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POZADINE ZA RANU DETEKCIJU
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dobitnik više nagrada za znanstveni i stručni rad.
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toga je odradio medinski staž u domu zdravlja Drniš. Doktorirao je biomedicinu i zdravstvene
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od 1996. godine KBC Sestre Milosrdnice. Njegovo područje intersea uključuje vitreoretinalne
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Sažetak

Dijabetička retinopatija je jedna od glavnih kroničnih bolesti i jedan od glavnih uzroka sljepoće

koja se može spriječiti u svijetu. Kako bi se postigla rana dijagnoza puno truda se mora uložiti

u sustave automatskog probira pacijenata temeljene na slikama očne pozadine. Ova doktorska

disertacija se bavi istraživanjem naprednih metoda obrade i analize slika koje su potrebne za ra-

zvoj automatskih sustava probira pacijenata. Prvi znanstveni doprinos je baza od pedeset slika

očne pozadine koja sadrži slike zdravih, ali i osoba koje imaju dijabetičku retinopatiju. Baza

slika sadrži i oznake normalnih kao i patoloških struktura. Slike su označila pet oftalmologa

te se baza koristi za razvoj i validaciju algoritama. Drugi znanstveni doprinos je metoda za

detekciju krvnih žila u slikama očne pozadine temeljena na modeliranju i višerazinskom pra-

ćenju krvnih žila. Kako bismo locirali optički disk koji se nalazi u svakoj slici očne pozadine

razvijena je metoda za lociranje optičkog diska temeljena na glasanju i stohastičkom učenju te

ta metoda predstaclja treći važni doprinos ove disertacije. Unutar disertacije pokazujemo kako

ovaj pristup daje bolje rezultate od individualnih algoritama koji su dio ansambla algoritama.

Kako bismo detektirali eksudate koji su jedan od najvažnijih prvih simptoma prilikom dijag-

noze dijabetičke retinopatije razvijena je metoda koja kombinira izlaz duboke konvolucijske

neuronske mreže sa specifičnim oftalmološkim znanjem unutar ekspertnog sustava. Ta metoda

predstavlja četvrti znanstveni doprinos disertacije. Na kraju disertacije dajemo pregled rada te

se daju prijedlozi za poboljšanje performansi sustava.

Ključne riječi: Dijabetička retinopatija, slike očne pozadine, obrada i analiza slike, strojno

učenje, neuronske mreže, duboko učenje

Abstract

Diabetic retinopathy is one of the leading disabling chronic diseases, and one of the leading

causes of preventable blindness in the world. In order to achieve early diagnosis of diabetic

retinopathy a major effort will have to be invested into automatic screening systems using color

fundus photographs. This thesis investigates advanced image processing and analysis methods,

which are needed for automatic screening system development. The first contribution of this

thesis work is a database of fifty fundus images from healthy and diabetic patients. The data-

base has normal and pathological structures labeled by five ophthalmology experts and is used

for algorithm development and testing. The second contribution is a method for blood vessel

segmentation from fundus photographs using model-based multi-scale vessel tracking. In order

to locate the optic disc, which is present in all fundus photographs, a method based on a voting-

based classifier and stochastic learning is presented as one of the thesis contributions. We show



that this approach easily outperforms methods which are part of the classifier ensemble. In or-

der to detect exudates, which are one of the most important early signs of diabetic retinopathy,

a method based on combining a deep convolutional neural network with specific ophthalmic

knowledge in one expert system was developed and represents the last thesis contribution. In

the end, the thesis gives a summary of the work with considerations about potential performance

improvements.

Keywords: diabetic retinopathy, funds photographs, image processing and analysis, mac-

hine learning, neural networks, deep learning
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Prošireni sažetak

Dijabetička retinopatija je jedna od glavnih kroničnih bolesti i jedan od glavnih uzroka slje-

poće koja se može spriječiti u svijetu. Rana dijagnoza dijabetičke retinopatije je bitna jer se

smanjuje teret bolesti na pacijenta i obitelji obzirom da se ranom detekcijom može zadržati

dovoljna kvaliteta vida pogod̄ene osobe što na kraju ipak vodi do bolje kvalitete života. Kako

bi se postigla rana dijagnoza moraju se razviti sustavi za automatsku ranu dijagnozu temeljeni

na slikama očne pozadine. Slike očne pozadine su korisne za utvrd̄ivanje stadija dijabetičke

retinopatije obzirom da je krvožilni sustav oka izrazito osjetljiv na promjene izazvane dijabetič-

kom retinopatijom te zbog svog neinvazivnog karaktera. Naglasak ove doktorske disertacije je

na istraživanju naprednih metoda obrade i analize slika koje su potrebne za razvoj automatskih

sustava probira pacijenata. Kako bi se razvio sustav automatskog probira pacijenata za dija-

betičku retinopatiju potrebno je razviti metode za segmentaciju normalnih struktura kao što su

krvne žile, optički disk te žuta pjega te segmentaciju patoloških struktura koje su prisutne samo

u slikama očne pozadine pacijenata oboljelih od dijabetičke retinopatije kao što su tvrdi i meki

eksudati, točkasta te mrljata krvarenja i neovaskularizacije.

