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Received 25 October 2018; Accepted 10 January 2019; Published 3 March 2019

Academic Editor: Radek Matušů
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This paper presents the first application of the hedge-algebra theory in the field of grid synchronization. For this purpose, an
optimized hedge-algebra controller (HAC) is developed and incorporated within the three-phase phase-locked loop (PLL) with
moving average filters (MAFs) inside its feedback loop. Optimized fuzziness parameters and linguistic rule base of the HAC are
obtained by a genetic algorithm using the integral of absolute error as the performance index during optimization. Calculated
optimal parameter values of the HAC depend on the most frequently occurring disturbance in the electric grid. Two different PLL
structures are proposed, depending on the types of disturbances occurring in the electric grid.The first structure is the conventional
synchronous reference frame PLL with the nonadaptive MAF (i.e., MAF without order adjustment), but with the PI/PID controller
in the phase loop replaced by the developed HAC. Such PLL structure is suitable for all analyzed disturbance types, expect for
step-changes in the grid frequency. The second PLL structure introduces the adaptive MAF (i.e., MAF with order adjustment) and
a new feedback signal in the output stage of the controller to achieve zero steady-state error in the case of step-changes in the
grid frequency. The disturbance rejection capability of the two developed PLLs with the HAC (HAC-PLLs) is tested separately and
compared experimentally with the PID- and fuzzy-controller-based PLLs.

1. Introduction

The synchronization of power electronics converters with a
distributive electric grid presents an intensive research area in
the world. In three-phase systems, phase-locked loops (PLLs)
present one of the most used synchronization methods. The
conventional synchronous reference frame PLL (SRF-PLL) is
shown in Figure 1.

The main parts of the conventional SRF-PLL are as
follows: the phase detector, the low-pass filter, and the voltage
controlled oscillator.The phase detector transforms the phase
voltages ua, ub, uc to synchronous direct and quadrature
voltage components ud and uq, respectively.Thedirect voltage
component ud is equal to the phase voltages amplitude U for

nondistorted phase voltages. Usually, the filter in Figure 1 is
realized as the PI or PID controller, with the zero-voltage
reference. Hence, the term controller is used below. The
SRF-PLL outputs the estimated phase angle of the three-
phase system 𝜗. This type of PLL shows its disadvantages
in the case of an unbalanced phase voltage system, i.e.,
when there are negative- and zero-sequence components
along with a positive-sequence component. In this case, a
disturbance component whose frequency is equal to twice the
fundamental grid frequency (e.g., 100 Hz when the nominal
value is 50 Hz) appears in the direct and quadrature voltage
components ud and uq. Consequently, a power electronics
inverter, which performs DC to AC inversion, is not properly
synchronized with the electric grid.
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Figure 1: Block diagram of the conventional SRF-PLL.

To deal with unbalanced phase voltage systems, many
PLLs with added filters have been proposed [1]. The PLLs
with filters in the phase loop can be classified as follows:
moving average filter-based PLL (MAF-PLL) [2–4], cascaded
delayed signal-cancellation (CDSC) operator [5], notch filter-
based PLL [2, 6], variable sampling period filter-based PLL
[7], multiple reference frame-based PLL [8], and in-loop
complex-coefficient filter-based PLL [9].

On the other hand, the PLLs with filters outside of the
phase loop are often called PLLs with a prefiltering stage.
This prefiltering stage significantly attenuates disturbance
components before the phase loop input. Some of the PLLs
with the prefiltering stage are the PLL with a multiple
complex-coefficient filter [10], the PLL with the recursive
discrete Fourier transform [11], the PLL with the sliding
Goertzel discrete Fourier transform [12], the PLL with the
moving average filter-based (MAF) prefiltering [13], the PLL
with the dual second-order generalized integrators [14], and
the delay signal cancelation-based PLL [5, 15].

Scientific papers dealing with the PLLs in which artificial
intelligence is applied are extremely rare. In review paper [1],
there is no single example of artificial intelligence use in PLLs.
In [16–18] the fuzzy logic theory is applied in the PLL. In [16],
the particle swarm optimization algorithm is used to tune
values of the fuzzy controller (FC) membership functions. In
[17], the authors propose application of the same algorithm
for both tuning of the FC membership functions and finding
the optimal values of the low-pass filter. It is very important to
point out that, in these papers, there is a nonzero phase error
when unbalanced grid conditions appear. In [18], a FC in the
three-phase PLL is applied, but only with the phase voltages
containing harmonics or a DC component. The phase error
is not shown in this paper.

Generally, advantages that FCs have in nonlinear control
systems over the classical PI/PID controller are numerous.
For example, FCs do not require knowledge of a detailed
mathematical model of the control system and also they are
expressed in linguistic terms used in natural language. In
addition, FCs have the capability of handling noisy signals
and usually lead to better results compared to the classical
PI/PID controller in terms of the control system performance
[19].

Hedge-algebra theory was first developed in 1990 [20]
to model the order-based semantics of the terms in term-
domains of linguistic variables. Hedge algebras form a for-
malism to immediately handle linguistic words and linguis-
tic rule bases (LRBs) and their computational (compt.-)
semantics instead of their fuzzy sets or fuzzy set expressions
representing their inherent semantics. So, this theory is based
on mapping of a few fuzziness parameters of each linguistic
variable instead of using fuzzy sets. In [21], the authors point
out that the structure of the hedge-algebra-based controller
(HAC) is like the conventional FC, but it is simpler and more
convenient. As a result, theHACwas applied in optimal fuzzy
control of an inverted pendulum [22], in active vibration
control of building structures subjected to seismic excitations
[23–26], and in voltage control of a self-excited induction
generator [27]. However, it was not yet applied in the field
of grid synchronization.

This paper introduces three-phase PLLs with the MAF
inside the phase loop and the HAC used as a controller. The
first proposed PLL is based on the MAF-PLL reported in [3],
but with the PI/PID controller replaced by the HAC. For this
purpose, the MAF with no order adjustment (nonadaptive
MAF) is proposed. This PLL is suitable for all analyzed dis-
turbance types, expect for step-changes in the grid frequency.
The second PLL structure introduces the adaptive MAF (i.e.,
MAF with order adjustment) and a new feedback signal in
the output stage of the controller to achieve zero steady-
state error in the component uq, in the case of step-changes
in the grid frequency. For this PLL type, an application of
the MAF is proposed with its order adjusted according to
the linear interpolation method [4]. Both types of the PLLs
are briefly named HAC-PLL. In addition, it is proposed
that both the structure and parameters of the HAC-PLL
are determined depending on the most frequently occurring
disturbance in the electric grid. This approach requires that
the power quality monitoring is carried out over one week
[28]. Optimized fuzziness parameters and linguistic rule base
of the HAC are obtained for each considered disturbance
by means of a genetic algorithm. The integral of absolute
error (IAE) is used as a performance index for finding these
parameters and rules.

In this paper, the following disturbances are considered:
unbalanced voltage sag with/without harmonics distortion of
the phase voltages, unbalanced low-frequency transients in
the phase voltages, and step-changes in the grid frequency. It
is important to point out that the HAC-PLL with parameters
and linguistic rules optimized for a specific disturbanceworks
stable with other analyzed disturbances as well. Finally, a
comparison is shown between the HAC-PLL and two other
MAF-PLLs: with the PID controller and with the FC.

2. Phase-Locked Loops with the Moving
Average Filter

AMAF belongs to the group of finite impulse response filters
which eliminate all harmonics whose frequency is multiplier
of the reciprocal value of its window width. The MAFs are
suitable for embedded computer systems because of their
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Figure 2: PLL with the nonadaptive MAF and a controller.

low computational requirements. On the other hand, their
filtering capability decreases when the ratio of the window
width and the sampling period is not an integer. In that case,
the window width needs to be varied and adapted to the
circumstances. SuchMAFs are called hereinafter the adaptive
MAFs, whereas MAF only refers to the nonadaptive type,
unless otherwise indicated.

Figure 2 shows the PLL with the nonadaptive MAF and a
controller inside the phase loop [3]. The controller can be of
a PID, fuzzy or HAC type, as described later.

The MAF with the input signal x and the output sig-
nal 𝑥 can be described by the following equations in the
continuous-time and discrete-time domain, respectively:

𝑥 (𝑡) = 1𝑇𝑤 ∫
𝑇𝑤

𝑡−𝑇𝑤

𝑥 (𝑡) 𝑑𝑡 (1)

𝑥 (𝑘) = 1𝑁
𝑁−1∑
𝑛=0

𝑥 (𝑘 − 𝑛) (2)

whereTw =NTs is theMAFwindowwidth,Ts is the sampling
time, and N is the number of samples within the window
width.

