ⊆ Wλ, where Vλ and Wλ are closed subspaces of kerAλ,1 and
kerA′λ,1.

Since dim kerAλ,1 = dim kerA′λ,1 = 1, such Vλ and Wλ can be zero- or
one-dimensional, and Bλ is necessarily bounded. The zero-dimensional case
is trivial and yields the operators (7.5). We then consider the case dimVλ =
dimWλ = 1, i.e.,

Vλ = kerAλ,1

Wλ = kerA′λ,1

Bλ : Vλ →Wλ

Bλνννλ = z ννν′λ for a fixed z ∈ C .

(7.9)
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Reasoning as in the proof of Lemma 4.2, we find the following.

Lemma 7.1. Let λ > 0, and let Vλ,Wλ and Bλ be as in (7.9). Then condition
(2.13) is satisfied if and only if

Re z > λ .

Arguing in the same way as for Propositions 5.1 and 6.1, for each Bλ
we determine the domain of corresponding realisations ABλ with the choice
(7.9).

Proposition 7.2.

(i) Associated with the operator Bλ : Vλ → Wλ defined in (7.9), via the
correspondence (2.9), is the operator ABλ = Aλ,1|domABλ

on the Hilbert
space L, whose domain is given by

domABλ =

{(
u1

u2

)
∈ H1(R+)⊕H1(R+) : u1(0+) =

λ

λ− z
u2(0+)

}
,

(7.10)
as well as the operator A∗Bλ = AB∗λ = A′λ,1|domA∗Bλ

on L, whose domain

is given by

domA∗Bλ =

{(
u1

u2

)
∈ H1(R+)⊕H1(R+) : u1(0+) = − λ

λ− z
u2(0+)

}
.

(7.11)
(ii) The pair (ABλ , A

∗
Bλ

) is an adjoint pair of bijective realisations of the
abstract Friedrichs operators (Aλ,0, A

′
λ,0) if an only if z 6= 0 in (7.9).

(iii) The pair (ABλ , A
∗
Bλ

) has signed boundary map if and only if Re z > λ
in (7.9).

Reasoning as for Propositions 5.3 and 6.3, we lift the pairs (ABλ , A
∗
Bλ

) of
the class identified by the choice (7.9) to pairs (Φ(ABλ),Φ(A∗Bλ)) of operators

on L2(R+). The lift is now defined, in analogy to (4.3), as the linear map

Φ : L(L2(R+)⊕ L2(R+)) −→ L(L2(R+)) ,

dom Φ(A) :=
{
u ∈ L2(R+) : (∃ ! vu ∈ L2(R))

(
vu
u

)
∈ domA ∩ kerP1A

}
,

Φ(A)u := P2A

(
vu
u

)
,

(7.12)

where L(X) is the space of linear (not necessarily bounded) maps on the
vector space X and Pj : L2(R+) ⊕ L2(R+) → L2(R+), j ∈ {1, 2}, is the
orthogonal projection onto the j-th component of L.

Proposition 7.3. Let Bλ,z : Vλ →Wλ be an operator of the type (7.9) for some
z ∈ C, and let ABλ,z and A∗Bλ,z be the corresponding operators described in

Proposition 7.2.
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(i) Via the map Φ introduced in (7.12) one has

dom Φ(ABλ,z ) =
{
u ∈ H2(R+) : u̇(0+) = − λ2

λ− z
u(0+)

}
Φ(ABλ,z )u = λ−1(−ü+ λ2u) ,

(7.13)

and

dom Φ(A∗Bλ,z ) =
{
u ∈ H2(R+) : u̇(0+) = − λ2

λ− z
u(0+)

}
Φ(A∗Bλ,z )u = λ−1(−ü+ λ2u) .

(7.14)

(ii) Φ(ABλ,z ) = Φ(A∗Bλ,z ) on L2(R) if and only if z ∈ R.