Prilikom istraživanja prvi korak je bio prikupljanje baze slika koja se kasnije koristila za

razvoj te testiranje metoda obrade i analize slika. Baza slika se sastoji od 50 slika pri čemu su u

bazi prisutne slike zdravih te osoba oboljelih od dijabetičke retinopatije. Slike sadrže označene

normalne strukture kao što su optički disk, makula te krvne žile kao i patološke strukture poput

eksudata, krvarenja i neovaskularizacija. Svaku sliku je označilo pet stručnjaka oftalmologa.

Nakon prikupljanja baze slika razvijena je metoda za detekciju optičkog diska koji je pris-

tuan u svim slikama očne pozadine. Metoda se temelji na kombiniraju izlaza više jednostavnih

metoda kako bi se postigla bolja točnost detekcije. Težine pojedine metode su odred̄ene algo-

ritmom simuliranog kaljenja. U disertaciji se pokazuje da je točnost ove metode značajno veća

u odnosu na pojedine metode koje čine ansambl. Osim metode za detekciju optičkog diska

razvijena je metoda za detekciju krvnih žila kao još jedne od struktura koje su prisutne u svim

slikama. Metoda se temelji na višerazinskom praćenju i modeliranju krvnih žila. Obzirom na

činjenicu da krvne žile imaju specifičan profil korišten je model krvnih žila čiji parametri su

dinamički mijenjani optimizacijskom procedurom. Osim toga, modeliranje krvnih žila se nije

primjenjivalo direktno na slikama već na slikama u kojem su metodom filtriranja krvne žile bile

pojačane.

Nakon toga razvijene su metode za detekciju eksudata. U disertaciji su objašnjenje dvije

metode. Prva metoda se temelji na postupku koji je sličan postupku detekcije optičkog diska

gdje se kombiniraju jednostavnije metode kako bi se povećala točnost detekcije. Drugi pristup

se temelji na razvoju ekspertnog sustava unutar kojeg se kombinira izlaz duboke konvolucijske

neuronske mreže sa specifičnim oftalmološkim znanjem koje povećava ukupnu točnost seg-



mentacije eksudata. Kako bi se iskoristilo specifično oftalmološko znanje potrebno je iskoristiti

izlaze detektora krvnih žila te optičkog diska sa izlazom duboke neuronske mreže. Kombinira-

njem izlaza stvorena je mapa vjerojatnosti prisutnosti eksudata na odred̄enoj lokaciji. Postav-

ljanjem praga mogu se dobiti potencijalna područja eksudata. Nakon izlučivanja potencijalnih

regija računaju se značajki za svako područje te se na kraju korištenjem klasifikatora donosi

odluka je li riječ o eksudatu ili ne. Unutar disertacije pokazuju se rezultati koji govori da je riječ

o dosta robusnom rješenju za detekciju eksudata.

Na kraju disertacije daje se kratak pregled ostvarenih rezultata te se daju smjernice o poten-

cijalnim poboljšanjima razvijenih metoda.

Ključne riječi: Dijabetička retinopatija,slike očne pozadine, obrada i analiza slike, strojno

učenje, neuronske mreže, duboko učenje
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Chapter 1

Introduction

Diabetes is a well known disease and may cause abnormalities in the retina (diabetic retino-

pathy), kidneys (diabetic nephropathy), nervous system (diabetic neuropathy) and is known to

be a major risk for cardiovascular diseases. Diabetic retinopathy (DR) is a microvascular com-

plication caused by diabetes which can lead to blindness. In early stages of diabetic retinopathy

typically there are no visible signs but the number and severity of abnormalities increase du-

ring the time. Diabetic retinopathy typically starts with small changes in retinal capillaries.

The first detectable abnormalities are microaneurysms which represent local enlargements of

the retinal capillaries. The ruptured microaneurysms can cause hemorrhages. After a period of

time, hard exudates may appear. The hard exudates are lipid formations leaking from weakened

blood vessels. As the retinopathy advances, the blood vessels may become obstructed which

causes microinfarcts in the retina. These microinfarcts are called soft exudates. Extensive lack

of oxygen caused by microinfarcts causes the development of new fragile vessels. This phe-

nomenon is called neovascularization which is a serious eyesight threatening state and may

cause sudden loss in visual acuity or even permanent blindness. Examples of microaneurysms,

hemorrhages, hard exudates, soft exudates and neovascularization are visible in Fig. 1.1.

