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`0-Motivated Low-Rank Sparse Subspace Clustering
Maria Brbić and Ivica Kopriva, Senior Member, IEEE

Abstract—In many applications, high-dimensional data points
can be well represented by low-dimensional subspaces. To identify
the subspaces, it is important to capture a global and local
structure of the data which is achieved by imposing low-rank
and sparseness constraints on the data representation matrix.
In low-rank sparse subspace clustering (LRSSC), nuclear and
`1 norms are used to measure rank and sparsity. However, the
use of nuclear and `1 norms leads to an overpenalized problem
and only approximates the original problem. In this paper, we
propose two `0 quasi-norm based regularizations. First, the paper
presents regularization based on multivariate generalization of
minimax-concave penalty (GMC-LRSSC), which contains the
global minimizers of `0 quasi-norm regularized objective. Af-
terward, we introduce the Schatten-0 (S0) and `0 regularized
objective and approximate the proximal map of the joint solution
using a proximal average method (S0/`0-LRSSC). The resulting
nonconvex optimization problems are solved using alternating
direction method of multipliers with established convergence
conditions of both algorithms. Results obtained on synthetic and
four real-world datasets show the effectiveness of GMC-LRSSC
and S0/`0-LRSSC when compared to state-of-the-art methods.

Index Terms—alternating direction method of multipliers, gmc
penalty, `0 regularization, low-rank, sparsity, subspace clustering

I. INTRODUCTION

H IGH dimensional data analysis is a widespread problem
in many applications of machine learning, computer

vision, and bioinformatics [1]–[6]. However, in many real-
world datasets, the intrinsic dimension of high-dimensional
data is much smaller than the dimension of the ambient space
and data can be well represented as lying close to a union of
low-dimensional subspaces. The problem of segmenting data
according to the low-dimensional subspaces they are drawn
from is known as subspace clustering [7]. Thanks to their
capability to handle arbitrarily shaped clusters and their well-
defined mathematical principles, spectral based methods [8],
[9] are widely used approaches to subspace clustering. These
methods solve the subspace clustering problem by relying on
the spectral graph theory and cluster eigenvectors of the graph
Laplacian matrix corresponding to the smallest eigenvalues
[10].

One of the main challenges in subspace clustering is
the construction of the affinity matrix that captures well
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(di)similarities between data points. Among various ap-
proaches proposed in the literature, methods based on sparse
[11], [12] and low-rank representations [13]–[15] have been
among the most successful in many applications [16]. These
methods exploit the self-expressiveness property of the data
and represent each data point as a linear combination of other
data points in the dataset. Low-rank representation (LRR) [13],
[14], [17] captures the global structure of the data by imposing
a low-rank constraint on the data representation matrix. Low-
rank implies that representation matrix is described by a
weighted sum of small number of outer products of left and
right singular vectors. In order to ensure convexity of the
related optimization problem, the rank minimization is relaxed
as the nuclear or Schatten-1 norm minimization problem [18]–
[20]. Different from LRR, Sparse Subspace Clustering (SSC)
[11], [21] captures local linear relationships by constraining
representation matrix to be sparse. Using the tightest convex
relaxation of the `0 quasi-norm, the SSC model solves sparsity
maximization problem as `1 norm minimization problem [22],
[23]. Both LRR and SSC guarantee exact clustering when
subspaces are independent, but the independence assumption
is overly restrictive for many real-world datasets [24], [25].
Under appropriate conditions [26], SSC also succeeds for
disjoint subspaces. However, when the number of dimensions
is higher than three, SSC can face connectivity problems
resulting in a disconnected graph within a subspace [27].
A natural way to construct adaptive model able to capture
the global and the local structure of the data is to constrain
representation matrix to be low-rank and sparse. In [16], [28]–
[30] that is done by combining nuclear and `1 norms as the
measures of rank and sparsity, respectively. The motivation
lies in the fact that minimization of these norms results in a
convex optimization problem.

Although convex, nuclear and `1 norms are not exact
measures of rank and sparsity. Therefore, optimal solution
of the nuclear and `1 norms regularized objective is only
approximate solution of the original problem [31]. Proxim-
ity operator associated with the nuclear norm overpenalizes
large singular values, leading to biased results in low-rank
constrained optimization problems [32], [33]. Similarly, in
sparsity regularized problems `1 norm solution systematically
underestimates high amplitude components of sparse vectors
[34]. Nonconvex regularizations based on `p quasi-norms
(0 ≤ p < 1) or their approximations have been proposed for
various low-rank [32], [33], [35]–[39] and sparsity regularized
problems [34], [40]–[47]. Recently, nonconvex approximations
of rank and sparsity have also been introduced in subspace
clustering problem [48]–[52]. Specifically, `0-induced sparse
subspace clustering is introduced in [48]. The correspond-
ing optimization problem is solved using proximal gradient
descent which under assumptions on the sparse eigenvalues978-1-5386-5541-2/18/$31.00 c©2018 IEEE.
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converges to a critical point. In [49] authors replaced the
nuclear norm regularizer with the nonconvex Ky Fan p-
k norm [53] and proposed proximal iteratively reweighted
optimization algorithm to solve the problem. In [50], [54] rank
is approximated using Schatten-q quasi-norm regularization
(0 < q < 1). The optimization problem in [50] is solved
using generalized matrix soft thresholding algorithm [55].
Schatten-q quasi-norm minimization with tractable q = 2/3
and q = 1/2 is proposed in [51]. The Schatten-q (Sq) quasi-
norm for 0 < q < 1 is equivalent to `q quasi-norm on
vector of singular values. Compared to the nuclear norm, it
makes a closer approximation of the rank function. In this
regard, S0 quasi-norm can be seen as an equivalent to the `0
quasi-norm and stands for the definition of the rank function.
Furthermore, [52] combines Sq regularizer (0 < q < 1) for
low-rank and `p quasi-norm regularizer (0 < p < 1) for
sparsity constraint. However, recent results in [56] show that
in `p regularized least squares (0 ≤ p < 1) smaller values of p
lead to more accurate solutions. If `1 norm is also considered,
authors show that for large measurement noises `1 outperforms
`p , p < 1. However, for small measurement noises `0 quasi-
norm regularization outperforms `p , 0 < p ≤ 1.

Motivated by the limitations discussed above, we intro-
duce two S0/`0 quasi-norm based nonconvex regularizations
for low-rank sparse subspace clustering (LRSSC). First, we
propose regularization based on multivariate generalization
of the minimax-concave penalty function (GMC), introduced
in [34] for sparsity regularized linear least squares. Here,
this approach is extended to the rank approximation. The
GMC penalty enables to maintain the convexity of low-
rank and sparsity constrained subproblems, while achieving
better approximation of rank and sparsity than nuclear and
`1 norms. Importantly, this regularization is closely related
to the continuous exact `0 penalty which contains the global
minimizers of `0 quasi-norm regularized least-squares objec-
tive [34], [57]. GMC penalty yields solutions of low-rank and
sparsity constrained subproblems based on firm thresholding
of singular values and coefficients of representation matrix,
respectively. The firm thresholding function Θ : R → R is is
defined as [58]:

Θ(x; λ, a) =


0, if |x | ≤ λ
a(|x | − λ)/(a − λ)sign(x), if λ ≤ |x | ≤ a
x, if |x | ≥ a.

(1)

Next, we propose the direct solution of S0 and `0 quasi-
norms regularized objective function. The solution of corre-
sponding low-rank and sparsity constrained subproblems is
based on iterative application of hard thresholding operator
[59]–[61] on the singular values and coefficients of the repre-
sentation matrix, respectively. The hard thresholding function
H : R→ R is defined as [59]:

H(x; λ) =


x, if |x | >

√
2λ

{0, x}, if |x | =
√

2λ
0, if |x | <

√
2λ.

(2)

Simultaneous rank and sparsity regularization is handled using
the proximal average method, introduced in [62] for convex

problems and extended recently to nonconvex and nonsmooth
functions [63], [64]. Proximal average allows us to approxi-
mate the proximal map of joint solution by averaging solutions
obtained separately from low-rank and sparsity subproblems,
leading to a problem with a low computational cost in each
iteration. Furthermore, using proximal average method enables
us to establish global convergence guarantee for S0/`0 regu-
larized LRSSC.