Using (1) and (2), the transfer functions in the s-domain
and z-domain, respectively, are defined as

𝐺 (𝑠) = 𝑥 (𝑠)𝑥 (𝑠) = 1 − 𝑒
−𝑇𝑤𝑠

𝑇𝑤𝑠 (3)

𝐺 (𝑧) = 𝑥 (𝑧)𝑥 (𝑧) = 1𝑁
𝑁−1∑
𝑛=0

𝑧−𝑁 = 1𝑁 1 − 𝑧
−𝑁

1 − 𝑧−1 . (4)

By replacing s with 𝑗𝜔 in (3), the magnitude and phase
characteristics in the s-domain are given as

𝐺 (𝑗𝜔) = 
sin (𝜔𝑇𝑤/2)𝜔𝑇𝑤/2

 𝑒−𝑗𝜔𝑇𝑤/2 (5)

Similarly, by replacing z with 𝑒𝑗𝜔𝑇𝑠 in (5), the magnitude and
phase characteristics in the z-domain are given as

𝐺(𝑒𝑗𝜔𝑇𝑠) = 
sin (𝜔𝑁𝑇𝑠/2)𝑁 sin (𝜔𝑇𝑠/2)

 𝑒−𝑗𝜔(𝑁−1)𝑇𝑠/2 (6)

Equation (5) shows that theMAF input signals whose angular
frequency is a multiple of the reciprocal window width 1/Tw
(𝑓 = 𝑛/𝑇𝑤, n = 1, 2, 3,. . .) will be completely blocked. So, it
is often said that the MAF acts as an ideal low-pass filter. In
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Figure 3: MAF Bode plots obtained with Tw = 0.01 s and N = 100.

addition, (6) takes on the form of (5) if the sampling time
Ts → 0.

As mentioned before, the analyzed disturbances in the
phase voltage quadrature component uq include a harmonic
component whose frequency is 100 Hz when the grid fre-
quency is 50 Hz. So, it is chosen Tw = 0.01 s to completely
remove the 100 Hz harmonic and all its multiples from uq.
This selection for the MAF window width is recommended
when the grid harmonic content is unknown and the DC-
offset may be present in the phase voltages. To determine the
sampling time Ts, the fastest time-varying disturbance needs
to be considered. In this paper, low-frequency transients
in the phase voltages are considered, with an oscillation
frequency less than 5 kHz, as the fastest time-varying dis-
turbance [29]. The sampling time of 100 𝜇s is, in this sense,
sufficient, whereas the number of samples within the window
width N is equal to 100.

Figure 3 shows the Bode plots of the MAF obtained using
(5) and with Tw = 0.01 s and N = 100.

Equation (4) presents the nonadaptive MAF because its
parameter N is constant. Such MAF is suitable when no
significant frequency variation of the electric grid is expected.
However, the problem arises when the grid frequency varies.
In such cases, the nonadaptive MAF does not completely
block the harmonic whose frequency is equal to twice the
changed grid frequency.Therefore, some of theMAF variants
with the variable parameterN should be applied [3].The best
filtering capabilities are achieved by using MAFs with the
linear interpolation method [3, 4]. Using this approach, the
output signal of the MAF in the 𝑘th sample instant 𝑥(𝑘) is
defined as

𝑥 (𝑘) = 𝑇𝑠𝑇𝑤 (
𝑁𝑓−1∑
𝑖=0

𝑥 (𝑘 − 𝑖)

+ 𝛼 ((1 − 𝛼) 𝑥 (𝑘 − 𝑁𝑓 + 1) + 𝛼𝑥 (𝑘 − 𝑁𝑓)))
(7)
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Figure 4: PLL for rapid changes in grid frequency with the fuzzy controller or the HAC and the adaptive MAF.

where Nf is the greatest integer less than or equal to Tw/Ts
and 𝛼 = Tw/Ts - Nf.

The parameterNf is calculated using the floor function as
follows:

𝑁𝑓 = floor( 1𝑇𝑠 ⋅ 2𝑓𝑔𝑓) = floor( 𝜋𝑇𝑠 ⋅ �̂�𝑔𝑓

) (8)

where �̂�𝑔𝑓 is the estimated angular grid frequency, filtered by
a low-pass filter described in Section 2.2.

By using (7), the MAF becomes adaptive with regard to
the grid frequency (i.e., the window width is variable). In this
way, better filtering performance is achieved, especially for
low-frequency components.

2.1. MAF-Based PLL with the PID Controller. The first con-
sidered PLL is the one with the nonadaptive MAF and PID
controller inside the phase loop shown in Figure 2. In this
paper, this PLL is used for performance evaluation of the
developed PLL, which is described in Section 3.

The PID controller is written in the following form [3]:

𝐺 (𝑠) = 𝑘𝑝 1 + 𝜏𝑖𝑠𝜏𝑖𝑠
1 + 𝜏𝑑𝑠1 + 𝛽𝜏𝑑𝑠 (9)

where kp is the proportional gain, 𝜏𝑖 is the integral time
constant, and 𝜏d is the derivative time constant.

The parameter 𝛽 = 0.1 prevents the derivation action
for the frequencies higher than 1/(𝛽𝜏d). The PID parameters
which ensure the phase margin of 45∘, the damping factor 𝜁
= 0.707, and the natural frequency 𝜔𝑛 = 2𝜋20 rad/s can be
obtained as

𝜏𝑖 = 2𝜁𝜔𝑛

,
𝜏𝑑 = 𝑇𝑤2 ,
𝑘𝑝 = 2𝜁𝜔𝑛𝑈+

1

(10)

where 𝑈+
1 is the amplitude of the positive-sequence compo-

nent of the phase voltage.
More details about the described MAF-based PLL with

the PID controller can be found in [3].

2.2. MAF-Based PLL for Rapid Changes in Grid Frequency. In
the case of rapid changes in grid frequency, the FC within the
PLL structure as in Figure 2 is unable to achieve zero steady-
state error in the component uq. To deal with this problem,
the new adaptive-MAF-based PLL structure with the FC or
the HAC is proposed, as shown in Figure 4. In comparison
with Figure 2, here it was necessary to add a new feedback
signal in the output stage of the controller in order to obtain
stable operation. Also, by using the adaptive MAF instead of
the nonadaptiveMAF it is possible to obtain lower IAE values.
First, the FC is considered for the PLL in Figure 4, whereas the
HAC is dealt with in more detail in Section 3.

In this study, the Mamdani fuzzy inference system is
selected for the FC because it is more widely accepted and
allows a more intuitive approach to design in comparison to
the Sugeno type. Figure 5 shows themembership functions of
the Mamdani-type FC.These functions were obtained by the
trial-and-error, whereas the IAE was used as a performance
index. In Figure 5, N, P, and ZE stand for negative, positive,
and zero, respectively, whereas L, V, and VV stand for little,
very, and very very, respectively. Hence, for example, LN is
interpreted as little negative. In addition, e is the error signal
calculated as the difference between the voltageuq and its zero
reference, ce is the change in error calculated as the difference
between two consecutive values of the error signal e, and𝑐Δ𝜔𝑔 is the adjustment signal for the change in the estimated
grid frequency. Variables e and ce represent the inputs to
the FC, whereas 𝑐Δ𝜔𝑔 represents the output variable in per
unit notation. Such notation, however, requires scaling of the
input and output signals. The scaling factors were selected
according to the analyzed disturbance. For voltage sags (with
and without harmonics) the scaling factors equal to 0.1, 3.5,
and 85 were chosen for e, ce, and 𝑐Δ𝜔𝑔, respectively, again
using the IAE as the performance index. These factors are
equal to 0.25, 2.8, and 0.1 for an unbalanced low-frequency
transient, and, finally, they are equal to 0.093, 4, and 105 for
rapid changes in grid frequency.

The FC has 25 fuzzy rules, shown in Table 1, whereas the
centroid method was selected for defuzzification.

The low-pass filter in Figure 4 outputs the feedback
signal �̂�𝑔𝑓, which presents the estimated grid frequency
passed through the second-order filter. This filter has the
damping factor 𝜁 = 0.9 and the natural frequency 𝜔𝑛 = 2𝜋35
rad/s. The signal �̂�𝑔𝑓, in comparison with the estimated grid



Journal of Control Science and Engineering 5

0 0.2 0.4 0.6 0.8 1

VN LN ZE LP VP

e (pu)

 (e)
 (ce)

ce (pu)
−1 −0.8 −0.6 −0.4 −0.2

(a)

VVN VN ZE VP VVPN P

0 0.2 0.4 0.6 0.8 1−1 −0.8 −0.6 −0.4 −0.2

 (cΔg)

cΔg (pu)

(b)

Figure 5: Membership functions of the developed Mamdani-type FC.

Table 1: Rule base for FC.

ce
VN LN ZE LP VP

VN VVN VVN VN N ZE
e LN VVN VN N ZE P

ZE VN N ZE P VP
LP N ZE P VP VVP
VP ZE P VP VVP VVP

frequency �̂�𝑔, has slower dynamics and it helps the FC to
reach its steady-state setpoint. In addition, the parameter
Nf, which is the input parameter of the adaptive MAF, is
calculated according to (8), whereby the estimated angular
grid frequency is replaced by its filtered value.

The rule base summarized in Table 1 and themembership
functions shown in Figure 5 also apply to the FC in Figure 4.