Diabetic retinopathy is one of the leading disabling chronic diseases, and one of the leading

causes of preventable blindness in the world [1]. It was found to be the fourth most frequently

managed chronic disease in general practice in 2009, and the projections go as high as the

second most frequent disease by the year 2030 [1]. The global burden of diabetic patients is

expected to rise from 171 million in 2000 to 366 million in 2030 [1]. In Europe more than

52.8 million people are diagnosed with diabetes with the number expected to rise to 64 million

by 2030. In Croatia about 300 thousand people are estimated to have diabetes and of those

only 190 thousand are registered, which complicates the treatment. Early diagnosis of diabetic

retinopathy enables timely treatment that can ease the burden of the disease on the patients and

their families by maintaining a sufficient quality of vision and preventing severe vision loss

and blindness [2]. In addition to the obvious medical benefits, significant positive economical

1



Introduction

(a) Hard exudates (b) Soft exudate

(c) Hemorrhages (d) Microaneurysm

(e) Neovascularizations

Fig. 1.1: Abnormal findings in the eye fundus images caused by diabetic retinopathy

effects are achieved by maintaining patient’s workability and self-sustainability.

In order to achieve early diagnosis of diabetic retinopathy a major effort will have to be

invested into screening programs. Screening is important as up to one third of people with

diabetes may have progressive DR changes without symptoms of reduced vision [3], thus al-

lowing the disease to progress and making treatment difficult. Systematic screening programs

for diabetic eye disease have been developed in many countries [4, 5, 6]. In the UK, the NHS

Diabetic Screening Program offers annual fundus photography for all patients with diabetes

2
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over the age of 12, regardless of their socio-economic status [6].

In current screening programs only color fundus photography is used, and the data is sent to

a grading center for reading where expert human readers estimate the disease severity. The main

disadvantage is the necessity for qualified experts to grade the images, e.g. in the NHS Diabetes

Screening Program one patient’s images can be graded by up to four different experts. This

standard is impossible to achieve in countries with a shortage of qualified medical personnel

and due to high costs of such a labor intensive medical procedure.

Fundus imaging has an important role in diabetic retinopathy detection and monitoring be-

cause eye fundus is sensitive to vascular diseases and we can consider fundus imaging as a

candidate for non-invasive screening. The success of this type of screening approach depends

on accurate fundus image capturing, and especially, on accurate and robust image processing

and analysis algorithms for abnormalities detection.

The aim of this doctoral research was the development of methods for automated early de-

tection of diabetic retinopathy from color fundus photographs. The developed methods could

be used in regular screening programs of patients with diabetes, which would reduce the health

issues caused by diabetic retinopathy. In order to develop a system for automated early detec-

tion of diabetic reitnopathy methods for detection of normal and pathological structures were

researched and developed. The approach applied in this research is based on advanced image

processing and analysis methods, which includes application of machine learning techniques.

The main contributions of this thesis are as follows:

∙ Method for blood vessel segmentation from fundus photographs using model-based multi-

scale vessel tracking

∙ Method for segmentation of normal and pathological retinal structures using voting-based

classifier and stochastic learning

∙ Method for automatic early detection of diabetic retinopathy using rule-based expert sys-

tem and specific ophthalmologic knowledge about normal and pathological retinal ana-

tomy

∙ Image database for testing of segmentation methods of normal and pathological retinal

structures, which contains segmentations of normal and pathological structures from mul-

tiple experts

The dissertation starts with a short overview of existing methods for automatic early detec-

tion of diabetic retinopathy. In Chapter 3 the image database for testing of segmentation met-

hods of normal and pathological structures is explained in more detail. In Chapter 5 details of a

method for blood vessel segmentation using model-based multi-scale vessel tracking in fundus

photographs is explained in more detail. In Chapter 4 a newly developed method for segmen-

tation of the optical disc using a voting based classifier and stochastic learning is explained. A

method for segmentation of exudates, which represent one of the key pathological structures in
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images from patients with diabetic retinopathy, based on a voting based classifier with stochas-

tic learning, is explained in Chapter 6. In order to improve the overall performance of a system

for early detection of diabetic retinopathy results of normal and pathological structure detection

outputs can be combined using a rule based expert system and specific knowledge about the

normal and pathological anatomy. Details of a methods which incorporates specific ophthalmic

knowledge is presented in Chapter 7. In Chapter 8 a short conclusion is given with an overview

of potential performance improvements to currently developed methods and systems for early

detection of diabetic retinopathy.
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Chapter 2

Overview of existing methods

In literature, different methods and approaches for automatic early detection of diabetic retino-

pathy can be found. Because diabetic retinopathy can be characterized by different pathological

changes visible in fundus photographs different image processing and analysis methods can be

used to detect such structures. In this chapter we give a short overview of exisiting methods for

detection of normal and pathological structures.

2.1 Detection of blood vessels

Blood vessels appear as dark curvilinear structures and present a useful reference for patholo-

gical structures, which are present in images belonging to patients with diabetic retinopathy. In

the literature different methods for blood vessel detection exist. A nice overview of different

approaches can be found in [7]. We can find methods based on pattern recognition techniques,

matched filtering, vessel tracking, mathematical morphology, mutiscale filtering based approac-

hes and model based approaches. Pattern recognition techniques can be divided into supervised

and unsupervised approaches.