Better approximation of rank and sparsity is a consequence
of the properties of firm and hard thresholding operators asso-
ciated with GMC and `0 regularizations. As opposed to them,
the soft thresholding operator underestimates high amplitude
coefficients in `1 norm based sparsity regularized objective,
as well as large singular values in low-rank approximation
problem. As an example, Fig. 1 shows soft, firm and hard
thresholding operators used in LRSSC, GMC-LRSSC and
S0/`0-LRSSC, respectively.

Fig. 1. Proximity operators for threshold value λ = 1. (a) Soft-thresholding
operator so f t(x;λ) = sign(x)max(0, |x | − λ) is associated with `1 norm.
(b) Firm-thresholding operator defined in (1) and associated with the scaled
MC penalty and used in GMC-LRSSC formulation. Parameter a is for
visualization proposes set to 0.6. (c) Hard-thresholding operator defined in
(2) and associated with `0 quasi-norm.

To solve corresponding optimization problems we derive
algorithms based on computationally efficient Alternating
Direction Method of Multipliers (ADMM) [65]. Although
ADMM has been successfully applied for many nonconvex
problems [66]–[68], only recent theoretical results establish
convergence of ADMM for certain nonconvex functions [69]–
[72]. For GMC regularization, we show that the sequence
generated by the algorithm is bounded and prove that any
limit point of the iteration sequence is a stationary point. For
S0/`0 regularization with proximal average approach, based on
the property that `0 and S0 quasi-norms belong to a class of
semialgebraic functions and satisfy the Kurdyka-Łojasiewicz
inequality [73], the global convergence of the algorithm can
be guaranteed.

Experimental results on synthetic and four real-world
datasets demonstrate that the proposed `0 based low-rank
sparse subspace clustering algorithms converge fast and to a
point with lower or similar clustering error than the convex
approximations with nuclear and `1 norms. Compared to
the state-of-the-art subspace clustering methods, the proposed
algorithms perform better on four benchmark datasets.

A. Contributions

The contributions of this paper are summarized as follows:
1) We introduce nonconvex generalized minimax-concave

penalty in the low-rank sparse subspace clustering prob-
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lem, such that the global minimizers of the proposed
objective coincide with that of a convex function defined
using the continuous exact `0 penalty [57]. The intro-
duced penalty maintains the convexity of the sparsity
and low-rank constrained subproblems. The proximal
operator of the related GMC penalty function is the firm
thresholding function [34].

2) We introduce S0 and `0 pseudo-norm regularizations for
LRSSC. Using the proximal average method [62], [63],
we average the solutions of proximal maps of low-rank
and sparsity subproblems, with the hard thresholding
function as a proximity operator of the related penalties
[59].

3) We derive ADMM based optimization algorithms for
LRSSC constrained either with a GMC penalty or with
S0/`0 quasi-norms. Iterative firm or hard thresholding of
singular values and coefficients of representation matrix
is used to obtain the solution of rank and sparsity
constrained subproblems.

4) We prove that the sequence generated by the GMC
regularized LRSSC algorithm is bounded and that any
limit point of the iteration sequence is a stationary point
that satisfies Karush-Kuhn-Tucker (KKT) conditions.

5) We establish the convergence property of the S0/`0 reg-
ularized approach with proximal average and show that
the algorithm converges regardless of the initialization.
To the best of our knowledge, we are the first to show
convergence with S0 and `0 penalties in the low-rank
and sparsity constrained optimization problem.

The remainder of this paper is organized as follows. Section
II gives a brief overview of the related work. In Section III
and IV we introduce GMC and S0/`0 regularized low-rank
sparse subspace clustering methods, respectively. We formu-
late the problem, present optimization algorithms, and analyze
convergence and computational complexity. The experimental
results on synthetic and four real-world datasets are presented
in Section V. Finally, Section VI concludes this paper.

B. Main Notation

Scalars are denoted by lower case letters, vectors by bold
lower-case letters, matrices are denoted by bold capital and
subspaces by calligraphic letters. ‖·‖F denotes Frobenius norm
defined as the square root of the sum of the squares of matrix
elements. ‖ · ‖1 denotes `1 norm defined as the sum of absolute
values of matrix elements. ‖ · ‖∗ denotes nuclear norm defined
as the sum of singular values of a matrix. `0 quasi-norm is
denoted by ‖ · ‖0 and for matrix A ∈ RN×M defined as:

‖A‖0 = #
{
ai j , 0, i = 1..N, j = 1..M

}
,

where # denotes cardinality function. Schatten-0 quasi norm
is denoted by ‖ · ‖S0 and defined as:

‖A‖S0 = ‖diag(Σ)‖0,

where A = UΣVT is the singular value decomposition
(SVD) of matrix A. Since `0 quasi-norm does not satisfy
homogeneous property it is not a norm, but with a slight abuse
of notation we will refer to it as the `0 norm in the rest of the

paper. Null vector is denoted by 0 and diag(·) is the vector
of diagonal elements of a matrix. Table I summarizes some
notations used in the paper.

TABLE I
NOTATIONS AND ABBREVIATIONS

Notation Definition
N Number of data points
n Dimension of data points
L Number of subspaces
X ∈ Rn×N Data matrix
C ∈ RN×N Representation matrix
W ∈ RN×N Affinity matrix
X = UΣVT Singular value decomposition of X
σ(X) Vector of singular values of X

II. BACKGROUND

Consider the data matrix X ∈ Rn×N the columns of which
are data points drawn from a union of L linear subspaces⋃L

i=1 Si of unknown dimensions
{
di = dim(Si)

}L
i=1 in Rn. Let

Xi ∈ Rn×Ni be a submatrix of X of rank di , 0 < di < Ni

and
∑L

i=1 Ni = N . Given data matrix X , subspace clustering
segments data points according to the low-dimensional sub-
spaces. The first step is the construction of the affinity matrix
W ∈ RN×N whose elements represent the similarity between
data points. An ideal affinity matrix is block diagonal (up to a
permutation): non-zero distance is assigned to the points in the
same subspace and zero distance to the points from different
subspaces. Spectral clustering algorithm [8], [9] is then applied
to the affinity matrix to obtain memberships of data points to
the subspaces.

A. Related Work

Low-Rank Representation (LRR) [13], [14] aims to find a
low-rank representation matrix C ∈ RN×N for input data ma-
trix X by solving the following convex optimization problem:

min
C

C
∗ s.t . X = XC, (3)

where the nuclear norm is used to approximate the rank of C.
Let X = UΣVT be the SVD of X . The closed form solution
of problem (3) is given by [14]:

Ĉ = VVT . (4)

When data points are contaminated by additive white Gaus-
sian noise (AWGN), the following minimization problem is
solved:

min
C

λ

2
X − XC

2
F
+

C
∗, (5)

where λ is the rank regularization constant. The optimal
solution of problem (5) is given by [17], [74]:

Ĉ = V1(I −
1
λ
Σ−2

1 )V
T
1 , (6)

where U = [U1 U2], Σ = diag(Σ1 Σ2) and V = [V1 V2].
Matrices are partitioned according to the sets I1 = {i : σi >
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1√
λ
} and I2 = {i : σi ≤ 1√

λ
}, where σi denotes ith singular

value of X .
Sparse Subspace Clustering (SSC) [11] represents each data

point as a sparse linear combination of other data points and
solves the following convex optimization problem:

min
C

C
1 s.t . X = XC, diag(C) = 0, (7)

where constraint diag(C) = 0 is used to avoid trivial solution
of representing a data point as a linear combination of itself.

For data contaminated by the AWGN, the following mini-
mization problem is solved to approximate sparse representa-
tion matrix C:

min
C

1
2
X − XC

2
F
+ τ

C
1 s.t . diag(C) = 0, (8)

where τ is the sparsity regularization constant. This problem
can be solved efficiently using ADMM optimization procedure
[11], [65].

