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Abstract—Hyperspectral image (HSI) Clustering is an
unsupervised task, which segments pixels into different groups
without using labeled samples. In this paper, spatial-spectral
based multi-view low-rank sparse subspace clustering (SSMLC)
algorithm is proposed. Due to significant number of spectra
bands HSI contains much more information than a regular
image. These spectral information can be considered as multi-
view. In this paper, the spectral partitioning is applied to
generate spectral views which contain correlated bands.
Morphological features of the original HSI are taken as another
view which contains spatial features. Principal components
construct another view, which eliminates the noise in the original
dataset. After the multi-view dataset is formed, multi-view low-
rank sparse subspace clustering is applied to segment HSI. Our
experiments show that the performance of the proposed SSMLC
is better than other that of clustering algorithms such as sparse
subspace clustering and low-rank sparse subspace clustering.
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I. INTRODUCTION

By combining spatial and spectral information, a hyperspectral
image (HSI) provides much more information than a regular
image. Because of this particular advantage, HSI has been
widely applied in remote sensing monitoring [1-5], where its
high spectral resolution can help distinguish materials with
subtle spectral discrepancy. Clustering is one of popular
techniques in image processing. For an HSI, it separates pixels
into corresponding groups by considering both spectral and
spatial information. As an unsupervised technique, clustering is
more challenging than supervised ones using labeled samples.
The k-means clustering is a classical method, which heavily
relies on initial conditions and easily gets stuck in a local
optimum. Furthermore, the clustering results are centroid-
based, but the HSI do not have this nature. In this case, the
subspace clustering algorithm is proposed for high-dimensional
dataset, where the data are clustered into multiple subspaces.
Afterwarrds, low-dimensional subspaces are fitted to each
group of pixels. Recently, sparse subspace clustering (SSC)
and low-rank subspace clustering (LSC) [7,8] are proposed to
find affinity matrices for clustering effectively, where an
affinity matrix defines the similarity between pixels. The SSC
algorithm uses the sparsest representation for each pixel with
pixels in its group, and the local structure of data can be
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maintained. The LRR algorithm introduces low-rank constraint
into self representation matrix, and the global structure of data
is preserved. In order to contain both local and global
information in dataset, the low-rank sparse subspace clustering
(LRSSC) algorithm is proposed which combines the low-rank
and sparsity constraints [9].

Because of varied sources or features of dataset, mult-view
learning has been widely applied in machine learning area,
where the single-view learning could not represent all the
sources or features in dataset properly. HSI, which contains
hundreds of spectral bands, could be represented with many
views in each band. In this case, HSI is a perfect dataset for
multi-view learning. Li et al. also utilized multiple
morphological features for HSI classification [10], which
integrates linear and nonlinear features.

Multi-view learning and LRSSC are incorporated in Ref.
[11] as multi-view low-rank sparse subspace clustering
(MLRSSC) to deal with multi-source or multi-features in
dataset. In this research, we propose the use of MLRSSC for
HSI clustering. In order to construct a multi-view data for such
a task, spectral partitioning is applied to generate multi-views
for spectral information.  Afterwards, morphological
component analysis is applied to produce another view of HSI
to represent spatial information, while PCA is applied to yield
an additional view of the original dataset. Finally, those views
are treated as multi-source for MLRSSC clustering, which is
named as spatial-spectral based multi-view low-rank sparse
subspace clustering (SSMLC).

II. PROPOSED METHOD

A. Low-rank representation and sparse subspace clustering

Given a set of N data points as X =[x,,x,---x, ]in R”, the

RN><N

low-rank representation matrix Z e could be recovered

by the following minimization problem:

mianEank(Z) +7|E|,, st. X=AZ+E (1)

0

where A is a “dictionary” that linearly spans the whole data
space, E is the error. In the LRSSC problem, the self
representation is used, where A4 = X . In this case, equation (1)
is simplified as:

st. X=XZ 2

w2

min||Z
A
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where the rank of Z is approximated by nuclear norm of Z .
When there is no noise in X or noise can be ignored, Z could
be achieved by:

Z=vv" 3)
where V is the SVD components of X as ULV [9].