For example, in [8] authors represented each pixel by a feature vector composed of the

pixel’s intensity and two-dimensional Gabor wavelet transform responses taken at multiple sca-

les. A Bayesian classifier in which each class-conditional probability density function is des-

cribed as a linear combination of Gaussian functions is used to classify each pixel as either a

vessel or non-vessel pixel.

In [9] authors presented an unsupervised fuzzy based vessel segmentation approach. Inten-

sity information from red and green channels is first used to correct non-uniform illumination

and matched filtering is used to enhance the blood vessel contrast with regards to the backgro-

und. In order to classify the pixels, a spatially weighted fuzzy C-means clustering followed by

connected component labeling is used.

In [10] a method which uses match filtering and Ant colony optimization algorithm for blood
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vessel segmentation is presented. The image is first preprocessed and then a match filtering

approach is used to enhance the blood vessels. Ant colony optimization is applied in parallel to

matched filtering. The results are combined followed by length filtering in order to extract the

complete vasculature network.

In [11] authors presented a method, which combines morphological mutiscale enhancement

with fuzzy filtering and watershed transformation. The background is first estimated using non

linear multiscale morphology opening operators with a varying size of structuring element. The

background estimated images is subtracted from the original image for contrast normalization.

The normalized image is then processed by a combined fuzzy morphological operation with

twelve linear structuring elements rotated every 15 degrees between zero and 180 degrees with

nine pixels length. In order to obtain vessel regions the filtered image is thresholded followed

by a thinning operation to approximate the vessel centerlines. Finally, the vessel boundaries are

detected using watershed techniques with the obtained vessel centerlines.

A method using regularization based multiconcavity modeling is presented in [12]. The

method is able to handle both normal and pathological retinas with bright and dark lesions si-

multaneously. Three different concavity measures are proposed to detect blood vessels. Each of

these concavity measures is designed to address the negative impact of lesions for identifying

the normal vessels. The steep intensity transition pattern of bright lesions is distinguished from

vessels with differential concavity measures. A line shape concavity measure is used to dis-

tinguish the irregular shape intensity structure of dark lesions from the line shape intensity

structure of the blood vessel. A locally normalized concavity measure is used to filter out the

noise. Finally, the features obtained from these concavity measures are combined according to

their statistical and geometrical properties and later a lifting technique is used for optimizing

the regularized solution towards the ideal vessel shape.

In [13] a method based on nonlinear projections is presented. The nonlinear projection is

used to capture the texture structures in image. First, the green channel of the original image

is projected onto a closed convex set. The set consists of oscillating functions with zero mean.

The oscillating components of scanning retinal images are adopted to capture the features of

blood vessel networks. In order to obtain a segmented vessel tree an adaptive thresholding

method based on the variational image binarization algorithm is applied. In order to reduce

noise, morphological post processing is applied to the obtained binary image

In [14] a three-stage blood vessel segmentation algorithm for color fundus photographs is

presented. In the first stage, the green channel of the fundus image is preprocessed and a bi-

nary image representing blood vessel using high pass filtering is extracted. A second binary

image is created from the morphologically reconstructed enhanced image. In order to improve

performance, regions common to both binary images are combined to extract major vessels.

In the second stage, all remaining pixels in the two binary images are classified using a Ga-
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ussian mixture model classifier using a set of eight features that are extracted based on pixel

neighborhood and first and second-order gradient images. In the third, postprocessing stage,

blood vessels obtained in the first stage are combined with the classified vessel pixels in order

to obtain the final vessel map.

In [15] authors have devised a computational imaging framework using deep and ensemble

learning for detection of blood vessels in color fundus photographs images. An ensemble of

deep convolutional neural networks is trained to segment vessel and non-vessel areas of a color

fundus photographs. Each convolutional neural network has three convolutional layers and

two fully connected layers and is trained independently on randomly selected patches from the

training images. At the time of inference, the vesselness-probabilities independently output by

each convolutonal neural network are averaged to form the final vesselness probability of each

pixel.

2.2 Detection of microaneurysms and hemorrhages

Detection of microaneurysms in fundus photographs is very important because this structures

represent one of the earliest signs of diabetic retinopathy. In literature, different methods exist.

For example, in [16] authors present a methods, which starts with blood vessel detection. After

that, rotational cross-sectional profile analysis on the regional maximum pixels is performed.

The statistical parameters like mean, standard deviation, coefficient of variation of feature set

are calculated. The microaneurysm candidates are estimated using a Naive Bayes classifier.

In [17] authors use different preprocessing methods such as gamma correction, green chan-

nel extraction, location based contrast enhancement to improve the visibility of microaneurysms

in color fundus photographs. Different features using Gray Level Co-occurrence Matrix, wa-

velet and first order statistics are extracted. After that, a k nearest neighbor classifier is used

to remove spurious candidates. The remaining candidates are thresholded to obtain the final

binary output representing microaneurysms.