3. Hedge-Algebra-Based Phase-Locked Loop
with Genetic Optimized LRBs

In this study, the LRBs are converted from the respective
fuzzy (linguistic label) rule bases (FRBs) established by
the experience of human domain experts. Though these
domain-experts’ FRBs are very important, they are not always
appropriate for specific application problems, particularly for
complex problems.The construction of the FC component of
the MAF-based PLL shown in Figures 2 and 4 is considered
as such a problem.

A genetic method to design an optimized HAC is devel-
oped in order to replace the FC in theMAF-based PLL shown
in Figures 2 and 4. This one is called the optimized HAC
(opHAC) developed based on the hedge-algebra-formalism
(HA-formalism). It is important and novel that the main
component of the HAC, its LRB, is also to be optimized.
However, as an LRB is genetically established by computer
instead of human experts, this problem must only be solved
in a formalism that is able to immediately handle linguistic
words with their own real-world-semantics. Another dis-
tinguished advantage of the HA-formalism is its ability to
ensure the real-world-semantics (RWS-) interpretability of
the designedHACs, whichmeans that the expected behaviors

of the designed HACs are actually the same as described
by their designers in terms of their LRBs [29]. It is also
required that its approximate reasoning method must be
RWS-interpretable as well. So, it can be seen that the RWS-
interpretability of a designed HAC is very essential and
important to ensure the high performance of not only the
designedHACs but also the designed fuzzy systems. Also, it is
for the first time applied to design RWS-interpretable HACs
to solve application problems. Finally, their LRBs, with their
own semantics, are for the first time genetically constructed.

3.1. The Role of Human Language in Designing RWS-
Interpretable Fuzzy Systems. In the fuzzy set framework,
words assigned to the fuzzy sets are considered as linguistic
labels and there is no formal basis to use words and lin-
guistic sentences of human natural language with their own
inherent semantics. So, there exists a gap between the fuzzy
representations representing the inherent semantics of their
respective words and of their respective LRBs. The main aim
of the fuzzy control is to utilize human capability in handling
words of the natural language. If there was no formal bridge
established across the gap, one would not be able to indeed
make use of human expert linguistic knowledge. The paper
[30] introduces an RWS-approach to the interpretability
of fuzzy systems in which the RWS-interpretability of the
human language is utilized to designRWS-interpretable fuzzy
systems. Assuming the RWS-interpretability of the natural
language, it implies that the LRB equipped for a fuzzy
system is able to properly describe the reality with which
the system interfaces. Based on this feature, the ultimate
goal of the RWS-approach is to establish a methodology
to design RWS-interpretable fuzzy systems, whose RWS-
interpretability means that their behavior is ensured to be
compatiblewith the expected one described by the given LRB.

The main specific features of the RWS-approach exam-
ined in [30] are the following:

(i) It is able to utilize the RWS-interpretability of the
human language. In the fuzzy control, they usually
describe monotonic dependences between two RW-
variables.

(ii) Its formalism is able to immediately handle words and
sentences of human expert languages with their own
RW-semantics as well as their compt.-semantics.
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These features are very crucial for any method to design a
fuzzy (linguistic) controller to ensure its expected behavior
when it interacts with its RW-counterpart.

3.2. Hedge Algebras of Variables, Their Quantification, and
Their RWS-Interpretability. In order to ensure the RWS-
interpretability of the designed HAC-PLLs, it is required
to utilize the RWS-interpretability of human language to
establish a mathematical formalization of word-domains for
developing the HAC-PLLs. To do this, it is observed that
the word-domain of every (linguistic) variable possesses the
following two specific features:

(i) The word-domain can be generated from its atomic
words, e.g., ‘small’ and ‘large’ of the current inten-
sity variable, using linguistic hedges, e.g., ‘very’ or
‘extremely’. Then, every word x is of the form hn. . .h1c, where c ∈ {𝑠𝑚𝑎𝑙𝑙, 𝑙𝑎𝑟𝑔𝑒} and ℎ𝑗’s are (linguistic)
hedges and, hence, they can be considered as opera-
tions of an algebra.

(ii) There exists a linear or partial semantic order relation
on this word-domain induced by the inherent seman-
tics of its words.

Thus, hedges with their own order-based semantics defined
in their word-domain play an essential role in discovering
order-based structures of the word-domains of variables.
However, a large number of studies consider words only
as linguistic labels of the constructed fuzzy sets, whereas
there are relatively few studies that immediately deal with
linguistic hedges with their own modification functionality,
called hedge operators. For instance, such hedge operators
are examined and applied in fuzzy logic and approximate
reasoning [31, 32], in contrast intensification [33], and in
fuzzy control [34]. In particular, it is actively examined in
formal concept analysis of a dataset based on studying formal
concept latticewith hedges, called truth-stressing hedges [35–
38]. In these studies, hedges are utilized to modify concept-
forming operators to control the number of conceptual clus-
ters extracted froma given dataset represented by formal con-
cepts of a concept lattice of the dataset. However, the inherent
semantics of words, which may contain hedge occurrences,
is still not taken into consideration and, therefore, ‘hedge
operators’ were developed in these studies independently
from the semantics of words and hedges, which in practice
must be determined in the context of other words of their
variable.

Starting from the two aforementioned specific features of
word-domains, HAs were proposed and developed in turn in
[20, 30, 39, 40]. As argued in [30], all theories developed in
an axiomatic way, whose axioms actually represent structural
semantics of their respective RW-counterparts (e.g., math-
theories or theoretical physics theories), are shown to be
RWS-interpretable; in this section, we briefly explain that
the theories of HAs and their quantification, which form the
above formalism, are also RWS-interpretable.

3.2.1. A Description of an Axiomatization of Word-Domains
and Their Quantification. HAs introduced in [20, 30, 39, 40]
establish an algebraic approach based on a formalization

of their word-domains of variables in an axiomatic way
to immediately handle the inherent order-based semantics
of the words. It is natural that there are comparability
elements in the human language, the presence of which is
required by the human decision-making activities in which
the comparability of decision criteria values is crucial. So,
there exists a semantic order relation on every variable word-
domain. For instance, considering the RW-variable I𝑅𝑊 of
the current intensity, this RW-variable may be examined
on the standpoint either of a numeric formalism, in which
its respective numeric variable is denoted by I𝑁, or of
a linguistic formalism, in which its respective linguistic
variable is denoted by I𝐿. For every hedge h of I𝐿, say
‘very’ (V), the pair of the words ‘very large’ and ‘large’ or the
pair of the words ‘very small’ and ‘small’ of I𝐿 are always
comparable. It is essential that the order of these words is
compatiblewith the order of the numeric values of the current
intensity assigned to their respective words and, hence, the
word-domain ofI𝐿 must also be linearly ordered.

For general case, let us consider an arbitrary linguistic
variable denoted by X without its subscript L, for simplicity.
As analyzed above, the word-domain of X becomes an order-
based structure, denoted by AX = (Dom(X), G, C, H, ≤),
where G = { c−, c+ } – considered as the generators of AX,
where c− < c+, c+ is called the positive atomic word and c−
– the negative one; C is the set of constants C = { 0, W, 1 },
which are, respectively, the least, neutral, and greatest words
of Dom(X); H = H−∪ H+ is the set of the hedges of X, where
H− (or H+) is the set of the negative (or positive) hedges;
e.g., H− = {R (Rather), L (Little) }, and H+ = {M (More), V
(Very) }; and ≤ is the semantic order relation. Syntactically,
Dom(X) is the set of all the words of X of the form x = hn . . .
h1c, c ∈G, whose length is denoted by |𝑥|; i.e., |𝑥|= n+ 1.Many
properties of the inherent semantics of the words of X can be
modeled in the order-based structure of Dom(X) and, more
importantly, as the human language is RWS-interpretable,
they are RWS-interpretable as well. To formalize the word-
domains in an axiomatic way, it is necessary to discover
few properties of the order-based semantics of words and
hedges that can easily be verified based on their natural
meaning so that they can be taken as axioms and their
math-models and the remaining properties can be derived
from them. Restricted to the purpose of the study, a very
short description of this formalization is given, including the
necessary knowledge for the study. More details can be found
in [20, 30, 39, 40].

(i)Words andhedges ofX have their own “algebraic” signs
determined in this order-based structure as follows.

(a) For atom words, sign (c–) = –1 and sign(c+) = +1; for
any hedge h, sign (h) = +1 (or, sign (h) = –1) if h ∈ H+

(or, h ∈ H–) which is identified by hc+ ≥ c+ (or, hc+ ≤
c+).

(b) The relative sign of h with respect to k, denoted by
sign (h, k), is computed by sign (h, k) = –1 iff (∃c ∈
G)(kc ≤ c ⇒ kc ≤ hkc) and sign (h, k) = +1 iff (∃c ∈
G)(kc ≤ c ⇒ hkc ≤ kc). For illustration, the validity of
Table 2 can be checked.
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Table 2:The relative sign of a hedge in a row with respect to a hedge
in a column.