Low-Rank Sparse Subspace Clustering (LRSSC) [29] re-
quires that the representation matrix C is simultaneously low-
rank and sparse. LRSSC solves the following problem:

min
C

λ
C

∗ + τ
C

1 s.t . X = XC, diag(C) = 0, (9)

where λ and τ are rank and sparsity regularization constants,
respectively. For the AWGN corrupted data the following
problem needs to be solved to approximate C:

min
C

1
2
X − XC

2
F
+ λ

C
∗ + τ

C
1

s.t. diag(C) = 0.
(10)

After representation matrix C is estimated, the affinity
matrix W ∈ RN×N is calculated as follows:

W = |C | + |C |T . (11)

In the next two sections, we introduce two nonconvex
regularizers for the low-rank sparse subspace clustering. We
formulate low-rank sparse subspace clustering problem in the
following general form:

min
C

1
2
X − XC

2
F
+ λg(C) + τ f (C)

s.t. diag(C) = 0,
(12)

where g(C) and f (C) are functions that, respectively, measure
rank and sparsity of the data representation matrix C. The
convex formulation used in (10) implies g(C) =

C
∗ and

f (C) =
C

1.

III. GMC-LRSSC ALGORITHM

A. Problem Formulation

We propose to regularize rank and sparsity using multi-
variate GMC penalty function, introduced in [34] for sparse
regularized least-squares. We start with some definitions and
results that will be used throughout the paper.

Definition 1 ( [34]): Let z ∈ RN and B ∈ RM×N . The GMC
penalty function ψB : RN → R is defined as:

ψB(z) = ‖ z‖1 − SB(z), (13)

where SB : RN → R is the generalized Huber function defined
as:

SB(z) = inf
v∈RN

{
‖v‖1 +

1
2
‖B(z − v)‖22

}
. (14)

Lemma 1 ( [34]): Let z ∈ RN , y ∈ RM , A ∈ RM×N and
λ > 0. Define F : RN → R as:

F(z) = 1
2
‖y − Az‖22 + λψB(z), (15)

where ψB : RN → R is the GMC penalty. If AT A − λBTB
is positive semidefinite matrix, F is a convex function. The
convexity condition is satisfied by setting:

B =
√
γ/λA, 0 ≤ γ ≤ 1. (16)

The parameter γ controls the nonconvexity of the penalty
ψB. Larger values of γ increase the nonconvexity of the
penalty. `1 norm can be seen as a special case of this penalty
by setting γ = 0.

Lemma 2 ( [34]): Let z ∈ RN , y ∈ RM , A ∈ RM×N and
λ > 0. If AT A is diagonal with positive entries and B is given
by (16), then for 0 < γ ≤ 1 the minimizer of F is given by
element-wise firm thresholding. Formally, if

AT A = diag(α2
1, ..., α

2
N ), (17)

then
z

opt
n = Θ([AT y]n/α2

n; λ/α2
n, λ/(γα2

n)), (18)

where Θ stands for the firm thresholding function [58] defined
entry-wise in (1).

Definition 2 ( [75], [76]): Function f : RN → R is an
absolutely symmetric function, if:

f (z1, z2, ..., zN ) = f (|zπ(1) |, |zπ(2) |, ..., |zπ(N ) |), (19)

holds for any permutation π of {1, ..., N}.
Proposition 1: Let BTB be a diagonal matrix and ψB be

the GMC penalty function defined in (13). The subdifferential
of singular value function ψB ◦ σ of a matrix X is given by
the following equation:

∂[(ψB ◦ σ)(X)] = Udiag(∂ψB[σi(X)])VT , (20)

where X = UΣVT is the SVD of X .
Proof: It follows from [34] that if BTB is a diagonal matrix,

the GMC penalty ψB is separable, comprising a sum of scalar
MC penalties:

BTB = diag(α1
2, ..., αN

2) ⇒ ψB(z) =
N∑
n=1

φαn (zn), (21)

where φb : R→ R is the scaled MC penalty [34], [77] defined
as:

φb(y) =
{
|y | − 1

2 b2y2, if |y | ≤ 1/b2,
1

2b2 , otherwise.
(22)

Therefore, according to Definition 2, ψB is an absolutely
symmetric function. The proof of the proposition then follows
from the property of the singular value function f ◦ σ [76],
where f is an absolutely symmetric function. �

Proposition 1 allows us to use GMC penalty for rank ap-
proximation. We formulate GMC penalty regularized objective
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for low-rank sparse subspace clustering. Let B ∈ RN×N , and
let σ(C) denote vector of singular values of C. By choosing
g(C) = ψB(σ(C)) as a rank function, and f (C) = ψB(C) as
a sparsity function in equation (12), we define the following
nonconvex objective function:

min
C

1
2
X−XC

2
F
+ λψB(σ(C)) + τψB(C)

s.t . diag(C) = 0,
(23)

where ψB denotes GMC penalty defined in (13), regularized
by matrix B. In the next section we will show that by solving
the objective (23) with ADMM, both sparsity and low-rank
subproblems can be reduced to the equation (15) with diagonal
AT A. In this case, GMC penalty is closely related to the
continuous exact `0 penalty [34], [57], that approximates the
convex hull of the least squares with `0 regularization. Further-
more, diagonal AT A reduces both subproblems to element-
wise firm thresholding function, defined in (1). In low-rank
minimization subproblem, the firm thresholding operator needs
to be applied to the vector of singular values.

B. Optimization Algorithm

To solve optimization problem in (23), we introduce aux-
iliary variables J , C1 and C2 to split variables and solve
subproblems independently. The reformulated objective for
GMC penalty in (23) is equivalent to:

min
J,C1,C2

1
2
X − XJ

2
F
+ λψB(σ(C1)) + τψB(C2)

s.t . J = C1, J = C2 − diag(C2),
(24)

The augmented Lagrangian function of (24) is:

Lµ1,µ2

(
J,C1,C2,Λ1,Λ2

)
=

1
2
X − XJ

2
F
+ λψB(σ(C1))

+ τψB(C2) +
µ1
2

J − C1
2
F
+
µ2
2

J − C2 + diag(C2)
2
F

+
〈
Λ1, J − C1

〉
+

〈
Λ2, J − C2 + diag(C2)

〉
,

(25)

where µ1, µ2 > 0 are penalty parameters and Λ1, Λ2 are
Lagrange multipliers.

Update rule for Jk+1: Given Ck
1 , Ck

2 , Λk
1 , Λk

2 , µk1 , µk2 , we
minimize the Lagrangian function in (25) with respect to J :

min
J
Lµk

1 ,µ
k
2

(
Ck

1 ,C
k
2 , J,Λ

k
1,Λ

k
2
)
= min

J

1
2
X − XJ

2
F

+
µ1
2

J − Ck
1
2
F
+
µ2
2

J − Ck
2 + diag(Ck

2 )
2
F
+

〈
Λk

1, J − C
k
1
〉

+
〈
Λk

2, J − C
k
2 + diag(Ck

2 )
〉
.

(26)

The optimal solution of (26) is given by the following update:

Jk+1 =
[
XTX+(µk1+µ

k
2)I

]−1 [
XTX+µk1C1

k+µk2C2
k−Λ1

k−Λ2
k
]
.

(27)
Update rule for Ck+1

1 : Given Jk+1, Λk
1 , µk1 , we minimize the

Lagrangian function in (25) with respect to C1:

min
C1
Lµk

1 ,µ
k
2

(
Jk+1,C1,C

k
2 ,Λ

k
1,Λ

k
2
)

= min
C1

λψB(σ(C1)) +
µk1
2

Jk+1 − C1
2
F
+

〈
Λk

1, J
k+1 − C1

〉
= min

C1
λψB(σ(C1)) +

µk1
2

Jk+1 +
Λk

1

µk1
− C1

2

F
.

(28)

It can be seen that (28) corresponds to the least squares
problem in (15) with AT A = I and therefore, diagonal. It
follows from the condition (16) that in order to maintain
convexity of the subproblem, we need to set B =

√
µk1γ/λI ,

0 < γ ≤ 1. Using Lemma 2 and Proposition 1, (28) can be
solved by element-wise firm thresholding of singular values
of matrix

(
Jk+1 + Λk

1/µk1
)
.