In [18] authors used a multiscale Bayesian correlation filtering approach. In this approach

responses from a Gaussian filterbank are used to construct probabilistic models of an object

and its surroundings. A correlation measure is obtained by matching the filter outputs in a new

image with a trained model. When the responses of the correlation filtering are larger than a

threshold, the detected locations are regarded as candidate microaneurysms. An adaptive thre-

sholding scheme is applied to segment the vasculature and all candidates on the vasculature are

removed. Region growing is used to segment the candidate microaneurysms. After segmen-

tation, a large set of features based on shape, grayscale and color pixel intensity, responses of

Gaussian filter-banks and correlation coefficient values are extracted from each candidate. The

minimum and maximum values of each feature for all true lesions are placed in a discrimination
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table. This is used to remove any candidates whose features are below the minimum or greater

than the maximum defined in the discrimination table. The remaining candidates after this stage

are classified as true red lesions.

In [19] candidate detection is performed on the green plane of the color image. The image is

first resized so that the field of view has a fixed width and the image is normalized by subtracting

an estimate of the image background. The estimate is determined by median filtering using a

large kernel. The candidate detection step is performed on the median filtering normalized

image using an unsupervised mixture model based clustering method. It is assumed that all

pixels in the image are part of one of three classes: background elements, foreground elements,

such as vessels, optic disk and lesions and a third class representing outliers. A three class

Gaussian mixture model is fitted to image intensities and a group of microaneurysm candidates

are segmented by thresholding the fitted model. Vessel segmentation is performed to remove

those detected candidates that lie on the vasculature. Using logistic regression, a likelihood for

each of the remaining microaneurysm candidates is generated based on their color, shape and

texture characteristics.

In [20] a method consisting of a preprocessing, candidate extraction, feature extraction and

classification is proposed. Because retinal fundus images often have nonuniform illumination,

poor contrast and noise images and because microaneurysms are hardly visible in regions of low

brightness and poor contrast multiple preprocessing steps are performed on the inverted green

channel of the input image. Authors start with illumination equalization according to (2.1).

Iie = I − Ibg = u (2.1)

Here, Ibg represents a background image generated by mean filtering of the original image, and

u represents the average intensity of the original image I to keep the same gray level range as

the original image. After illumination equalization, contrast limited adaptive histogram equali-

zation is performed in order to increase local contrast. Finally, image smoothing is performed to

reduce the noise level present in each fundus image. After preprocessing, a candidate extraction

step is performed. As microaneurysms appear as bright structures in the preprocessed image,

the microaneurysm region contains at least one regional maximum. Thus, the local maximum

pixels can be considered as microaneurysm candidates. However, a large amount of noise will

be extracted in this way. In order to overcome this limitation, peak detection is applied on each

profile and a set of line detectors of different orientations are applied to each local maximum

pixel to examine the surrounding, whose central pixel is the local maximum pixel. After can-

didate extraction different shape and intensity features such as area, symmetry, aspect ratio,

mean contrast of edge pixels, standard deviation of edge pixels contrast, mean intensity of the

microaneurysm candidate region, difference between the maximal intensity of candidate region
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and local contrast and others are extracted for each microaneurysm region. After feature ex-

traction, each microaneurysm candidate is represented by a 27 dimensional feature vector. K

nearest neighbor, Adaboost and Naive Bayes classifiers are investigated and used for candidate

classification.

In [21] a method for automatic detection of both microaneurysms and hemorrhages in color

fundus images is described. The proposed method takes as input a color fundus image toget-

her with the binary mask of its region of interest and outputs a probability color map for red

lesion detection . The region of interest is the circular area surrounded by a black background.

dThe method is comprised of six steps. First, spatial calibration is applied to support different

image resolutions. Second, the input image is preprocessed using smoothing and normaliza-

tion. Third, the optic disc is automatically detected, to discard this area from lesion detection.

Fourth, candidate regions corresponding to potential lesions, are identified in the preprocessed

image, based on their intensity and contrast. Fifth, the dynamic shape features together with

color features are extracted for each candidate. Sixth, candidates are classified according to

their probability of being actual red lesions. Among the candidates, several regions corres-

pond to non-lesions, such as vessel segments and remaining noise in the retinal background.

To discriminate between these false positives and true lesions, an original set of dynamic shape

features is presented, mainly based on shape information. In a topographic representation of the

preprocessed image, each candidate corresponds by analogy to a water source. Morphological

flooding is applied to the preprocessed image starting from the lowest water source and ending

when the retinal background is reached. It is hypothesized that when the flooding reaches the

retinal background intensity, the catchment basins degenerate and no longer contextually re-

present a red lesion. At each flooding level relative area, elongation, eccentricity, circularity,

rectangularity and solidity are extracted. A random forest classifier is used to classify each red

lesion candidate.

2.3 Detection of exudates

The exudates are lipid formations leaking from weakened blood vessels and appear as bright,

yellowish structures and represent one the most important pathological structures present in

patients with diabetic retinopathy. In the literature, different methods for exudate detection can

be found.