V M R L
V + + - +
M + + - +
R - - + -
L - - + -

(c) Now, the sign of x = hn . . . h1c is computed by sign (x)
= sign (hn, hn−1) . . . sign (h1) sign (c) ∈ { –1, +1 }.There
is an important fact that sign (hx) =–1 (or, +1) ⇐⇒
hx ≤ x (or, x ≤ hx). For example, for L, R, M, and V
stand for little, rather, more, and very, respectively, it
may be verified, for instance, that sign (VR small) =
sign (V,R)sign (R) × sign (small) = –1, which results in
VR small ≤ R small.

(ii) By the aforementioned functionality of the hedges of
X, for every hedge h ∈ H and every word x ∈ Dom(X), the
word hx inherits the semantics of his parent x, called hedge-
inheritance, that can be formalized as follows: c– ≤ c+ ⇒
H(c–) ≤ H(c+) and hx ≤ kx ⇒ H(hx) ≤ H(kx), ∀h, k, where
H(z) = { 𝜎z: 𝜎 = hn . . . h1 ∈ H∗, ⌀ ∈ H∗ }. It states that
any strings of hedges 𝜎 and 𝜎 applying to hx and kx cannot
change their inherent semantics defined by the inequality
direction of hx ≤ kx; i.e., 𝜎hx ≤ 𝜎kx holds or, equivalently,
H(hx) ≤ H(kx). By this, H(x) can be considered in [39] as
the fuzziness model of x. The set of the fuzziness models,{H(x): x ∈ Dom(X) }, has many properties representing the
RW-semantics of the words which can be proved from the
axioms of the HA of X [20]:

(a) The inclusionH(hx) ⊆H(x) represents the generality-
specificity relation of x and hx: x is more general
than hx and, conversely, hx is more specific than x.
Moreover, we have

{0} ∪ 𝐻 (𝑐−) ∪ {𝑊} ∪ 𝐻 (𝑐+) ∪ {1} = Dom (𝑋)
𝐻 (L𝑥) ∪ 𝐻 (R𝑥) ∪ 𝐻 (M𝑥) ∪ 𝐻 (V𝑥) = 𝐻 (𝑥)

⋃
ℎ∈𝑋𝑘

𝐻(ℎ𝑥) = 𝐻 (𝑥) ,
where 𝑋𝑘 = {𝑥 ∈ Dom (𝑋) ; |𝑥| = 𝑘}

(11)

(b) The order of the fuzzinessmodels of words is the same
as the order of their words:

{0} ≤ 𝐻 (𝑐−) ≤ {𝑊} ≤ 𝐻 (𝑐+) ≤ {1}
𝐻 (L𝑥) ≤ 𝐻 (R𝑥) ≤ {𝑥} ≤ 𝐻 (M𝑥) ≤ 𝐻 (V𝑥) ,

for sign (V𝑥) = +1
𝐻 (L𝑥) ≥ 𝐻 (R𝑥) ≥ {𝑥} ≥ 𝐻 (M𝑥) ≥ 𝐻 (V𝑥) ,

for sign (V𝑥) = –1

(12)

3.2.2. Quantification of the Words of Variable-Domains [39].
In nature, the compt.-semantics, including numeric seman-
tics, interval semantics, and fuzziness measure, of the words
of Dom(X) must be determined from their inherent order-
based semantics presented above. Hence, they are closely
defined.The axiomatic way to quantify the words is described
as follows:

(1) Numeric Semantics of the Words. A mapping f :X→[0, 1], where [0, 1] is the normalized universe of X, is said
to be a numeric semantics interpretation if it is an order-
isomorphism, whose image f (X) is dense in [0, 1]. It is called a
Semantically Quantifying Mapping (SQM) and its values can
be interpreted as the numeric word semantics.

(2) Interval Semantics and Fuzziness Measure of the
Words. An SQM f maps each H(x) to a subinterval of [0, 1],
which is the smallest subinterval including the image of
H(x), f (H(x)). It is called the fuzziness interval or an interval
semantics of x and is denoted by I(x) = [f (H(x))] and its
length is called fuzziness measure of x, denoted by fm(x), i.e.,
fm :X → [0, 1].

(3) Strict Relationships of the Compt.-Semantics of the
Words. It can be seen that, given an SQM f, as f preserves the
order of the words, by (11) and (12), it follows by induction
that

(i) for x ∈ { 0, c–, W, c+, 1 }, their numeric semantics, i.e.,
their f -values, and the related fuzziness intervals are
exactly located in [0, 1] as represented in Figure 6(a);

(ii) for xwith |𝑥| = k > 1, assume that its fuzziness interval
I(x) is already located in [0, 1]. If sign (Vx) = −1
(sign (Vx) = +1), its numeric semantics f (x) and its
related fuzziness intervals are arranged as given in
Figure 6(b) (are arranged so that a structure of the
words generated from the atom c and the structure
obtained from the former one by replacing c with the
other atom word c’ are mirror symmetrical).

From these, it follows that

𝑓 (0) ≤ I (𝑐−) ≤ 𝑓 (𝑊) ≤ I (𝑐+) ≤ 𝑓 (1)
I (𝑐−) ∪I (𝑐+) = [0, 1]
I (L𝑥) ≤ I (R𝑥) ≤ 𝑓 (𝑥) ≤ I (M𝑥) ≤ I (V𝑥) ,

if sign (𝑉𝑥) = +1
I (V𝑥) ≤ I (M𝑥) ≤ 𝑓 (𝑥) ≤ I (R𝑥) ≤ I (L𝑥) ,

if sign (𝑉𝑥) = −1
I (L𝑥) ∪I (R𝑥) ∪I (M𝑥) ∪I (V𝑥) = I (𝑥) ,

for𝑥with |𝑥| ≥ 1

(13)

From (13) it follows that the fuzziness measure fm of X has
the following properties:

(𝑓𝑚1) 𝑓𝑚(𝑐−) + 𝑓𝑚(𝑐+) = 1;(𝑓𝑚2) 𝑓𝑚(L𝑥) + 𝑓𝑚(R𝑥) + 𝑓𝑚(M𝑥) + 𝑓𝑚(V𝑥) = 𝑓𝑚(𝑥);(𝑓𝑚3) From (𝑓𝑚2) is inferred𝑓𝑚(L𝑥)/𝑓𝑚(𝑥) + 𝑓𝑚(R𝑥)/𝑓𝑚(𝑥) + 𝑓𝑚(M𝑥)/𝑓𝑚(𝑥) + 𝑓𝑚(V𝑥)/𝑓𝑚(𝑥) = 1.
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Figure 6: The structure of SQM-values and their related fuzziness intervals of the words of C ∪{ c−, c+ } that is given in (a) and of the word x
that is given in (b).

Assume that the fraction fm(hx)/fm(x) does not depend on
particular x; it can be considered as the fuzziness measure of
h, denoted by 𝜇(h), h ∈ H. Thus, it holds

(𝑓𝑚4) 𝑓𝑚(ℎ𝑥) = 𝜇(ℎ)𝑓𝑚(𝑥) and𝜇(L)+𝜇(R)+𝜇(M)+𝜇(V) =𝛼 + 𝛽 = 1,
where 𝛼 = 𝜇(L) + 𝜇(R) and 𝛽 = 𝜇(M) + 𝜇(V), which are the
sums of the fuzziness measure of, respectively, the negative
hedges and the positive ones.

It is important that when the values of fm(c−), 𝜇(R), 𝜇(M),
and 𝜇(V) are given, fm(x) can be calculated, for any word x.
These values are called independent fuzziness parameters.

Now, interpreting (fm1) - (fm3) as axioms, a quantifi-
cation theory is founded, in which the numeric semantics
and the interval semantics of the words are easily computed
[30, 39, 41], referring to Figure 6. This illustrates that the
quantification of HAs can also developed in an axiomatic
way and, hence, the quantification theory of HAs is RWS-
interpretable.

3.3. Genetic Design of HAC-PLL. Two of the main compo-
nents of HAC are its control LRB and approximate reasoning
method (ARM) running on the graphical representation of
its LRB. The HAC-PLL designed in this study has two new
features: it is RWS-interpretable and its LRB is genetically
constructed. Usually, the LRBs of FCs are formulated by
human experts and, in general, they are very difficult to opti-
mize. In this study, the LRBs of the designed HAC-PLLs are
for the first time genetically optimally constructed, including
the fuzziness parameters of their variables, while the RWS-
interpretability of the designed HAC-PLLs is guaranteed. So,
first, a method is examined to construct RWS-interpretable
compt.-representations of LRBs and an RWS-interpretable
ARM working on their compt.-representations constructed
by this method.These concepts are first examined in [30] and
improved in [40].

3.3.1. A Method to Construct RWS-Interpretable Graphical
Representations of LRBs. Consider an LRB B consisting of n
rules ofm input variables and one output variable

(𝑟𝑖) IF 𝑋1,𝐿 is 𝑥𝑖,1& . . .
&𝑋𝑚𝐿 is 𝑥𝑖,𝑚,THEN 𝑋𝑚+1,𝐿 is 𝑥𝑖,𝑚+1; 𝑖
= 1 to 𝑛

(14)

where 𝑋𝑗,𝐿’s denote the linguistic variables of the respective
RW-variables 𝑋𝑗’s; similarly, 𝑋𝑗,𝑁’s denote the numeric vari-
ables of the respective RW-variables 𝑋𝑗’s and their universes
are denoted, respectively, by U(𝑋𝑗,𝑁)’s.