Specifically, let UΣVT denote the SVD of matrix
(
Jk+1 +

Λ1
k/µk1

)
. The closed-form solution of (28) is given by:

C1
k+1 = UΘ

(
Σ;

λ

µk1
,
λ

γµk1

)
VT , (29)

where Θ is the firm thresholding function defined in (1).
Update rule for Ck+1

2 : Given Jk+1, Λk
2 , µk2 , we minimize

the objective (25) with respect to C2:

min
C2
Lµk

1 ,µ
k
2

(
Jk+1,Ck+1

1 ,C2,Λ
k
1,Λ

k
2
)

= min
C2

τψB(C2) +
µk2
2

Jk+1 +
Λk

2

µk2
− C2

2

F
,

(30)

with subtraction of diagonal elements of Ck+1
2 :

Ck+1
2 ← C2

k+1 − diag
(
C2

k+1) . (31)

Similarly as the update for C1, matrix AT A is diagonal matrix
and we can ensure convexity of the subproblem (30) by setting
B =

√
µk2γ/τI , 0 < γ ≤ 1. The problem (30) is then solved

by firm thresholding elements of matrix
(
Jk+1 + Λk

2/µk2
)

and
given by:

C2
k+1 = Θ

(
Jk+1 +

Λk
2

µk2
;
τ

µk2
,
τ

γµk2

)
,

Ck+1
2 ← C2

k+1 − diag
(
C2

k+1) . (32)

Update rules for Lagrange multipliers Λt+1
1 ,Λt+1

2 : Given Jk+1,
Ck+1

1 , Ck+1
2 , µk1 , µk2 , Lagrange multipliers are updated with the

following equations:

Λk+1
1 = Λk

1 + µ
k
1
(
Jk+1 − Ck+1

1
)

Λk+1
2 = Λk

2 + µ
k
2
(
Jk+1 − Ck+1

2
)
.

(33)

Penalty parameters µ1, µ2 are are in each step k updated
according to:

µi
k+1 = min(ρµik, µmax), i = 1, 2, (34)

where ρ > 1 is step size for adaptively changing µ1, µ2. Due
to numerical reasons µ1, µ2 are bounded with µmax , while
in the convergence proof we use formulation µi

k+1 = ρµi
k ,

i = 1, 2.
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The main steps of the proposed algorithm are summarized
in Algorithm 1.

Algorithm 1 GMC-LRSSC by ADMM optimization
Input: Data points as columns in X , {τ, λ} > 0, 0 < γ ≤ 1
Output: Assignment of the data points to k clusters

1: Initialize:
{
J,C1,C2,Λ1,Λ2

}
= 0, {µ(0)i > 0}2

i=1, ρ > 1
2: Compute XTX for later use
3: while not converged do
4: Update Jk+1 by (27)
5: Normalize columns of J to unit `2 norm
6: Update Ck+1

1 by (29)
7: Update Ck+1

2 by (32)
8: Update Λk+1

1 , Λk+1
2 by (33)

9: Update µk+1
i = min(ρµki , µmax), i = 1, 2

10: end while
11: Calculate affinity matrix W = |C1 | + |C1 |T
12: Apply spectral clustering [9] to W

C. Convergence Analysis

Although choosing γ ∈ [0, 1] guarantees convexity of
the low-rank and sparsity subproblems and convergence of
related subproblems, the objective in (23) is nonconvex. In
this section, we analyze convergence of the proposed method
and show that any limit point of iteration sequence satisfies
Karush-Kuhn-Tucker (KKT) conditions [78].

Proposition 2: The sequences
{
(Jk,Ck

1 ,C
k
2 ,Λ

k
1,Λ

k
2 )

}
gener-

ated by Algorithm 1 are all bounded.
We now state the main theorem related to convergence

property of GMC-LRSSC algorithm.
Theorem 1: Let Y k =

{(
Jk,Ck

1 ,C
k
2 ,Λ

k
1,Λ

k
2
)}∞

k=1 be
a sequence generated by Algorithm 1. Suppose that
limk→∞

(
Y k+1 − Y k

)
= 0. Then, any accumulation point

of the sequence {Y k
}∞
k=1 satisfies the Karush-Kuhn-Tucker

(KKT) conditions for problem (24). In particular, whenever
{Y k

}∞
k=1 converges, it converges to a point that satisfies KKT

conditions.
The proofs of Proposition 2 and Theorem 1 are given in the

Appendix.

D. Stopping Criteria and Computational Complexity

The steps in Algorithm 1 are repeated until convergence
or until the maximum number of iterations is exceeded. We
check the convergence by verifying the following inequalities
at each iteration k:

Jk − Ck
1 ‖∞ ≤ ε ,

Jk − Ck
2 ‖∞ ≤ ε ,

Jk −
Jk−1‖∞ ≤ ε . We found that setting error tolerance to ε = 10−4

works well in practice. In each step we normalize columns of
matrix J. This normalization is frequently applied to stabilize
convergence of non-negative matrix factorization algorithms
[79].

The computational complexity of Algorithm 1 is O(nN2 +
T N3), where T denotes the number of iterations. In the
experiments, we set the maximal T to 100, but on all datasets
the algorithm converged within less than 15 iterations. Note
that the computational complexity of spectral clustering step
is O(N3).

IV. S0/`0-LRSSC ALGORITHM

A. Problem Formulation

In addition to the GMC penalty, we propose to directly use
S0 and `0 as constrains for low-rank and sparsity. Specifically,
by choosing g(C) = ‖C‖S0 as a rank function, and f (C) =
‖C‖0 as a measure of sparsity in formulation (12), we obtain
the following nonconvex optimization problem:

min
C

1
2
X − XC

2
F
+ λ

C
S0
+ τ

C
0

s.t . diag(C) = 0.
(35)

The proximity operator H : R → R of ‖x‖0 is defined entry-
wise as:

H(y; λ) = arg min
x∈R

{1
2
(y − x)2 + λ‖x‖0

}
, (36)

The closed form solution of (36) at y ∈ R is the hard
thresholding function defined in (2). The proximity operator
of

C
S0

is the hard thresholding function applied entry-wise
to the vector of singular values [60], [61].

B. Optimization Algorithm

To solve minimization problem in (35), we split original
problem into two variables J and C. That leads to the
following objective function:

min
J,C

1
2
X − XJ

2
F
+ λ‖C‖S0 + τ‖C‖0

s.t . J = C − diag(C),
(37)

The augmented Lagrangian function of (37) is:

Lµ
(
J,C,Λ

)
=

1
2
X − XJ

2
F
+ λ‖C‖S0 + τ‖C‖0

+
µ

2
J − C + diag(C)

2
F
+

〈
Λ, J − C + diag(C)

〉
,

(38)

where µ is penalty parameter and Λ is Lagrange multiplier.
Update rule for Jk+1: Given Ck , Λk , µk , minimization of

the Lagrangian function in (38) yields the following update:

Jk+1 =
[
XTX + µk I

]−1 [
XTX + µkCk − Λk

]
. (39)

Update rule for Ck+1: Given Jk+1, Λk , µk , the following
problem needs to be solved:

min
C

λ
C

S0
+ τ

C
0 +

µk

2

Jk+1 +
Λk

µk
− C

2

F
. (40)

When λ , 0 and τ = 0, the proximal map reduces to:

Pµg = arg min
C

λ
C

S0
+
µk

2

Jk+1 +
Λk

µk
− C

2

F
. (41)

Let UΣVT denote the SVD of matrix
(
Jk+1 + Λk/µk

)
. The

closed-form solution of (41) is given by:

Ck+1 = UH
(
Σ;

λ

µk

)
VT , (42)

where H is the hard thresholding function defined in (2) and
applied entry-wise to Σ. Similarly, when λ = 0 and τ , 0 the
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proximal map is given by:

Pµ
f
= arg min

C
τ
C

0 +
µk

2

Jk+1 +
Λk

µk
− C

2

F
. (43)

Closed-form solution of (43) is obtained by the hard threshold-
ing operator H applied entry-wise to matrix

(
Jk+1 + Λk/µk

)
:

Ck+1 = H
(
Jk+1 +

Λk

µk
;
τ

µk

)
,

Ck+1 ← Ck+1 − diag
(
Ck+1) . (44)

Proximal average, introduced recently in [62] and general-
ized to nonconvex and nonsmooth setting in [63], [64], allows
us to efficiently solve problem in (40) when λ , 0 and τ , 0.
In particular, given that the proximal maps Pµ

f
and Pµg can

be easily solved using the hard thresholding operator, we
approximate the proximal map Pµ

f+g
by averaging solutions

of proximal maps of low-rank and sparse regularizers:

Pµ
f+g
≈ λPµg + τPµ

f
, (45)

where parameters τ and λ are set such that τ + λ = 1.
Furthermore, since `0 and S0 norms belong to the class of

semi-algebraic functions [73], the proximal average function
Pf+g is also a semi-algebraic function [63].