For example, in [24] authors present a method for exudate detection based on improved

Otsu thresholding and support vector machines. The method starts by taking the green chan-

nel of a color fundus image. Then, the image is segmented by a improved Otsu thresholding

procedure. This thresholding method combines inner-cluster variance and between-cluster va-

riance of adaptive thresholding segmentation. The optimal threshold is found by maximizing

9



Overview of existing methods

the between-cluster variance and minimizing the inner-cluster variance. After thresholding,

exudate candidate regions are obtained. After that, different features for each exudate region

are extracted. In order to select the most discriminative features for exudate detection logistic

regression is used. Finally, selected features are used as inputs to the support vector machines

classifier.

In [25] authors present a method for detection of exudate areas, which consists of four steps.

Because the method was developed using multiple datasets the first step was to standardize the

image resolution across different datasets. The field of view was automatically extracted and

resized to 650 pixels in diameter. Next, three lesion detection and classification algorithms are

applied to the images for the detection and classification of:

∙ bright appearing lesions [26], i.e. hard exudates, cotton wools spots and drusen

∙ drusen [27]

∙ red lesions [28] i.e. microaneurysms and hemorrhages

In the third step, results of these systems, consisting of the detected lesions and their associated

posterior probability of being a true lesion, are combined. After removing lesions with a low

posterior probability, the detected lesions are used as inputs to the spatial pyramid framework

by creating histograms encoding the lesion probability for each of the different type of detected

lesions. Red lesion information is also included as the presence of red lesions is considered to

be an indicator of diabetic retinopathy, and therefore bright appearing lesions are more likely to

be exudates. Finally, a multi-class classification is obtained by using a random forest classifier

in a one-versus-all classification scheme using the spatial pyramid features.

In [29] a method for detection of exudates without a manually labeled training set is presen-

ted. The method starts with background estimation using a large median filter. This estimated

image is enhanced by morphological reconstruction. After that, the estimated background is

subtracted from the original image in order to enhance the image. In this new image, dark struc-

tures such as the macula region, dark lesions such as microaneurysms or hemorrhages and the

vasculature are clearly distinguishable from the bright structures such as the optic nerve, bright

lesions (exudates and cotton wool spots) and nerve fiber reflectance residuals. The authors ap-

ply a fixed threshold in order to get exudate candidates. The exudate detection is performed by

assigning a score for each exudate candidate. The exudate candidates are selected by running

a 8-neighbor connected component analysis on the exudate candidate image. The scoring is

performed by Kirsch’s edge detector [30] and stationary wavelet analysis.

Some additional approaches are presented in Chapter 6.

10



Overview of existing methods

2.4 Detection of neovascularizations

We explained different methods for detection of normal and pathological structures but worst

cases of diabetic retinopathy are caused by neovascularizations. In this pathology, new blood

vessels grow due to extensive lack of oxygen in the retinal capillaries. There is not much

research on this topic in the literature.

In [22] authors present a method for detection of neovascularizations, which starts with color

normalization and contrast enhancement. This is done in order to be able to detect the smallest

blood vessels. The method then proceeds with blood vessel extraction step. In this step, a mat-

ching based filtering technique was applied. By using a matched filtering kernel, only regions,

which property match to the kernel were enhanced. Multiple morphological operations were

applied in order to remove blood vessels. After blood vessel branches were obtained, a threshol-

ding process was carried out. After blood vessel detection, a neovascularization classification

step was performed. Neovascularization classification method was constructed based on two

assumptions. It is assumed that when a square window is passed through the neovascularization

region, it will contain a greater number of blood vessels compared to non-neovascularization

regions. Another assumption is that when a square window is passed through a neovasculari-

zation region, it will contain greater area of blood vessels compared to non-neovascularization

regions. The method achieves 63.9% sensitivity and 89.4% specificity.

In [23] authors present a method for abnormal blood vessel detection and grading of prolife-

rative diabetic retinopathy using multivariate m-mediods based classifier. The method performs

preprocessing, blood vessel segmentation and optic disc localization. After that, a detailed fe-

ature set to differentiate between normal and abnormal vascular segments is extracted using

different features. A new multivariate m-mediods based modeling and classification approach

is then used for accurate classification of vascular segments. Finally, the system grades the fun-

dus image as normal, neovascularizations present on optic disc or neovascularizations present

elsewhere using optical disc coordinates as the output of classification process.
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Chapter 3

Framework for validation of retinal
segmentation methods

In order to perform method development and evaluation an image database is required. The

database should have sufficient data points to be able to perform statistical analysis of results.

The database should have all normal and pathological structures segmented by multiple experts

in order to remove the potential bias arising from the labeling procedure.

3.1 Overview of existing databases

Before presenting our image database, which was used for testing and development of segmen-

tation methods an overview of publicly available databases is given.