(iii) If z 6= 0, then the operators Φ(ABλ,z ) and Φ(A∗Bλ,z ) are mutually adjoint

on L2(R).
(iv) The two conditions

• z 6= 0 and Φ(ABλ,z ) is self-adjoint;
• z ∈ R \ {0},

are equivalent. The same equivalence holds replacing Φ(ABλ,z ) by Φ(A∗Bλ,z ).

As a consequence, reasoning as for Corollaries 6.4 and 5.4 we find the
following relevant properties.

Corollary 7.4. Under the assumptions of Proposition 7.3,

(i) one has

dom Φ(AB1,z
) =

{
u ∈ H2(R+) : u̇(0+) = − 1

1− z
u(0+)

}
Φ(AB1,z

)u = −ü+ u ,
(7.15)

and

dom Φ(A∗B1,z
) =

{
u ∈ H2(R+) : u̇(0+) = − 1

1− z
u(0+)

}
Φ(A∗B1,z

)u = −ü+ u ;
(7.16)

(ii) Φ(AB1,z ) = Φ(A∗B1,z
) on L2(R) if and only if z ∈ R;

(iii) Φ(AB1,z ) and Φ(A∗B1,z
) are mutually adjoint on L2(R);

(iv) Φ(AB1,z
) is self-adjoint on L2(R) if and only if z ∈ R. The same holds

for Φ(A∗B1,z
).

Based on the results above, we can repeat the analogous considera-
tions stated in Summary 5.5 and Summary 6.5. In short, we have identified
all closed realisations of operator h0 given by (7.1), and hence also of op-

erator H̊ defined in (3.4), characterised by the same boundary condition
u̇(0+) = 4παu(0+) at x = 0 for possibly complex α’s, recovering the self-
adjoint extensions for real α’s. We have done it through a novel conceptual
path, as compared to the traditional methods that had let to Theorem 3.2(iii),
that is, understanding each such realisation as an abstract Friedrichs system.
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Remark 7.5. An alternative, equivalent route for the above three-dimensional
analysis, instead of exploiting the construction of −∆α through the partial
wave decomposition as in Theorem 3.2, and hence working with the radial
Hilbert space L2(R+), is to develop a genuinely three-dimensional discussion
as we sketch here below.

On the Hilbert space

L := L2(R3;C3)⊕ L2(R3) ,

for arbitrary λ > 0, we define densely defined operators Tλ, T̃λ : L→ L by

Tλ :=

(
0 ∇

div 0

)
+ λ1

T̃λ := −
(

0 ∇
div 0

)
+ λ1

domTλ := dom T̃λ := C∞c (R\{0};C3)⊕ C∞c (R\{0}) .

(7.17)

It can be easily seen that (Tλ, T̃λ) is a joint pair of abstract Friedrichs oper-
ators and

Φ(Tλ) = λ−1(H̊ + λ2
1) ,

where H̊ is given by (3.4) and Φ : L(L) → L(L2(R3)) is defined by analogy
with (4.3). The domains of their operator closures and adjoints are given by

domTλ = dom T̃λ = L2
div,0(R3\{0};C3)⊕H1

0 (R3\{0})

domT ∗λ = dom T̃ ∗λ = L2
div(R3\{0};C3)⊕H1(R3\{0}) ,

where L2
div(R3\{0};C3) := {u ∈ L2(R3;C3) : div u ∈ L2(R3)} (here div is a

weak (distributional) differential operator on R3\{0}) and L2
div,0(R3\{0};C3)

is the closure of C∞c (R3\{0};C3) in L2
div(R3\{0};C3). Furthermore, as a weak

differential operator, T̃ ∗λ , respectively T ∗λ , acts formally as Tλ, respectively T̃λ.
One can check that for

V := Ṽ := L2
div(R3;C3)⊕H1(R3) (7.18)

the pair (T̃ ∗λ |V , T ∗λ |V ) (or (Aλ,1|V , A′λ,1|V ) with the notation Aλ,1 := T̃ ∗λ ,