As this LRB is generally assumed to be consistent, it
describes a linguistic functional dependence of Xm+1,L on
the remaining ones 𝑋𝑗,𝐿’s defined in the Cartesian prod-
uct Dom(𝑋1𝐿) × . . . × Dom(𝑋𝑚+1,𝐿). Methodologically, the
method to construct compt.-representations of LRBs, writ-
ten shortly as RMd, is crucial because of the technical
requirement for studying the RWS-interpretability not only
of the LRBs but also of the ARMs working on them. In
addition, when methods to genetically design LRBs are
examined, they must deal not only with the individual
compt.-representations but also with the method itself. Thus,
the functionality of an RMd is able to construct from any
given LRB B a compt.-representation, denoted by RRMd(B),
defined in U(X1,N) × . . . × U(Xm+1,N). At the same time, as
human language is RWS-interpretable, the linguistic function
defined by B does describe an RW-function f RW of Xm+1

on the remaining 𝑋𝑗’s. Denote by f N the numeric function
modeling the same f RW; the both functions must be compat-
ible with each other. This leads to the following constraint
on RMd’s interpreted as a test condition whether an RMd is
RWS-interpretable.

Constraint on RMd: the output RRMd(B) of RMd must
be a numeric function defined in the Euclid space U(X1,N)× . . . ×U(Xm+1,N), denoted by 𝑓𝑁,RMd(B), and if the linguistic
function B is increasingly or decreasingly monotonic func-
tion, then so is the 𝑓𝑁,RMd(B).

This compt.-representation 𝑓𝑁,RMd(B) of the LRB B is
called graphic representation of B. It can be seen that it
is an aggregation of the elementary linguistic predicates
given in B. It should be emphasized that, in accordance
with our knowledge, no aggregation operators aggregating
these (fuzzy) linguistic predicates can preserve such an
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RW-semantics represented by the LRB B like this graphic
representation. In relation to this, it is observed that practical
applications of the math-theories and the theoretical physics
theories show that the graphic representations of functions in
Euclid space applied in these theories are RWS-interpretable.

In this section, an RMd developed in the HA-formalism
to construct graphic representation of LRBs, called graphical
RMd and denoted byM, is shortly described as follows:

(i) Determine HAs of Dom(Xj,L), j = 1 to m+1, by
selecting their negative and positive hedges and
determining their relative signs and their fuzziness
parameter values.

(ii) With these, the SQMs 𝑓𝑋𝑗,𝐿’s are defined and map
the n linguistic points determined by the LRB of B
in Dom(X1,L) × . . . × Dom(Xm+1,L) into n points in
the Euclid space [0, 1]𝑚+1 that forms a grid of points,
denoted by GM(B).

To examine the RWS-interpretability of 𝐺RMd(B) some nota-
tions are needed. Let a = (a1, . . ., am, am+1) be a point in[0, 1]𝑚+1. The project of a on the Cartesian space indicated
by Xi1,N × . . . × Xik,N; i.e., 𝑎|𝑋𝑖1×...×𝑋𝑖𝑘= (ai1, . . ., aik) is
denoted by 𝑎|𝑋𝑖1×...×𝑋𝑖𝑘 . For any RMd, a point of 𝐺RMd(B)
corresponding to a rule ri is denoted by 𝐺RMd(ri). By the
constraint above, the RWS-interpretability of an RMd can
be defined as follows, noting that the LRBs in many control
applications are monotonic.

Definition 1. A given method RMd to produce a compt.-
representation in a Cartesian product Sm+1 from a given
LRB is said to be RWS-interpretable provided that if B is
increasingly (decreasingly) monotonic, then

(i) 𝐺RMd(B) ⊆ U(X1,N) × . . . × U(Xm+1,N) must define a
function. That is, for every rule ri of B, 𝐺RMd(ri) is of
the form ai = (ai,1, . . ., ai,m, ai,+1), for i = 1, . . ., n, and
for any such two vectors aj = (aj,1, . . ., aj,m, aj,m+1) and
𝑎𝑗 = (𝑎𝑗 ,1, . . ., 𝑎𝑗 ,𝑚, 𝑎𝑗 ,𝑚+1), the equality 𝑎𝑗|𝑋1×...×𝑋𝑚+1
= 𝑎𝑗 |𝑋1×...×𝑋𝑚 implies that 𝑎𝑗|𝑋𝑚+1 = 𝑎𝑗 |𝑋𝑚+1 .

(ii) For B being an increasingly (or decreasingly) mono-
tonic function and its i-th rule ri is denoted by xi
= (xi,1, . . ., xi,m, xi,m+1), it holds 𝑥𝑖|𝑋1×...×𝑋𝑚 ≤
𝑥𝑗|𝑋1×...×𝑋𝑚 ⇒ 𝐺RMd(𝑟𝑖)|𝑋𝑚+1 ≤ 𝐺RMd(𝑟𝑗)|𝑋𝑚+1 (or,
𝑥𝑖|𝑋1×...×𝑋𝑚 ≤ 𝑥𝑗|𝑋1×...×𝑋𝑚 ⇒ 𝐺RMd(𝑟𝑖)|𝑋𝑚+1 ≥𝐺RMd(𝑟𝑗)|𝑋𝑚+1).

For the RMdM, as the determined SQMs are isomorphisms,
it can easily be verified that the monotonicity of a given B is
preserved by M; i.e., the GM(B) has the same monotonicity
property as B. So, the following proposition holds:

Proposition 2. The RMd M proposed as above is RWS-
interpretable.

3.3.2. The RWS-Interpretability of Approximate Reasoning
Method. Each ARM should be developed accompanied with
a given RMd to solve an application problem and it also plays
a key role to construct an RWS-interpretable fuzzy system.
It strongly depends on a given LRB B as well as on a given

RMd.Therefore, to define the RWS-interpretability of a given
ARM,R, it is assumed that the given RMd accompanied with
R is RWS-interpretable. Let B be an LRB of the form (14). For
any input vector a = (a1, . . .,am) in X1,N × . . . × Xm,N, denote
by R(𝐺RMd(B))(a) the output value of a in Dom(Xm+1,N)
produced by R working on 𝐺RMd(B). Then, the following
definition may be introduced which is a modified version of
the respective one examined in [30].

Definition 3. Let be given an RMd to produce compt.-
representations of any given LRBs and let an ARM R be
developed to work on the compt.-representations produced
by the RMd. R is said to be RWS-interpretable provided
that for any LRB B, which is increasingly (or decreasingly)
monotonic, R should satisfy the following condition:

(∀𝑎, 𝑏) {[𝑎 < 𝑏 ⇒ R (𝐺RMd (𝐵)) (𝑎) < R (𝐺RMd (𝐵))
⋅ (𝑏)]}

(or, (∀𝑎, 𝑏) {[𝑎 < 𝑏 ⇒ R (𝐺RMd (𝐵)) (𝑎)
> R (𝐺RMd (𝐵)) (𝑏)]}) .

(15)

The conditions in this definition are natural but very strong
for the ARMs developed in the fuzzy set framework. In
this study, the so-called semantically weighted interpolation-
extrapolation reasoning method proposed in [40] is applied
and described as follows.

(i) Semantically Weighted Interpolation-Extrapolation Rea-
soning Method.

(A) Interpolation: consider a graphic representation𝐺RMd(B) of B.
(1) Define semantic weight of the closeness of a given input

vector falling in a grid-mesh of 𝐺RMd(B) to each grid-mesh
point: a restriction is applied to the case of two input variables
which is compatible to the HAC-PLL examined in this study.
Assume that a mesh of the 2D-grid graphically representing
B is exhibited in Figure 7, in which four points of the mesh
are calculated from four respective linguistic points (x1i, x2j),
(x1(i+1), x2j), (x1i, x2(j+1)), and (x1(i+1), x2(j+1)) and denoted
by (a1i, a2j), (a1(i+1), a2j), (a1i, a2(j+1)), and (a1(i+1), a2(i+1)).
That is, ak,l = 𝑓𝑋𝑘(xk,l), k = 1, 2 and l ∈ { i, i+1, j, j+1 }.
The 𝑓𝑋𝑚+1-values at these points are denoted by u11, u12, u21,
and u22. To simplify the presentation, these values are used
to name the respective points (a1i, a2j), (a1(i+1), a2j), (a1i,
a2(j+1)), and (a1(i+1), a2(i+1)) and they indicate the rectangle
represented in Figure 7. It is denoted by (u11, u12, u21, u22)
and its area being denoted by Sij. Consider an input vector
a = (a1, a2), whose components fall, respectively, into [a1i,
a1(i+1)] and [a2j, a2(j+1)]. The expected value u of the input
vector is computed by the weighted average of u11, u12, u21,
and u22 whose semantic weights are defined based on how
close to each mesh point it is: the closer to a point, the larger
its semantic weight. The point (a1, a2) decomposes the mesh
(u11, u12, u21, u22) into four rectangles. The area of any of the
rectangles determined by any point c = (c1, c2) is denoted by
the following rule: if it is located opposite to the position of
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Figure 7: Semantically weighted inter-extrapolative reasoning method on G(B).

the value ukl, it is denoted by 𝑆𝑐𝑘𝑙. In Figure 7, 𝑆𝑎11 is opposite
to u11, 𝑆𝑎21 is opposite to u21, 𝑆𝑎12 and 𝑆𝑏12 are opposite to u12,
and so on.