3.1.1 DRIVE database

The DRIVE (Digital Retinal Images for Vessel Extraction) is a publicly available database,

consisting of a total of 40 color fundus photographs [31]. The photographs were obtained from a

diabetic retinopathy screening program in the Netherlands. The screening population consisted

of 400 subjects between 25 and 90 years of age. Each image has been JPEG compressed,

which is common practice in screening programs. Of the 40 images in the database, 7 contain

pathology, namely exudates, hemorrhages and pigment epithelium changes. The images were

acquired using a Canon CR5 non-mydriatic 3-CCD camera with a 45∘ field of view (FOV). Each

image was captured using 8 bits per color plane at 768×584 pixels. The FOV of each image was

circular with a diameter of approximately 540 pixels. The set of 40 images was divided into a

test and training set both containing 20 images. Three observers, the first and second author and

a computer science student manually segmented a number of images. All observers were trained

by an experienced ophthalmologist (the last author). The first observer segmented 14 images
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of the training set while the second observer segmented the other 6 images. The test set was

segmented twice resulting in a set X and Y. Set X was segmented by both the first and second

observer (13 and 7 images, respectively) while set Y was completely segmented by the third

observer. The performance of the vessel segmentation algorithms was measured on the test set.

In set X the observers marked 577,649 pixels as vessel and 3,960,494 as background (12.7%

vessel). In set Y 556,532 pixels were marked as vessel and 3,981,611 as background (12.3%

vessel). This database does not contain annotated pathologies and other fundus structures like

optic disc and macula.

3.1.2 STARE database

The STARE database contains 20 images for blood vessel segmentation; ten of these contain

pathology [32]. The slides were captured by a Topcon TRV-50 fundus camera at 35∘ field of

view. Each slide was digitized to produce a 605×700 pixel image, 24 bits per pixel (standard

RGB). Two observers manually segmented all the images. On average, the first person labeled

32,200 pixels in each image as vessel, while the second person labeled 46,100 pixels in each

image as vessel. A subsequent review indicated that the first person took a more conservative

view of the boundaries of vessels and in the identification of small vessels than the second

person. Performance was computed with the segmentation of the first observer as the ground

truth.

3.1.3 ARIA online

This database was created in 2006, in a research collaboration between St. Paul’s Eye Unit,

Royal Liverpool University Hospital Trust, Liverpool, UK and the Department of Ophthalmo-

logy, Clinical Sciences, University of Liverpool, Liverpool, UK [33]. The database consists of

three groups; the first group has 92 images with age-related macular degeneration, the second

group has 59 images with diabetes and the control group consists of 61 images. The trace of

blood vessels, the optic disc and fovea location was marked by two image analysis experts as

the reference standard. The images were captured at a resolution of 768×576 pixels in RGB

color with 8-bits per color plane with a Zeiss FF450+ fundus camera at a 50∘ FOV and stored

as uncompressed TIFF files.

3.1.4 ImageRet

The ImageRet database was made publicly available in 2008 and is subdivided into two sub-

databases, DIARETDB0 and DIARETDB1 [34]. DIARETDB0 contains 130 retinal images

of which 20 are normal and 110 contain various signs of diabetic retinopathy. DIARETDB1
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contains 89 images out of which 5 images represent healthy retinas while the other 84 have some

diabetic retinopathy signs. The images were acquired with a 50∘ FOV using a fundus camera

at a size of 1500×1152 pixels in PNG format. The images were annotated by four experts for

the presence of microaneurysms, hemorrhages, and hard and soft exudates. Annotated images

from four experts were combined to produce a single ground truth image. There are no manually

segmented vessel images in this database.

3.1.5 Messidor

The Messidor-project database, with 1200 retinal images, is the largest database currently ava-

ilable on the internet and is provided by the Messidor program partners [35]. The images were

acquired by 3 ophthalmologic departments using a color video 3CCD camera on a Topcon TRC

NW6 non-mydriatic camera with a 45∘ FOV. The images were captured using 8 bits per color

plane at 1440×960, 2240×1488, or 2304×1536 pixels. 800 images were acquired with pupil

dilation (one drop of Tropicamide at 0.5%) and 400 without dilation. The reference standard

provided contains the grading for diabetic retinopathy and the risk of macular edema in each

image. This database does not contain any other annotations and is used to facilitate studies on

computer-assisted diagnoses of diabetic retinopathy.

3.1.6 Review

The Retinal Vessel Image set for Estimation of Widths(REVIEW) was made available online

in 2008 by the Department of Computing and Informatics at the University of Lincoln, Lin-

coln, UK [36]. The dataset contains 16 mydriatic images with 193 annotated vessel segments

consisting of 5066 profile points manually marked by three independent experts. The images

were chosen to assess the accuracy and precision of the vessel width measurement algorithms

in the presence of pathology and central light reflex. The 16 images are subdivided into four

sets, the high resolution image set (HRIS, 8 images), the vascular disease image set (VDIS, 4

images), the central light reflex image set (CLRIS, 2 images) and the kickpoint image set (KPIS,

2 images).

3.1.7 ROC microaneurysm set

The Retinopathy Online Challenge microaneurysm dataset is part of a multi-year online com-

petition of microaneurysm detection that was arranged by the University of Iowa in 2009 [37].