A′λ,1 := T ∗λ used in this Section) form an adjoint pair of bijective realisations

with signed boundary map relative to (Tλ, T̃λ), which could be taken as the
reference one for the application of Theorems 2.8 and 2.9. This choice cor-
responds to the self-adjoint negative Laplacian −∆∞ on L2(R3) in the sense

that dom Φ(T̃ ∗λ |V ) = dom Φ(T ∗λ |V ) = H2(R3) and

Φ(T̃ ∗λ |V ) = Φ(T ∗λ |V ) = λ−1(−∆∞ + λ2
1) ,

as an identity of operators on L; therefore, this choice differs from (7.5) used
in the above computations, which corresponds to −∆0, i.e., to the case α = 0
in (3.5).

The kernels of the adjoints are explicitly given by

ker T̃ ∗λ = span

{(
− 1
λ∇ψλ
ψλ

)}
and kerT ∗λ = span

{(
1
λ∇ψλ
ψλ

)}
,
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where ψλ(x) = e−λ|x|

|x| .

Thus, one is left with expressing the non-orthogonal projections (2.7)
with respect to the choice (7.18), and one way to do that is precisely by
exploiting the decomposition of L2(R3) into the radial part and spherical
harmonics, described in Theorem 3.2(ii), as was done in the above computa-
tions.

8. Further examples and concluding remarks

Having recognised that Hamiltonians of contact interactions supported at
one point (or, more generally, at a finite number of fixed points) are, in a
suitable correspondence scheme, nothing but abstract Friedrichs operators
on Hilbert space, and having recognised that a sub-class of them corresponds
to the relevant sub-class of bijective realisations of Friedrichs operators with
signed boundary map, is a new fact that deserves interest per se and even
more for bringing novel examples of abstract Friedrichs systems, as compared
to all the previously known examples arising from concrete boundary value
problems or Cauchy problems for partial differential equations.

In addition, we also highlighted the intrinsic connection between the
well-known extension scheme that yields the family of contact interaction
Hamiltonians as self-adjoint realisations of the symmetric free Hamiltonian
restricted away from the interaction centre(s), and the general classification
[8] for the bijective realisations of a given pair of abstract Friedrichs operators,
including those with signed boundary. The latter leads in a natural way to
the closed (not necessarily self-adjoint) extensions of the free Hamiltonian
initially restricted away from the interaction centre and satisfying the same
type of contact boundary condition.

Along the same line of reasoning of the present discussion, one could ap-
proach even further classes of contact interaction Hamiltonians for which our
correspondence scheme is applicable in connection with abstract Friedrichs
operators. The most noticeable example, to our view, would be the topical
class of Hamiltonians of point interactions supported on a hyper-surface Σ of
Rd [11, 10, 9]. At the core of their construction as self-adjoint operators Hα,Σ

or Hβ,Σ on L2(Rd) is a boundary condition for each point x ∈ Σ, along the
normal to Σ, that is actually the one-dimensional δ-type boundary condition
(3.2) or the δ′-type boundary condition (3.3), where now the couplings α or
β are suitable given functions α(x) or β(x) on Σ.

Thus, even if we do not develop this point further, we are confident that
a reduction scheme as in Section 4 should be applicable, and proceeding as in
Sections 5 and 6 one could recognise Hα,Σ and Hβ,Σ as lifted-to-second-order
versions of joint pairs of closed abstract Friedrichs operators on L2(Rd). For
fairly generic surfaces, hence in the lack of special symmetries, the main diffi-
culty and the key point is to reproduce the reduction scheme pointwise along
the surface. This would match the same spirit of the above-mentioned works,



32 Marko Erceg and Alessandro Michelangeli

where the boundary condition of self-adjointness for the contact interaction
Hamiltonian does hold at each point of the surface.
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