Update rule for Lagrange multiplier Λt+1: Given Jk+1,
Ck+1, µk , Lagrange multiplier is updated with the following
equation:

Λk+1 = Λk + µk
(
Jk+1 − Ck+1) (46)

The main steps of the proposed algorithm are summarized in
Algorithm 2.

Algorithm 2 S0/`0-LRSSC by ADMM optimization
Input: Data points as columns in X , {τ, λ} > 0, τ + λ = 1
Output: Assignment of the data points to k clusters

1: Initialize:
{
J,C,Λ

}
= 0, µ(0) > 0, ρ > 1

2: Compute XTX for later use
3: while not converged do
4: Update Jk+1 by (39)
5: Normalize columns of J to unit `2 norm
6: Calculate rank regularized proximal map Pµg by (42)
7: Calculate sparsity regularized proximal map Pµ

f
by (44)

8: Update Ck+1 = Pµ
f+g

defined in (45), (41), (43)
9: Update Λk+1 by (46)

10: Update µk+1 = min(ρµk, µmax)
11: end while
12: Calculate affinity matrix W = |C1 | + |C1 |T
13: Apply spectral clustering [9] to W

C. Convergence Analysis

Theorem 2: Let Y k =
{(
Jk,Ck,Λk

)}∞
k=1 be a sequence

generated by Algorithm 2. Then, for any sufficiently large µ,
Algorithm 2 converges globally1.

1That is, regardless of the initialization, it generates a bounded sequence
that has at least one limit point which is a stationary point of (38).

Proof: The results in [63] guarantee convergence of the
proximal average method. To guarantee global convergence
of the Algorithm 2, we rewrite the problem (37) using the
following more general form:

min
C,J

f1(C) + f2(J)

subject to AC = BJ,
(47)

where A = I , B = I , f1(C) = λ‖C‖S0 + τ‖C‖0, f2(J) =
1
2
X − XJ

2
F

.
We will now show that the assumptions A1-A5 in [70]

which guarantee convergence in nonconvex nonsmooth op-
timization problem are satisfied. ‖ · ‖0 and ‖ · ‖S0 are non-
negative lower semi-continuous functions and lower bounded.
Therefore, f1 as a sum of these functions is also lower semi-
continuous and lower bounded. Furthermore, f2 is coercive
and B = I , so assumptions A1 and A4 hold. A = I and B = I
imply that assumptions A2 and A3 hold. Next, f2 is Lipschitz
differentiable function so assumption A5 is also satisfied.
Therefore, A1-A5 are satisfied and Algorithm 2 converges for
any sufficiently large µ [70]. Of note, by splitting the original
problem in (35) in three variables as done in GMC-LRSSC,
we could not guarantee convergence since the assumption A2
would not be satisfied.

Furthermore, `0 and S0 norms belong to the class of semi-
algebraic functions and satisfy Kurdyka-Łojasiewicz inequal-
ity [73], [80]. Sum of semi-algebraic function is again a semi-
algebraic function, so Lµ

(
J,C,Λ

)
in (38) is a semi-algebraic

function and therefore, satisfies Kurdyka-Łojasiewicz inequal-
ity. This allows us to establish stronger convergence property,
that is, sequence

{(
Jk,Ck,Λk

)}
generated by Algorithm 2

converges regardless of the initialization to the unique limit
point [70]. �

D. Stopping Criteria and Computational Complexity

The steps in Algorithm 2 are repeated until convergence
or when the maximum number of iterations is exceeded. The
convergence is achieved when inequalities

Jk − Ck ‖∞ ≤ ε
and

Jk − Jk−1‖∞ ≤ ε are satisfied. In all experiments error
tolerance ε is set to 10−4.

As in GMC-LRSSC, the computational complexity of Al-
gorithm 2 is O(nN2 + T N3), where T denotes the number of
iterations. We set the maximal number of iterations T to 100,
but the algorithm typically converged within 20 iterations.

V. EXPERIMENTAL RESULTS

In this section, we compare the clustering performance
and efficiency of the proposed algorithms with the state-of-
the-art subspace clustering algorithms on synthetic and four
real-world datasets. The performance is evaluated in terms of
clustering error (CE) defined as:

CE(r̂, r) = min
π∈ΠL

(
1 − 1

N

N∑
i=1

1{π(r̂i )=ri }
)
, (48)

where ΠL is the permutation space of [L].
We compare the performance of our algorithms with

the state-of-the-art subspace clustering algorithms, including
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Sparse Subspace Clustering (SSC) [21], Low-Rank Repre-
sentation (LRR) [13], [14], closed form Low-Rank Subspace
Clustering (LRSC) [17], Sparse Subspace Clustering via Or-
thogonal Matching Pursuit (SSC-OMP) [81], Thresholding
based Subspace Clustering (TSC) [82], Nearest Subspace
Neighbor (NSN) [83], Low-Rank Sparse Subspace Clustering
(LRSSC) [29], `0-Sparse Subspace clustering (`0-SSC) [48],
[84] and Schatten-p norm minimization based LRR [51] (S2/3-
LRR and S1/2-LRR).

A. Experimental Setup

In all experiments, we set the parameters of GMC-LRSSC,
and S0/`0-LRSSC as follows: τ = 1− λ, ρ = 3, µmax = 106, ε
in stopping criteria to 10−4 and maximum number of iterations
to 100. Parameters λ and initial value of µ are tuned more
carefully. For GMC-LRSSC λ is parameterized using α as
1/(1+α), where α is tested in range [10−3, 103] with step 10.
Both λ and τ are scaled by µ0

2. For S0/`0-LRSSC parameter
λ is optimized in range [0.1, 0.9] with step 0.1. After the best
λ is found, µ0

2 in GMC-LRSSC and µ0 in S0/`0-LRSSC are
tested in the set {1, 3, 5, 10, 20}. Initial value of parameter µ1
in GMC-LRSSC is set to 0.1 in all experiments. For GMC-
LRSSC we test nonconvexity parameter γ ∈ {0.1, 0.6, 1}. That
resulted in γ = 1 on the Extended Yale B dataset, γ = 0.6 on
the MNIST dataset and γ = 0.1 on the USPS and ISOLET1
datasets. On synthetic data we test γ from 0.1 to 1 with step
0.1.

For other state-of-the-art algorithms, we use the source
codes provided by the authors. If the best parameters are
available, we set them as reported in the corresponding pa-
pers/source codes. Otherwise, we tuned the parameters and
retained those with the best performance. Specifically, for
SSC parameter α ∈ {10, 20, 50, 80, 100, 200, 500, 800, 1000},
for LRR λ ∈ {0.05, 0.1, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7}, for LRSC
τ ∈ {0.1, 5, 10, 20, 50, 80, 100, 200, 500, 800} and α ∈
{0.1τ, 0.5τ, 0.9τ, 1.11τ, 2τ, 10τ}, for S2/3-LRR and S1/2-LRR
λ ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 10}, and λ
in `0-SSC is tuned in range [0.1, 1] with step 0.1. In
NSN and SSC-OMP number of neighbors is chosen in
the set {2, 3, 5, 8, 10, 12, 15, 18, 20}. For TSC we set q =
max(3, dn/20e). For LRSSC we test λ parameter in range
[10−3, 104] with step 10 on real-world datasets. In order to
have completely same setting on the synthetic data, we tune
the LRSSC parameters in the same way as for GMC-LRSSC.

Parameters of all algorithms are tuned on 20 runs and for
L = {3, 5, 10} with different random seed than in the final
experiment. In the final experiment we run each algorithm
100 times.

B. Synthetic Data

In the synthetic data experiment we compare LRSSC,
GMC-LRSSC and S0/`0-LRSSC for different levels of noise
and number of samples. We generate three 5-dimensional
disjoint subspaces embedded in the 100-dimensional space.
Subspace bases {Ui}3i=1 ∈ R

100×5 are constructed such that
rank([U1,U2,U3]) = 10. We randomly sample Ni data points
from each subspace by computing {Xi = UiAi}3i=1, where

{Ai}3i=1 ∈ R
5×Ni is generated from N(0, 1) distribution. We

sample the same number of data points from each subspace,
i.e. N1 = N2 = N3. We then add Gaussian noise with zero
mean and vary the noise variance. Fig. 2 shows the average
clustering error over 10 runs for different number of samples
per subspace and different noise variance.