The semantic weight of the closeness of a to a mesh point
(a1k, a2l), whose 𝑓𝑋𝑚+1-value is ukl, denoted by 𝑤𝑎(𝑢𝑘𝑙) =𝑤𝑎(𝑎1𝑘, 𝑎2𝑙), is defined by the following product:

𝑤𝑎 (𝑎1𝑘, 𝑎2𝑙) = (1 − 𝑎1 − 𝑎1𝑘𝑎1(𝑖+1) − 𝑎1𝑖)(1 −
𝑎2 − 𝑎2𝑙𝑎2(𝑗+1) − 𝑎2𝑗)

= ((𝑎1(𝑖+1) − 𝑎1𝑖) − 𝑎1 − 𝑎1𝑘) ((𝑎2(𝑗+1) − 𝑎2𝑗) − 𝑎2 − 𝑎2𝑙)𝑆𝑖𝑗
(16)

The product in the numerator of (16) is just the area of
the rectangle 𝑆𝑎𝑘𝑙 opposite to the position of ukl, where no
confusion occurs if the area of a rectangle Sij is denoted also
by Sij.

(2) Compute the control value using the semantically
weighted average: for the given input vector a, u is computed
as the semantically weighted average as follows:

𝑢𝑎 = 𝑆𝑎11𝑢11 + 𝑆𝑎12𝑢12 + 𝑆𝑎21𝑢21 + 𝑆𝑎22𝑢22𝑆𝑖𝑗 (17)

(B) Extrapolation: assume that 𝑎 falls outside of the 2D-
grid𝐺RMd(B).There are two cases.The first one is that 𝑎 falls
into a rectangle which have exactly two vertices belonging
to 𝐺RMd(B), say the rectangle (u01, u02, u11, u12) in Figure 7.
Similar as above, u is computed by

𝑢𝑎 = 𝑆𝑎11𝑢11 + 𝑆𝑎12𝑢12𝑆𝑎11 + 𝑆𝑎12 (18)

For 𝑎 falling into a rectangle outside of 𝐺RMd(B) having
exactly one common vertex with𝐺RMd(B), e.g., the vertex u11

of the rectangle domain of the product e× ce, similar as above,
u is computed by

𝑢𝑎 = 𝑆𝑎11𝑢11𝑆𝑎11 = 𝑢11 (19)

Theorem 4. For the graphical RMd M, the semantically
weighted interpolation-extrapolation (SWIE) reasoning
method working with M is RWS-interpretable; i.e., it preserves
the monotonicity property of the graphic representation𝐺RMd(B), for any LRB B.

Proof. Let B be increasing; thus, so is 𝐺RMd(B). In the case
of interpolation, it is sufficient to consider the case where two
input vectors a= (a1, a2) and b= (b1, b2) in question satisfy a≤
b and all fall into the samemesh of the grid𝐺RMd(B). Based on
these vectors, the rectangle (u11, u12, u21, u22) is divided into
nine rectangles indicated by 𝑆𝑎22, 𝑆𝑏22 ∩ 𝑆𝑎21, 𝑆𝑏21 ∩ 𝑆𝑎21, 𝑆𝑏22 ∩ 𝑆𝑎12,𝑆𝑏22 ∩ 𝑆𝑎11, 𝑆𝑏21 ∩ 𝑆𝑎11, 𝑆𝑏12 ∩ 𝑆𝑎12, 𝑆𝑏12 ∩ 𝑆𝑎11 and 𝑆𝑎11, as computed
and shown in Figure 7. By the method SWIE, the outputs ua
and ub are computed by

𝑢𝑎 = 𝑆𝑎11𝑢11 + 𝑆𝑎12𝑢12 + 𝑆𝑎21𝑢21 + 𝑆𝑎22𝑢22𝑆𝑖𝑗
and 𝑢𝑏 = 𝑆𝑏11𝑢11 + 𝑆𝑏12𝑢12 + 𝑆𝑏21𝑢21 + 𝑆𝑏22𝑢22𝑆𝑖𝑗

(20)

Examine now the sign of the following quantity:

𝑆𝑖𝑗 (𝑢𝑏 − 𝑢𝑎) = (𝑆𝑏11 − 𝑆𝑎11) 𝑢11 + (𝑆𝑏12 − 𝑆𝑎12) 𝑢12
+ (𝑆𝑏21 − 𝑆𝑎21) 𝑢21 + (𝑆𝑏22 − 𝑆𝑎22) 𝑢22 (21)
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Considering the above nine rectangles as elementary ones, it
can be seen that

𝑆𝑎11 = 𝑆𝑏22 ∩ 𝑆𝑎11 + 𝑆𝑏21 ∩ 𝑆𝑎11 + 𝑆𝑏12 ∩ 𝑆𝑎11 + 𝑆𝑏11
𝑆𝑏12 = 𝑆𝑏12 ∩ 𝑆𝑎12 + 𝑆𝑏12 ∩ 𝑆𝑎11
𝑆𝑎21 = 𝑆𝑏21 ∩ 𝑆𝑎21 + 𝑆𝑏21 ∩ 𝑆𝑎11
𝑆𝑏22 = 𝑆𝑎22 + 𝑆𝑏22 ∩ 𝑆𝑎21 + 𝑆𝑏22 ∩ 𝑆𝑎12 + 𝑆𝑏22 ∩ 𝑆𝑎11

(22)

By (22), the quantity (21) can be reduced to

𝑆𝑖𝑗 (𝑢𝑏 − 𝑢𝑎) = (𝑆𝑏12 ∩ 𝑆𝑎11) (𝑢12 − 𝑢11)
+ (𝑆𝑏21 ∩ 𝑆𝑎11) (𝑢21 − 𝑢11)
+ (𝑆𝑏22 ∩ 𝑆𝑎11) (𝑢22 − 𝑢11)
+ (𝑆𝑏22 ∩ 𝑆𝑎12) (𝑢22 − 𝑢12)
+ (𝑆𝑏22 ∩ 𝑆𝑎21) (𝑢22 − 𝑢21)

(23)

By the increasing monotonicity of 𝐺RMd(B), it holds u11 ≤
u12 ≤ u22 and u11 ≤ u21 ≤ u22 that leads to 𝑆𝑖𝑗(𝑢𝑏 − 𝑢𝑎) ≥ 0.

In the case of extrapolation, assume for example that the
input vectors 𝑎 = (a1, 𝑎2) and 𝑏 = (b1, 𝑏2) fall into the
rectangle (u01, u02, u11, u12). To simplify and to easily read the
proof expressions, it is imagined that this rectangle is linearly
transformed into the unit-rectangle whose vertex u01 locates
at the center of the coordinate system. If it is proved that 𝑢𝑎 ≤𝑢𝑏 in the unit-rectangle, then, by the linear transformation,
this respective inequality is also valid in the original rectangle.
So, for simplicity, imagine that a and b are already linearly
transformed in the unit-rectangle; i.e., u01 = (0, 0), u02 = (0,
1), and u11 = (0, 1). By (18), it holds

𝑢𝑏 − 𝑢𝑎 = 𝑆𝑏11𝑢11 + 𝑆𝑏12𝑢12𝑆𝑏11 + 𝑆𝑏12 − 𝑆𝑎11𝑢11 + 𝑆𝑎12𝑢12𝑆𝑎11 + 𝑆𝑎12
= (1 − 𝑏1) 𝑏2𝑢11 + 𝑏1𝑏2𝑢121 × 𝑏2 − (1 − 𝑎1) 𝑎2𝑢11 + 𝑎1𝑎2𝑢121 × 𝑎2
= 𝑎2 (1 − 𝑏1) 𝑏2𝑢11 + 𝑎2𝑏1𝑏2𝑢12 − (1 − 𝑎1) 𝑎2𝑏2𝑢11 + 𝑎1𝑎2𝑏2𝑢12𝑎2 × 𝑏2
= 𝑎2𝑏2 (𝑏1 − 𝑎1) (𝑢12 − 𝑢11)𝑎2 × 𝑏2 ≥ 0

(24)

As the remaining cases are proved in a similar way, it can be
concluded that themethod SWIE preserves themonotonicity
property of the given LRB B. By Definition 3, the method
SWIE is RWS-interpretable.