Instead of low-rank representation where the whole data
space is applied as representation space, SSC uses a small
number of data points from its subspace for representation,
which contains more local information in dataset. The SSC
minimization problem is:

st. X=X7Z, diag(Z)=0. “)

where /, norm regularization is used as the faithful

representation from its own subspace [12-14], and
diag(Z) =0 constraint is applied to exclude a trivial solution

where the data pixels are a linear combination of themselves.
To solve minimization problem in (4), the alternating direction
method of multipliers (ADMM) optimization algorithm is an
efficient candidate.

min||Z
VA

1 2

B. Low-rank sparse subspace clustering

According to [15], sparse representation contains major
local structure information of dataset, where each pixel has the
sparsest representation. On the other hand, LRR focuses on the
global structure information of the dataset. In this case, the
combination of SSC and LRR algorithm, which is low-rank
sparse subspace clustering (LRSSC) proposed by [9], could
extract more information from the original dataset, and handle
both global and local structure information. The minimization
problem for the LRSSC can be expressed as

st. X=XZ, diag(Z)=0 (5
The affinity matrix W iscalculated as:

mino, 2], + o012

15

T
W =|Z|+|Z| (6)
Then spectral clustering [17] is then applied to achieve
clustering.

C. Spetral-spatial based multi-view low-rank sparse subspace
clustering (SSMLC)

With the development of data acquisition technology, there
are plenty of data sources or data features for a single object or
event, and an individual view (source or feature) is not
comprehensive for data description. In this case, multi-view
learning algorithms, which integrate multiple sources or
features, is a popular and successfully method in computer
vision and intelligent system area [16]. In hyperspectral
imaging, multi-view learning has been applied in classification
as multiple features of HSI are combined together [10]. They
showed multi-view learning could provide more information
than single-view learning, yielding significant classification
improvement.

Intuitively, multi-view learning could improve the
performance of unsupervised clustering. For the MLRSSC, let ¢

views construct a dataset X =[X', X?---X"], where the i-th

view X' = {)(’/} 1 € R” contains D' dimension features. The
=

joint optimization problem with ¢ views is:

t
. . . ) 112
min Ya|z] +alz] ) 2 Yz -2[
Zl ZZ 7! 1 * 1 F
o i=1 1<i, j<t,t#j
st. X' =X'Z',diag(Z') =0 (7

where the weight of each view A could be simply assumed
identical. In addition to the low-rank and sparsity constraints,
the third term in equation (7) encourages the representations
from different views to be consistent if possible.

By fixing all but one Z*, equation (7) can be minimized for

each Z'independently, which can be reformulated as:

12
min o |2 + a2 +2D |2 -2
7t * 1 F
Jj#t
st. X' =X'Z', diag(Z") =0 ®)
By introducing auxiliary variables Z;,Z,,Z;, A", equation (8)
becomes
12
min aIHZI’ +a2HZ§ +/12HZ3’ —ZJ‘ ,
z{,25.75,4' * 1 o F

st X' =X'A' A =7, —diag(Z}),A' =Z!, 4" =Z! (9)

The augmented Lagrangian can be formed as:
it a Wl ) al] sz + 23 Ji- 2

j#t
O R e WYV

+a2|Z£
.

A - z;||i +i{ N (X' = X AN+ Ay (A - Z)]

+ £
2
+ A, (A = ZD)+ AN, (4 = Z +diag(Z))) (10)

4
where { Af} are Lagrange dual parameters and u’s are
=1

penalty variables. Then the ADMM can be applied to solve this
convex optimization problem.

Finally, spectral clustering [17] is applied to the affinity
matrix W which is generated from Z using equation (6).

In this research, spectral partitioning based on correlation
coefficients is applied to generate multiple spectral views, and
a highly correlated spectral group is considered as a view.
Principal component analysis (PCA) is also applied to
decorrelate the data and remove noise, and the principal
components are considered as a view. To generate spatial
views, morphological component analysis is deployed to the
first PC of the original HSI, where the coarse, fine, high-
contrast, low-contrast, horizontal and vertical features are
extracted to form a matrix as another view. Then the SSMLC
can be implemented.
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III. EXPERIMENTS AND RESULTS

A. Datasets and Parameters

In experiments, two hyperspectral image datasets, i.e.,
SalinasA and University of Pavia, are applied. The SalinasA
dataset is acquired by the Airborne Visible and Infrared
Imaging Spectrometer (AVIRIS) sensor over the Valley of
Salinas, Central Coast of California, in 1998, which includes
16 classes and 5864 labeled pixels. The University of Pavia
HSI was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor over Pavia, Italy. Totally, there
are 9 classes and 42776 labeled samples. Considering
computational cost, 1500 labeled pixels in SalinasA and 2000
labeled pixels in University of Pavia are used to validate the
performance of the proposed SSMLC.