Fig. 2. Clustering error (%) on synthetic data when varying number of
samples per subspace (x-axis) and noise variance (y-axis). (a) LRSSC. (b)
GMC-LRSSC. (c) S0/`0-LRSSC.

For 50 data points per subspace and small measurement
noise, S0/`0-LRSSC performs better than LRSSC and GMC-
LRSSC. On the other hand, for larger measurement noise
GMC-LRSSC is the best performing algorithm. When we
increase the number of data poins to 100, GMC-LRSSC
remains the best performing algorithm for most levels of noise.
However, when further increasing number of data points, S0/`0
performs better except for very large measurement noise. This
is in line with results presented in [56] which show that `0
quasi-norm regularization of least-squares problems outper-
forms `p regularization 0 < p ≤ 1 for small measurement
noise. Whereas LRSSC and GMC-LRSSC in most cases do
not improve performance when increasing the number of data
points, S0/`0 is often able to exploit additional data.

C. Face Recognition Dataset

The Extended Yale B dataset [85], [86] consists of face
images of 38 individuals (subjects). It contains 64 frontal face
images of each individual acquired under different illumination
conditions. We use down-sampled 48 × 24 pixel images and
consider each vectorized image as one data point. The face
images of each individual in Yale B dataset lie approximately
in a 9-dimensional subspace [11].

We perform experiments for different number of clusters,
ranging from 5 to 30. In each experiment we sample uniformly
L clusters from the total number of subjects and compute
average of clustering error over 100 random subsets. The
results are reported in Table II with the two best results high-
ligted in boldface. Compared to the state-of-the-art methods,
GMC-LRSSC and S0/`0-LRSSC achieve the lowest clustering
error on all four clustering tasks. The difference between our
algorithms and the second best performing other is significant
for 10, 20 and 30 clusters (FDR<1%; Benjamini-Hochberg
corrected). Importantly, by increasing the number of clusters,
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TABLE II
CLUSTERING ERROR (%) ON THE EXTENDED YALE B DATASET

L SSC LRR LRSC SSC-OMP TSC NSN LRSSC `0-SSC S2/3-LRR S1/2-LRR GMC-LRSSC S0/`0-LRSSC

5 4.54 4.38 14.56 7.46 28.38 5.42 21.19 16.27 8.94 8.92 3.97 3.52
10 8.78 7.80 34.74 15.26 39.73 9.19 26.89 28.45 9.45 9.49 4.00 4.45
20 21.52 16.68 28.23 17.23 45.57 15.02 36.78 39.24 11.98 11.58 6.38 7.14
30 26.73 21.27 31.53 20.53 47.10 18.69 33.60 39.54 12.02 11.61 8.65 8.35

the difference between our `0-based formulations and convex
low-rank and sparse formulations becomes larger.

To check the effect of parameter γ in GMC-LRSSC, we
vary parameter γ from 0.1 to 1, where small γ means that
GMC penalty ψB is close to convex, and γ = 1 corresponds
to maximally nonconvex value of the penalty. Fig. 3 shows
performance as a function of γ values for 10, 20 and 30
clusters. On all these tasks, larger values of γ achieve lower
clustering error than the smaller values.

Fig. 3. Clustering error on the Extended Yale B dataset for 10, 20 and 30
clusters when varying γ parameter in GMC-LRSSC.

D. Handwritten Digit Datasets
For handwriting recognition task, we consider two datasets:

MNIST and USPS datasets. Both datasets contain pictures
of ten digits (0-9), each digit corresponding to one cluster.
The MNIST dataset contains 10000 centered 28 × 28 pixel
images of handwritten digits. The USPS dataset consists of
92898 handwritten digit images, each of 16 × 16 dimension.
The handwritten digits lie approximately in a 12-dimensional
subspace [87].

For both datasets, we use a subset of available images, sam-
pling uniformly 50 images per digit in each run and compute
average of clustering error over 100 runs. The performance
comparisons for different choice of digits are shown in Table
III. On both datasets, S0/`0-LRSSC and GMC-LRSSC are the
only algorithms that consistently achieve high performance
across varying combinations of digits.

On the MNIST dataset S0/`0-LRSSC algorithm is among
the best performing algorithms, and the difference is increas-
ing for larger number of clusters. GMC-LRSSC has lower
performance than S0/`0-LRSSC for three combinations, but it
is still significantly better than SSC, LRR and LRSSC. SSC
and LRSSC have the best performance for digit sets {2, 4, 8}
and {2, 4, 6, 8, 9}, but they fail to give satisfactory results on
other combinations of digits.

On the USPS dataset GMC-LRSSC is slightly better than
S0/`0-LRSSC, except for the combinations of five digits.

Specifically, on the digit set {2, 4, 6, 8, 9} S0/`0-LRSSC out-
performs all other methods. For the hardest problems with 10
clusters GMC-LRSSC and S0/`0-LRSSC again have signifi-
cantly better performance (FDR<1%) than all other methods,
that is 7.2% and 4.8% higher than the second best method,
respectively. Fig. 4 illustrates derived affinity matrices on the
USPS dataset for 10 clusters.

Fig. 4. Visualization of affinity matrices on the USPS dataset using all 10
digits. (a) SSC. (b) LRR. (c) LRSSC. (d) `0-SSC. (e) GMC-LRSSC. (f) S0/`0-
LRSSC.

E. Speech Recognition Dataset

For the speech recognition task, we evaluate algorithms on
the ISOLET dataset [88]. The task is to cluster subjects, where
each subject spoke the name of each letter of the alphabet
twice. We use dataset ISOLET1 containing 26 subjects with
30 data points from each subject. The features include spectral
coefficients, contour features, sonorant, presonorant and post-
sonorant features. To check whether the subspace clustering
assumption holds on the ISOLET1 dataset, we compute the
singular values of several subjects. Fig. 5 demonstrates that
singular values decay rapidly and confirms that data points
are drawn from low-dimensional subspaces.

We sample uniformly L = {5, 10, 15, 20} clusters from
the total number of subjects over 100 random subsets. The
average clustering errors are reported in Table IV. For all
tested numbers of clusters S0/`0-LRSSC is the best performing
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TABLE III
CLUSTERING ERROR (%) ON MNIST AND USPS DATASETS

Digits Dataset SSC LRR LRSC SSC- TSC NSN LRSSC `0-SSC S2/3- S1/2- GMC- S0/`0-
OMP LRR LRR LRSSC LRSSC

2,4,8 MNIST 7.43 14.14 10.59 11.06 12.09 13.02 7.01 7.82 14.80 15.03 8.66 8.92
USPS 6.02 10.37 7.61 21.04 8.32 18.67 7.13 4.88 8.83 9.70 4.92 6.40

3,6,9 MNIST 3.89 3.49 4.61 5.69 3.25 2.99 4.15 3.49 5.93 6.61 2.93 3.25
USPS 2.05 1.57 4.50 23.43 1.43 2.22 8.13 1.09 3.02 3.68 0.97 1.27

1,4,7 MNIST 47.50 45.09 44.14 42.21 33.72 14.05 47.09 45.40 43.42 42.57 34.50 27.33
USPS 2.21 4.01 4.33 58.07 7.45 9.45 8.61 3.68 4.27 5.37 2.65 3.82

2,4,6,8,9 MNIST 25.54 33.54 29.22 29.43 28.95 27.04 26.78 28.94 34.90 36.29 27.40 27.20
USPS 15.69 22.30 18.86 53.43 20.35 26.69 18.67 14.31 19.22 19.95 15.37 13.38

0,1,3,5,7 MNIST 53.60 33.61 35.92 37.51 30.16 22.39 46.86 33.74 32.50 33.08 29.80 27.85
USPS 30.00 22.83 28.47 74.66 25.58 13.36 35.44 30.17 27.41 27.68 24.76 10.89

0-9 MNIST 47.49 45.13 46.88 46.45 40.00 34.81 45.68 39.51 43.19 43.66 38.01 34.89
USPS 28.28 33.44 28.58 84.01 29.34 28.43 33.10 27.27 28.75 29.24 20.46 22.45

TABLE IV
CLUSTERING ERROR (%) ON THE ISOLET1 DATASET

L SSC LRR LRSC SSC-OMP TSC NSN LRSSC `0-SSC S2/3-LRR S1/2-LRR GMC-LRSSC S0/`0-LRSSC

5 10.98 7.61 10.25 27.79 11.58 8.23 8.63 9.23 7.45 8.06 7.07 6.87
10 17.11 14.65 15.84 44.44 19.35 16.04 14.72 18.21 14.10 14.34 13.92 13.81
15 25.64 23.14 22.88 54.03 27.07 23.61 23.87 25.73 20.37 20.24 20.29 19.90
20 31.05 30.60 27.93 59.89 31.70 27.94 29.90 30.28 26.02 25.24 25.32 25.07

Fig. 5. Singular values of several speakers on the ISOLET1 dataset.

method. GMC-LRSSC is the second best method for 5 and
10 clusters, while for 15 and 20 it achieves the same result as
Schatten-2/3 and Schatten-1/2 LRR.