3.3.3. Genetic Algorithm to Design Optimized HAC for MAF-
PLL. In this section, it is described how to develop a genetic
algorithm (GA), denoted HAC-GA, to design opHAC for
the MAF-PLL with HAC. The HAC-GA has three tasks:
(i) to optimize LRBs, (ii) to optimize the variable fuzziness
parameters, and (iii) to optimize the variable ranges. So, the

Table 3: An Example of an LRB B.

ce
VN LLN ZE LLP VP

VN VVN VVN VN N ZE
e LLN VVN VN N ZE P

ZE VN N ZE P VP
LLP N ZE P VP VVP
VP ZE P VP VVP VVP

HAC-GA has a functionality to simultaneously produce opti-
mized LRB, optimized fuzziness parameters, and optimized
variables ranges. To develop such a HAC-GA the following
tasks should be performed.

Task 1. Encode the Solution of the Optimization Problem of
HACs. (a) Solutions of the optimization problem of HACs:
each solution comprises three groups: LRB, fuzziness param-
eters, and ranges of the variables e, ce, and u. Assume that
the HAs of these variables are syntactically the same; i.e.,
they have the same set of atomic words G = {N (negative),
P (positive) } and the same set of hedges H = { L, V }. Hence,
Dom(e) = Dom(ce) = {VN, LLN,ZE, LLP,VP} andDom(u) ={VVN,VN, LVN,N, LLN, LN,VLN,ZE,VLP, LP, LLP, LVP,
VP,VVP}, which are ordered from left to right. The limitation
of Dom(e) and Dom(ce) of having only five words aims
to be compatible with their five fuzzy sets of the FCs for
comparative study in Section 4. A representation of an LRB
of the HAC is given in the form of Table 3. It is assumed that
this table is antonym in the sense defined as follows.

For every X, two words x = hn . . . h1c and y = ℎ𝑚 . . . ℎ1𝑐
are said to be contradictory or antonyms if hn . . . h1 = ℎ𝑚 . . .ℎ1 and c, 𝑐 belonging to { c–, c+ } are antonym. For example,
LLP and LLN are antonym. A cell of Table 3 can be written
as (x, y, z), x ∈ Dom(e), y ∈ Dom(ce) and z ∈ Dom(u). Two
cells (x, y, z) and (𝑥, 𝑦, 𝑧) are said to be antonym if the pairs
of the words (x, 𝑥), (y, 𝑦) and (z, 𝑧) are antonym. Then, an
LRB represented by Table 3 is said to be antonym if for any
two its cells (x, y, z) and (𝑥, 𝑦, 𝑧) whose pairs (x, 𝑥) and (y,𝑦) are antonym, then so is the pair (z, 𝑧). As a consequence,
the words of the cells lying on the secondary diagonal of the
table are the same and equal to the neutral words (ZE) and,
when the upper secondary diagonal of the table is known, the
table of rules is completely determined. It can be seen that the
LRB given in Table 3 is antonym.

(b) Individual coding: Assume that the real coding is
applied. To genetically design opHAC, the following should
be coded: its LRB B of the form given in Table 3, the
independent fuzziness parameters, and the ranges of the
variables e, ce, and u. For their fuzziness parameters and their
range values, by the symmetricity of the variable ranges, it is
assumed that fme(c–) = fmce(c–) = fmu(c–) = 0.5 and, hence,
the GA to be developed needs to seek for optimized values of𝜇𝑒(L), 𝜇ce(L), and 𝜇u(L). So, the GA needs only three genes
to represent the fuzziness parameters and only three genes to
represent the variable ranges. For the words of the variable u
in Table 3, it is required to know only ten words below the
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right diagonal of the table which are arranged from left to
right and from top to bottom. For example, the LRB B given
in Table 3 is represented by a chromosome of ten genes: (P P
VP P VP VVP P VP VVP VVP). Each solution is encoded by
an individual of 16 genes: the first three genes represent the
values 𝜇e(L), 𝜇𝑐𝑒(L), and 𝜇𝑢(L), the next ten genes represent
the ten above-mentioned words of u uniquely determining
B, and the three remaining genes represent three positive
variable range values. Assume that the words of Dom(u) ={VVN,VN, LVN,N, LLN, LN,VLN,ZE,VLP, LP, LLP,P,
LVP,VP,VVP} are increasingly arranged and encoded by
their positions, i.e., by the integers 0, 1, 2, . . ., 14. For example,
three values 𝜇𝑒(L), 𝜇𝑐𝑒(L), and 𝜇𝑢(L), three positive variable
ranges, 𝑟g𝑋’s, and the B given in Table 3 are represented by
the solution individual: (𝜇𝑒(L), 𝜇𝑐𝑒(L), 𝜇𝑢(L), 11, 11, 13, 11, 13,
14, 11, 13, 14, 14, rge, rgce, rgu).

Task 2. Construct a HAC, an Alternative Component for the
FC

(1) Determine the inputs of a HAC
They comprise the following:

(i) the positive and negative hedges, their relative
signs, fuzziness parameter values and the posi-
tive variable range values;

(ii) an LRB B given in the form of Table 3;
(iii) an ARM— a selected interpolative method

working on the surface in [0, 1]3, which is
computed using the SQMs 𝑓𝑒, 𝑓𝑐𝑒, and 𝑓𝑢;

(iv) input vector of the control problem.

These input values are needed in each iteration, noting that
the values listed in (i) and (ii) are provided by an individual
under consideration of a population generated by the HAC-
GA.

(2) Construct components of a HAC of the HAC-PLL
Its main components are shown in Figure 8 which
comprises the following:

(i) the normalization to convert the universes of e,
ce, and u to their respective unit intervals [0, 1]’s;

(ii) a given LRB B and its quantification to translate
B into a graphic representation approximately
modeling a surface 𝑆3𝑟𝑒𝑎𝑙;

(iii) construct an RWS-interpretable interpolation-
extrapolation reasoning method. In this study,
the developed method SWIE is applied;

(iv) the denormalization to convert the numeric
output of u computed by the second component
ofHAC to its respective real value of the variable
u.

Task 3. Construct a GA, Denoted by GA(opHAC), to Produce
the Optimized LRB 𝐵𝑜𝑝, the Optimized Fuzziness Parameters,
and the Optimized Variable Ranges of the Desired opHAC.The
HACdeveloped inTask 1 is a kernel-component of the desired
GA(opHAC).

Convert universe
of e, ce & u to

[0,1]

Normalization

LRB B
Quantify B

using SQMs
to convert B

RWS-
interpretable

IRMd

Convert universe

[0,1]

Denormalization

e ce

u

of e, ce & u to
to S3real

Figure 8: The components of the HAC.

(1) Inputs of GA(opHAC):

(i) The criterion 𝐽1 = ∫𝛿0 |𝑒(𝑡)|𝑑𝑡 (or = ∑𝑛
𝑘=1 |𝑒(𝑘)|,𝑛 = 𝛿/𝑇𝑠), called the performance index (Prf-

index) in this study, and the time period of
simulation 𝛿 for computing the Prf-index J1

(ii) GA running parameters: population size; gener-
ation number; disturbance type

(2) Outputs of GA(opHAC):

(i) The optimized values of the fuzziness parame-
ters 𝜇𝑒(L), 𝜇𝑐𝑒(L), and 𝜇𝑢(L) and the optimized
variable ranges (−𝑟𝑔𝑒, rge), (−𝑟𝑔𝑐𝑒, rgce), and
(−𝑟𝑔𝑢, rgu)

(ii) The optimized LRB Bop

(3) General description of GA(opHAC):

(i) Population of solutions: GA(opHAC) will ini-
tialize an initial population. Every individual of
a population consists of 16 genes, 3 genes for
the fuzziness parameters, 3 genes for positive
variable ranges values, and 10 genes for the
words to determine LRB of the form in Table 3.
Genetic operations like crossovers andmutation
will be applied to generate the next population
of the same size, in which only individuals with
better fitness values are retained.

(ii) Method to compute the Prf-index J1 of an
individual of a given population: the procedure
ofGA(opHAC) to compute J1 of each individual
of the population in question, denoted by 𝛿-
Loop𝑜𝑝HAC, is described by the scheme given in
Figure 9.

(4) Implementation ofGA(opHAC) inMatlab (see Box 1)

4. Results and Discussion

In this section, the performance of the proposed HAC-
PLL is validated through experimental studies with dSpace
DS1103 R&D board. For this purpose, all the PLLs considered
in this study were programmed in the MATLAB/Simulink
environment. The comparison of the results obtained by the
developed HAC-PLL with those obtained by both the PID-
based MAF-PLL and the FC-based MAF-PLL is also shown.
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GA(opHAC)
Input: (i) Simulation model ‘HACPLLfinal.slx’ suitable type for the expected disturbance;

(ii) 𝐽1(𝐼) = ∑𝑒(𝑘)∈𝑆𝑒𝑡𝛿(𝑒(𝑘))
|𝑒(𝑘)|; // I is an individual of the population under consideration

Output: The optimized HAC: ‘opHAC’;
Method:
Initialize parameters of the simulation model;
Initialize parameters of the GA:

num var = number of variables;
pop size = population size;
num gen = number of generation;
time limit = time value; // to limit the running time of the algorithm GA(opHAC)

Initialize an initial population;
m = 1; t = 0;
while ((m ≤ num gen) and (t ≤ time limit))
for each individual Im in the population
call simulation model: ‘HACPLLfinal.slx’;
compute 𝐽1(𝐼𝑚) = ∑𝑒(𝑘)∈𝑆𝑒𝑡𝛿(𝑒(𝑘))

|𝑒(𝑘)|;
end for
m =m+1;
Perform genetic operators;
auto update(t);

end while
End GA(opHAC)

Box 1

MAF-based PLL 
with the HAC

Yes

No

e(k) e(k) ∘ Setd (e(k)) = Setd (e(k)) ∪ {e(k)}

∘ k = k + 1

∘ t = t + Ts

t ≤ 

Setd(e(k))

Figure 9: 𝛿-LoopopHAC of the simulation model.