The correlation coefficient threshold in spectral partitioning
is set to be {0.6, 0.7, 0.8, 0.9}. In PCA, the number of PCs is
chosen as {3, 5, 10, 30, 50, 100}. After the spectral partitioning
and morphological component analysis in spatial domain,
obtained multi-views are usedfor MLRSSC, where the weight
of each view is assumed equal, &,and «, are tuned between

[0.1,09] , and 1 is chosen between [1072,107] . In the

SalinasA dataset, 1 =10°, a,=0.7,a, =0.9 are selected for

the following experiments. For the University of Pavia dataset,
A=01, =02, a,=02 are chosen for the following

experiments.

The original SSC, single view LRSSC, and spectral-spatial
sparse subspace clustering (S4C) [18] are compared with the
proposed SSMLC.

B. Result and Anlysis

For the SalinasA dataset, the clustering accuracy with
varied correlation coefficient threshold is shown in Fig. 1.
According to the result, clustering accuracy has the maximum
value 84.29% when the threshold is set to be 0.8 in spectral
partitioning. There is a significant impact on spectral
partitioning, where inappropriate partitioning could decrease
the results more than 10%. As the threshold is chosen as 0.8,
there are 29 groups after spectral partitioning, which means
there are 29 views based on the spectral features in the
following experiments.

Fig. 2 shows the clustering results with varied PCs in
SalinasA. When PCA is applied to the original dataset alone
(blue bar in Fig. 2), the accuracy is improved with the number
of PCs increased to 10, then maintains stable after 10 PCs. The
accuracy reaches the peak around 50 PCs, which is 85%. In
this case, major information in the original HSI are contained
in the first 10 PCs, and there is more noise than useful
information after 50 PCs. When spectral partitions are jointly
used with PCs (orange bar in Fig. 2), there is significant
improvement, where the highest accuracy reaches 94% when
50 PCs view is used with 29 spectral partition views for the
SSMLC algorithm.

When the morphological view is added to PCs and spectral
partitions views (gray bar in Fig. 2), the highest accuracy also
stays around 94%. Furthermore, the performance when using
the major PCs has significant improvement, where the
accuracy with 3 PCs increases around 12%, and the accuracy is

stable with the number of PCs is increased. The information of
spatial morphology could compensate the spectral partition
information, where Fig. 2 shows the total combination
improves in all other conditions. It has been shown that the PC
view, spectral partition views and morphological view could
provide different perspectives of observations or
representations for the original data, and the combination of
multiple views indeed offers the advantage for clustering.
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Fig. 1 clustering accuracy with different correlation coefficient
threshold.
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Fig. 2 The clustering accuracy with varied PCs in the SalinasA
experiment.
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Fig. 3  The clustering accuracy with different clustering
algorithms in SalinasA.

As shown in Fig. 3, several clustering algorithms are
compared with the SSMLC, which include SSC, LRSSC, S4C,
MLRSSC with spectral partition only, and MLRSSC with PC
only. According to the results, SSMLC provides the best
performance in clustering, which could yield the accuracy as
high as 94%. It is truly impressive for an unsupervised
approach. On the other hand, the classical SSC and LRSSC
produce poor performance, which is below 50%. Spectral
based MLRSSC (with spectral partition views) and the
MLRSSC with the PC view have good performance, which is
around 84%. But they could be improved by combination of
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spectral and spatial views as in SSMLC, where the
improvement for clustering accuracy is around 10%. For S4C,
it has better performance than spectral based MLRSSC and
PCA based MLRSSC. However, it is inferior to the proposed
SSMLC for around 7%.

In the second experiment, University of Pavia dataset is
investigated. The clustering results of different algorithms are
shown in Fig. 4. The results further demonstrate that the
proposed SSMLC generated the best performance in clustering,
which is around 78%.
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Fig. 4 The clustering accuracy with different clustering
algorithms in University of Pavia.

IV. CONCLUSION

In this paper, the MLRSSC is extended to hyperspectral image
clustering, where multiple views are extracted by spectral
partitioning, morphological filtering, and PCA. The proposed
SSMLC outperforms other methods of the similar type, such as
SSC, LRSCC, S4C. In particular, the SSMLC offers better
performance than S4C that also uses both spatial and spectral
information in SSC. This means explicitly considering
different types of information as multi-view in the objective
function of MLRSSC can yield a more accurate affinity matrix
for spectral clustering.

Similar to other spectral clustering techniques, the SSMLC
is computationally expensive. We will investigate a distributed
approach suitable to large-scale image clustering. We will also
investigate the option to in which SSMLC will be used to learn
the manifolds by learning graph affinity matrices on subset of
HSI (treated as training sample) and then predicting manifold
memberships on the rest (out-of-sample) pixels by using, as an
example, multivariate kernel ridge regression [19].
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