F. Computational Time and Convergence

We further test the convergence behavior of GMC-LRSSC
and S0/`0-LRSSC. The convergence conditions of GMC-
LRSSC are satisfied within less than 15 iterations on all four
real-world datasets. Fig. 6 illustrates convergence behavior
of GMC-LRSSC on the MNIST and ISOLET1 datasets for
10 clusters. S0/`0-LRSSC converges within 20 iterations on
the Extended Yale B, MNIST and USPS datasets. Fig. 7
shows behavior of S0/`0-LRSSC on the MNIST and ISOLET1
datasets for 10 clusters. Although the maximal number of
iterations is exceeded on the ISOLET1 dataset, Fig. 7 shows
that the error decays rapidly and within 20 iterations.

The average computational time over 100 runs of each
algorithm is shown in Table V. On all datasets, LRSC is
consistently the fastest algorithm. GMC-LRSSC is among the
fastest algorithms, whereas S0/`0-LRSSC is among the fastest

algorithms on the Extended Yale B and MNIST datasets. As
explained above, on ISOLET1 dataset S0/`0-LRSSC exceeds
maximum number, resulting in higher computational time. All
experiments were run in MATLAB 2017a environment on the
PC with 256 GB of RAM and Intel Xeon CPU E5-2650 v4 2
processors operating with a clock speed of 2.2 GHz.

Fig. 6. Convergence of GMC-LRSSC. (a) MNIST dataset. (b) ISOLET1
dataset.

Fig. 7. Convergence of S0/`0-LRSSC. (a) MNIST dataset. (b) ISOLET1
dataset.
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TABLE V
AVERAGE TIME (S) ON THE EXTENDED YALE B, MNIST AND ISOLET1 DATASETS

Dataset L SSC LRR LRSC SSC- TSC NSN LRSSC `0-SSC S2/3- S1/2- GMC- S0/`0-
OMP LRR LRR LRSSC LRSSC

Yale B
5 30.88 10.21 0.18 0.56 0.44 1.28 10.65 40.11 9.85 10.02 0.39 0.59
10 54.30 31.52 0.41 1.29 1.00 2.94 69.97 101.00 33.78 34.32 1.86 2.91
30 180.67 271.52 2.47 6.29 6.20 14.84 642.33 623.94 295.74 297.36 19.19 29.24

MNIST
3 0.56 1.17 0.05 0.15 0.17 0.52 0.37 2.63 1.35 1.37 0.12 0.11
5 1.31 4.01 0.10 0.27 0.29 0.85 1.40 5.11 5.03 5.10 0.30 0.26
10 4.59 13.56 0.26 0.60 0.67 1.83 12.44 14.37 17.09 17.41 1.45 1.18

ISOLET1
5 6.83 4.78 0.09 0.20 0.25 0.60 4.24 4.71 5.99 6.12 0.41 2.36
10 14.23 17.23 0.26 0.47 0.61 1.31 30.05 12.82 21.78 22.21 1.87 12.95
20 38.37 30.34 0.28 1.17 1.64 3.05 133.86 45.79 34.05 34.87 6.96 50.93

VI. CONCLUSION AND DISCUSSION

In this paper we have introduced two nonconvex regulariza-
tions in low-rank sparse subspace clustering: (i) multivariate
generalization of minimax-concave penalty function; and (ii)
S0/`0 regularization with a proximal operator approximated
using the proximal average method. Under the proposed
framework, we have presented two algorithms based on the
alternating direction method of multipliers. We have per-
formed extensive experiments on synthetic and four real world
datasets, including face recognition, handwriting recognition
and speech recognition tasks. Our experimental results have
shown that both proposed methods converge fast and achieve
clustering error lower than nuclear and `1 norms regularized
objective. Moreover, for larger number of clusters proposed
methods consistently outperform existing subspace clustering
methods. That is explained by their more accurate approxi-
mation of rank and sparsity of the data representation matrix
than it is the case with nuclear and `1 norms.

The choice of norm should be decided depending on the
dataset. In future work we plan to study how different ini-
tializations affect the accuracy of the proposed nonconvex
regularization based methods. Instead of directly solving NP
hard `0 quasi-norm minimization problem, we are interested in
finding a way to gradually build a solution. A possible strategy
could be to start with `1 norm solution. Since analytic formulas
for thresholding function exist for p = 1/2 and p = 2/3 [89],
we can gradually shrink p and use the current solution to
initialize the next step of the algorithm. This approach is called
p-continuation strategy in [56].

APPENDIX
PROOF OF PROPOSITION 2 AND THEOREM 1

In this section, we first prove the boundedness of variables
in Algorithm 1. This result helps us to establish convergence
property of Algorithm 1. We then prove Theorem 1 in the
paper, where we show that any converging point satisfies
Karush-Kuhn-Tucker (KKT) conditions [78].

Proof of Proposition 2:
From the first order optimality conditions of Lagrangian

function in (25) we have:

0 ∈ ∂C1Lµk
1 ,µ

k
2

(
Jk+1,Ck+1

1 ,Ck+1
2 ,Λk

1,Λ
k
2
)

0 ∈ ∂C2Lµk
1 ,µ

k
2

(
Jk+1,Ck+1

1 ,Ck+1
2 ,Λk

1,Λ
k
2
)
.

(49)

The optimality condition of problem in (30) implies that:[
∂τψB

(
Ck+1

2
) ]

i j
−

[
Λk+1

2
]
i j
= 0, (50)

where
[
∂ψB

(
Ck+1

2
) ]

i j
denotes gradient of the GMC penalty

ψB at
[
Ck+1

2
]
i j

. By the definition of the scaled MC penalty in

(22) and using B =
√
µk2γ/τI we have:

∂φb
(
ci j

)
=


sign(ci j) −

µk
2 γ

τ ci j, if |ci j | ≤ τ
µk

2 γ

0, if |ci j | > τ
µk

2 γ
,

(51)

where ci j denotes
[
C2

]
i j

.
If |ci j | > τ/(µk2γ), then from (50) and (51) directly follows[
Λk+1

2
]
i j
= 0.

Otherwise, we get the following equality:[
Λk+1

2
]
i j
= sign

( [
Ck+1

2
]
i j

)
−
µk2γ

τ

[
Ck+1

2
]
i j
. (52)

Since
�� [Ck+1

2
]
i j

�� ≤ τ/(µk2γ), it follows
�� [Λk+1

2
]
i j

�� ≤ 1.
Therefore, sequence

{
Λk

2
}

is bounded.

The optimality condition of problem in (28) implies that:[
∂λψB

(
σ

(
Ck+1

1
) ) ]

i j
−

[
Λk+1

1
]
i j
= 0, (53)

Similarly, following the proof for C2 and using Proposition
1, it can be shown that the sequence

{
Λk

1
}

is also bounded.
Using the definitions of Jk+1, Ck+1

1 and Ck+1
2 as minimizers,

we have the following inequalities [90]:

Lµk
1 ,µ

k
2

(
Jk+1,Ck+1

1 ,Ck+1
2 ,Λk

1,Λ
k
2
)

≤ Lµk
1 ,µ

k
2

(
Jk+1,Ck+1

1 ,Ck
2 ,Λ

k
1,Λ

k
2
)

≤ Lµk
1 ,µ

k
2

(
Jk+1,Ck

1 ,C
k
2 ,Λ

k
1,Λ

k
2
)

≤ Lµk
1 ,µ

k
2

(
Jk,Ck

1 ,C
k
2 ,Λ

k
1,Λ

k
2
)
.