In addition to real-time execution of the analyzed PLL
algorithms, the R&D board was used for grid emulation as
well. In this regard, the D/A converters of the R&D board
were utilized for generation of the phase voltages, but with
reduced amplitude. The amplitude of the nondistorted phase
voltages has been selected to cover ±10 V output range of the
D/A converters when disturbances occur. The phase voltages
were then sampled at 40 kHz sampling frequency by using the
A/D converters of the same board.The sampling frequency of
the analyzed PLLs was set to 10 kHz taking into consideration
that the fastest time-varying disturbance analyzed in this
paper has an oscillation frequency less than 5 kHz.

Performance of the analyzed MAF-based PLL was tested
under the following four conditions:(1) Unbalanced voltage sag(2) Unbalanced voltage sag with harmonics distortion
(i.e., positive 5th and 7th order harmonics have been added

with the amplitudes equal to 8% of the 1st phase voltage
harmonic)(3) Unbalanced transient in the phase voltages with the
oscillation frequency of 500 Hz(4) Step change of the grid frequency of +5 Hz and back
again

For the disturbances (1), (2), and (4), the amplitude of the
nondistorted phase voltages has been selected 8.6 V, whereas
for the disturbance (3), it has been selected 1.7 V.

Parameters of the FC and the HAC are obtained in
simulations as mentioned in Sections 2.2 and 3.3. Parameters
of the analyzed disturbances are in accordance with the IEC
classification of electromagnetic phenomena [42]. Distorted
phase voltages and responses of the analyzed PLLs are shown
in Figures 10–13. In this paper, it is selected that each
disturbance lasts 200 ms exactly.

Figure 10 shows the recorded responses under the unbal-
anced voltage sag in phases a and c. The amplitudes of the
faulted phases a and c are 80% and 92% of the nondistorted
phase voltages, respectively. Figures 10(b), 10(c), and 10(d)
show traces of the phase error, the filtered quadrature voltage
component uq, and the IAE of the controllers, respectively.
The HAC controller ensures the lowest IAE value - 4% lower
compared to the FC and 44% lower compared to the PID.

The phase voltages with harmonics under the unbalanced
voltage sag in phases a and c are considered in Figure 11.

The traces of the phase error (Figure 11(b)), the quadra-
ture voltage component uq (Figure 11(b)), and the IAE
(Figure 11(c)) are very similar to the corresponding traces
shown in Figure 10. This means that the influence of the
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Figure 10: Phase voltages (a), phase error (b), filtered quadrature voltage component 𝑢𝑞 (c), and integral of absolute error (d) for the
unbalanced voltage sag in phases a and c.
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Figure 11: Phase voltages (a), phase error (b), filtered quadrature voltage component 𝑢𝑞 (c), and integral of absolute error (d) for the
unbalanced voltage sag in phases a and c with harmonics distortion.
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Figure 12: Phase voltages (a), phase error (b), filtered quadrature voltage component 𝑢𝑞 (c), and integral of absolute error (d) for the
unbalanced low-frequency transient in phase voltages.
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Figure 13: Estimated grid frequency (a), phase error (b), filtered quadrature voltage component 𝑢𝑞 (c), and integral of absolute error (d) for
the step-changes in frequency of ±5 Hz.
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harmonics is negligible. Again, the HAC controller ensures
the lowest IAE value.

The PLL response to the unbalanced transient in phase
voltages with the oscillation frequency of 500 Hz is consid-
ered in Figure 12. In this case, and in this case only, the HAC
does not ensure the lowest IAE value—it is about 12% higher
in comparison with the one obtained by the FC, but it is still
lower compared to the PID controller.

Figure 13 shows the PLL response to step-changes in
the grid frequency. Figure 13(a) shows the estimated grid
frequency obtained by the nonadaptive MAF-PLL (Figure 2)
with the PID controller and the estimated grid frequency
obtained with the proposed PLL configuration (Figure 4) and
with the HAC and FCs. Note that the nonadaptive MAF was
here used in combination with the PID controller instead
of the adaptive MAF because it was observed that the latter
results in slightly higher IAE value.

Choosing the settling time with a 2% criterion (i.e.,
the time after which the estimated frequency reaches and
remains within the limits 49.9 Hz-50.1 Hz), 2.1 times shorter
settling time is obtained in the PLL with the PID controller
in comparison with the HAC-based PLL (Figure 13(a)).
However, the maximum phase error obtained by the HAC is
5.4 times lower than the one obtained by the PID controller
(Figure 13(b)). On the other hand, when compared with the
FC-based MAF-PLL, the HAC-based PLL has approximately
the same settling time (Figure 13(a)) but 1.9 times lower
maximum phase error (Figure 13(b)). Once more, the lowest
IAE value is achieved by using the HAC-based PLL.

For all analyzed PLLs, the possible occurrence of a
DC-offset in phase voltages causes fundamental frequency
oscillations in steady state in all estimated variables, causing
incorrect operation of the proposed PLL. This effect will be
the subject of a future research. On the other hand, a small
DC component (up to 50 mV) caused by the A/D conversion
process was present in the experiments, but its influence on
the PLL performance was shown to be negligible.

5. Conclusion

In this paper, the new MAF-based PLLs with the HAC are
successfully applied for the three-phase distorted signals.
They can handle different types of disturbances and ensure
zero steady-state error. Optimized fuzziness parameters and
linguistic rule base of the HAC are successfully obtained by
means of the genetic algorithm for each analyzed distur-
bance. The HAC with its parameters optimized for a certain
disturbance can handle other analyzed disturbances as well,
although with somewhat slower dynamic responses.

The experimental comparison of the developed HAC-
PLLs with both the PID-based MAF-PLL and the FC-based
MAF-PLL has been carried out. It is shown that the HAC and
the FC provide better dynamic performance in comparison
to the PID controller, for all analyzed disturbance types. In
addition, the HAC ensures the lowest IAE value for all of
the analyzed disturbance types except for the unbalanced
low-frequency transients, when the FC achieves the lowest
IAE value (12% lower than the HAC). However, in this case,
the maximum difference between the phase errors obtained

by the HAC and FCs is less than 3∘, which is considered
negligible.

The proposed PLLs do not work properly when there is
a DC-offset present in phase voltages and this will be the
subject of a future research. On the other hand, the influence
of a small DC component (up to 50 mV) caused by the A/D
conversion process is shown to be negligible.
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Basel, 2006.

[20] N. Ho and W. Wechler, “Hedge algebras: an algebraic approach
to structure of sets of linguistic truth values,” Fuzzy Sets and
Systems, vol. 35, no. 3, pp. 281–293, 1990.

[21] H.-L. Bui, C.-H. Nguyen, V.-B. Bui, K.-N. Le, and H.-Q.
Tran, “Vibration control of uncertain structures with actuator
saturation using hedge-algebras-based fuzzy controller,” Journal
of Vibration and Control, vol. 23, no. 12, pp. 1984–2002, 2017.

[22] H.-L. Bui, D.-T. Tran, and N.-L. Vu, “Optimal fuzzy control of
an inverted pendulum,” Journal of Vibration and Control, vol. 18,
no. 14, pp. 2097–2110, 2012.

[23] N. D. Anh, H.-L. Bui, N.-L. Vu, and D.-T. Tran, “Application
of hedge algebra-based fuzzy controller to active control of a
structure against earthquake,” Structural Control and Health
Monitoring, vol. 20, no. 4, pp. 483–495, 2013.

[24] N. D. Duc, N. Vu, D. Tran, and H. Bui, “A study on the
application of hedge algebras to active fuzzy control of a seism-
excited structure,” Journal of Vibration and Control, vol. 18, no.
4, pp. 2186–2200, 2011.

[25] H. L. Bui, T. A. Le, and V. B. Bui, “Explicit formula of hedge-
algebras-based fuzzy controller and applications in structural
vibration control,” Applied Soft Computing, vol. 60, pp. 150–166,
2017.

[26] H.-L. Bui, C.-H. Nguyen, N.-L. Vu, and C.-H. Nguyen, “General
design method of hedge-algebras-based fuzzy controllers and
an application for structural active control,”Applied Intelligence,
vol. 43, no. 2, pp. 251–275, 2015.
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