(54)
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Note that the last term equals:

Lµk
1 ,µ

k
2

(
Jk,Ck

1 ,C
k
2 ,Λ

k
1,Λ

k
2
)

= Lµk−1
1 ,µk−1

2

(
Jk,Ck

1 ,C
k
2 ,Λ

k−1
1 ,Λk−1

2
)
+

2∑
i=1

ai ‖Λk
i − Λk−1

i ‖2F,

(55)

where ai =
µk
i +µ

k−1
i

2(µk−1
i )2

, i = 1, 2. Since µk = ρµk−1, ρ > 1, it

follows that µk is non-decreasing and
∑∞

k=0
1
µk
i

< ∞, i = 1, 2.
We then have:

∞∑
k=1

µki + µ
k−1
i

2(µk−1
i )

2 =

∞∑
k=1

1 + ρ
2µk−1

i

< ∞. (56)

Since
{
Λk

1
}

and
{
Λk

2
}

are bounded, then
{
‖Λk

1 − Λ
k−1
1 ‖2F

}
and

{
‖Λk

1 − Λ
k−1
1 ‖2F

}
in (55) are also bounded.

Therefore, from (54), (55) and (56) follows that{
Lµk

1 ,µ
k
2

(
Jk+1,Ck+1

1 ,Ck+1
2 ,Λk

1,Λ
k
2
)}

is upper-bounded.

Furthermore, it holds that:
1
2
X − XJk

2
F
+ λψB(σ(Ck

1 )) + τψB(Ck
2 )

= Lµk−1
1 ,µk−1

2

(
Jk,Ck

1 ,C
k
2 ,Λ

k−1
1 ,Λk−1

2
)
− 1

2
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1
2
F
−
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1

2
F

µk−1
1

− 1
2
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2
2
F
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Λk−1
2

2
F
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2

(57)

Since
{
Lµk−1

1 ,µk−1
2

(
Jk,Ck

1 ,C
k
2 ,Λ

k−1
1 ,Λk−1

2
)}

is upper-bounded
and

{
Λk

1
}

and
{
Λk

2
}

are both bounded,
{
Jk

}
is also bounded.

The boundedness of
{
Ck

1
}

and
{
Ck

2
}

follows from the
update rules for Lagrange multipliers in (33) and boundedness
of

{
Jk

}
,
{
Λk

1
}
, and

{
Λk

2
}
.

Therefore, sequence
{(
Jk,Ck

1 ,C
k
2 ,Λ

k
1,Λ

k
2
)}

generated by
Algorithm 1 is bounded. Bolzano-Weierstrass theorem [91]
then guarantees the existence of a convergent subsequence.

Proof of Theorem 1:

Let
(
J∗,C∗1,C

∗
2,Λ

∗
1,Λ

∗
2
)

be a critical point of (24). The KKT
conditions are derived as follows:

(1) J∗ − C∗1 = 0,
(2) J∗ − C∗2 = 0,
(3) − XT (

X − XJ∗) + Λ∗1 + Λ∗2 = 0
(4) Λ∗1 ∈ ∂C1

λψB
(
σ(C∗1)

)
(5) Λ∗2 ∈ ∂C2

τψB
(
C∗2

)
.

(58)

From the 1st and 4th KKT conditions, it follows:

J∗ +
Λ∗1
µ∗1
∈ J∗ +

λ

µ∗1
∂C1

ψB
(
σ(C∗1)

)
= C∗1 +

λ

µ∗1
∂C1

ψB
(
σ(C∗1)

)
.

(59)

Let U1Σ1V
T
1 be the SVD of matrix C∗1 . Using Proposition 1,

the right hand side of (59) equals:

C∗1 +
λ

µ∗1
∂C1ψB

(
σ(C∗1)

)
= U1Σ1V

T
1 +

λ

µ∗1
U1∂Σ1

(
ψB

(
Σ1

) )
VT

1

= U1
(
Σ1 +

λ

µ∗1
∂Σ1

(
ψB

(
Σ1

) )
VT

1

, U1Qa1,b1

(
Σ1

)
VT

1 ,
(60)

where a1 = µ∗1/λ and b1 =
√
µ∗1γ/λ, 0 < γ ≤ 1. The scalar

function Qa,b is defined as Qa,b(x) , x + 1
a ∂φb(x), where φb

is the scaled MC penalty defined in (22). Qa1,b1 (x) is applied
element-wise to singular values of matrix C∗1 .

Let U2Σ2V
T
2 be the SVD of matrix

(
J∗ + Λ∗1/µ∗1

)
. From

(59), we get the following relation:

U2Σ2V
T
2 ∈ U1Qa1,b1

(
Σ1

)
VT

1 . (61)

It is easy to verify that Qa1,b1 is a monotone function [92],
[93] and Q−1

a1,b1
(x) = Θ

(
x; λ

µ∗1
, λ
γµ∗1

)
for 0 < γ ≤ 1 , where Θ is

the firm thresholding function defined in (1). Applying Q−1
a1,b1

to both sides of (61) and replacing U1Σ1V
T
1 = C∗1 , we get:

C∗1 = U2Q−1
a1,b1

(
Σ2

)
VT

2 = U2Θ
(
Σ2;

λ

µ∗1
,
λ

γµ∗1

)
VT

2 . (62)

Similarly, from the 2nd and 5th KKT conditions, we have the
following relations:

J∗ +
Λ∗2
µ∗2
∈ J∗ +

τ

µ∗2
∂C2

ψB
(
C∗2

)
= C∗2 +

τ

µ∗2
∂C2

ψB
(
C∗2

)
, Qa2,b2

(
C∗2),

(63)

where a2 = µ
∗
2/τ and b2 =

√
µ∗2γ/τ, 0 < γ ≤ 1.

Again, applying Q−1
a2,b2

to both sides of (63), we get the
following equations:

C∗2 = Q−1
a2,b2

(
J∗ +

Λ∗2
µ∗2

)
= Θ

(
J∗ +

Λ∗2
µ∗2

;
τ

µ∗2
,
τ

γµ∗2

)
. (64)

Therefore, the 4th and 5th KKT conditions can be rewritten
as:

(4) C∗1 = U2Θ
(
Σ2;

λ

µ∗1
,
λ

γµ∗1

)
VT

2

(5) C∗2 = Θ
(
J∗ +

Λ∗2
µ∗2

;
τ

µ∗2
,
τ

γµ∗2

)
.

(65)

We now show that KKT conditions are satisfied when
assumptions of Theorem 1 hold. From (33) we have:

Λk+1
1 − Λk

1 = µ
k
1
(
Jk+1 − Ck+1

1
)

Λk+1
2 − Λk

2 = µ
k
2
(
Jk+1 − Ck+1

2
)
.

(66)

Since by the assumption
(
Λk+1

1 −Λk
1
)
→ 0 and

(
Λk+1

2 −Λk
2
)
→

0, then the first two KKT conditions are satisfied.

From the update rule in (27), we have:[
XTX + (µk1 + µ

k
2)I

] (
Jk+1 − Jk ) = µk1 (

C1
k − Jk )

+ µk2
(
C2

k − Jk ) − Λ1
k − Λ2

k + XT (
X − XJk ) . (67)
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From the the first two conditions, it follows that when Jk+1 −
Jk → 0, the 3rd KKT condition is satisfied.

Next, using the update for C1 in (29) we obtain the
following equation:

Ck+1
1 − Ck

1 = U2Θ
(
Σ2;

λ

µk1
,
λ

γµk1

)
V2

T − Ck
1 , (68)

where U2Σ2V2
T is the SVD of matrix

(
Jk+1 + Λ1

k/µk1
)
.

From the update rule for C2 in (32) it follows:

Ck+1
2 − Ck

2 = Θ
(
Jk+1 +

Λk
2

µk2
;
τ

µk2
,
τ

γµk2

)
− Ck

2 . (69)

When Ck+1
1 −Ck

1 → 0 and Ck+1
2 −Ck

2 → 0, follow the equations
in (65). Since

{
Y k

}∞
k=1 is bounded and equations (66), (67),

(68), (69) go to zero, we conclude that the sequence
{
Y k

}∞
k=1

asymptotically satisfies the KKT conditions in (58).
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