The set of data used for the competition consisted of 50 training images with available refe-

rence standard and 50 test images where the reference standard was withheld by the organizers.

The images were captured using a Topcon NW100, a Topcon NW200 or a Canon CR5-45NM
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non-mydriatic camera at 45∘ FOV and were JPEG compressed in the camera. There are three

different image sizes present in the database; 768×576, 1058×1061 and 1389×1383 pixels.

3.1.8 VICAVR

The VICAVR database is a set of retinal images used for the computation of the A/V ratio [38].

The database currently includes 58 images. The images were acquired with a Topcon NW-100

non-mydriatic camera and are optic disc centered with a resolution of 768×584. The database

includes the caliber of the vessels measured at different radii from the optic disc as well as the

vessel type (artery/vein) labeled by three experts.

3.2 Dibetic retinopathy image database (DRiDB)

The analysis of the publicly available databases represented a motivation for creation of a com-

prehensive database with the following properties:

∙ all fundus structures and pathologies are annotated

∙ at least five experts have annotated each patient image

∙ at least fifty patients included for statistically valid evaluation of image analysis method

∙ categorization of disease grade for each patient image

The images for the new database were taken and selected by medical experts from a univer-

sity hospital in Zagreb. The distribution of patients does not correspond to any typical popula-

tion. The diabetic retinopathy signs present vary from almost non existent to cases where new

fragile vessels are visible and represent an eye sight threatening state.The images were captu-

red at a resolution of 720×576 pixels in RGB color with 8-bits per color plane with a Zeiss

VISUCAM 200 fundus camera at a 45∘ FOV and stored as uncompressed BMP files. Images

were captured with varying flash intensities. The images contain a varying amount of image

noise but we can say that images correspond to a good practical situation where the images are

comparable and can be used to evaluate the general performance of diagnostic methods.

An example of an image from the database is visible inFig. 3.1.

A set of ground truth images accompanies every color fundus image from the database. For

each image from the database five experts independently marked diabetic retinopathy findings.

A person with a medical education and specialization in ophthalmology is considered as an

expert. A special software was given to the experts to inspect the fundus images and annotate

the findings.

The experts were first asked to mark the areas related to microaneurysms, hemorrhages, hard

and soft exudates. These structures are not present in each image and are important because they

can be used not just to measure the performance of image processing and analysis algorithms
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Fig. 3.1: Image from the new created database

developed for detection of diabetic retinopathy symptoms but they can be used for construction

of machine learning based image processing and analysis algorithms. An example of hard

exudates segmented by one of the experts and superimposed on the original image is shown in

Fig. 3.2.

The experts were asked to mark the blood vessels, optic disc and the macula alongside above

mentioned diabetic retinopathy signs. Segmenting those structures is important because this in-

formation can be used to improve the accuracy and robustness of image processing and analysis

algorithms for detection of diabetic retinopathy pathologies. For example, we can consider an

algorithm for hemorrhages detection in color fundus images. Typically, hemorrhages are darker

than surrounding background but blood vessels are similar and they are darker than surrounding

background too. A typical hemorrhage detection algorithm starts with blood vessel suppression

because we want to eliminate similar structures but in order to do this we need to have a vessel

detection and extraction algorithm. This is a different problem in comparison to our starting

problem and we want to build an algorithm which can detect vessels with high accuracy. There

are many different algorithms available for this type of problem but we need a good database

which contains manually segmented blood vessels like the DRIVE or STARE database to test

the accuracy of proposed vessel detection method. Those databases are good for vessel de-

tection algorithms but they do not contain annotations of diabetic retinopathy pathologies like

hemorrhages so the testing results obtained on those databases are sometimes not representative

because for example the DRIVE database mainly consists of healthy patients with no signs of
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Fig. 3.2: Original image with exudates superimposed

hemorrhages and performance of vessel detection algorithms in presence of hemorrhages can

be lower if we compare it to performance when no hemorrhages are present. This is the main re-

ason why our database contains manually segmented blood vessels because we wanted to build

a new database where comparison of different algorithms used in process of diabetic retino-

pathy pathologies detection can be reliably measured and compared. Segmented blood vessels

can be used to compare the hemorrhage detection algorithms by masking out blood vessels if

we want to compare different methods regardless of vessels present in the image. An example

of a segmented vessel image is visible in Fig. 3.3.

In the third step the experts performed annotation of neovascularizations. A neovasculariza-

tion represents a serious eye sight threatening state and may cause sudden loss in visual acuity

or even a permanent blindness if not treated accordingly. In fundus images, neovascularizations

appear as erratic blood vessels without any obvious direction.

Finally, each expert had to provide grading for diabetic retinopathy for each image from the

database like in the Messidor database. The experts were instructed to report their confidence for

each visual marking. The ground truth confidence levels available are low confidence, medium

confidence and high confidence and they represent the certainty of the decision that a marked

finding is correct. The experts were taught how to use the image annotation tool but they were
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Fig. 3.3: Segmented vessel image from one of the patients

not instructed how to mark their findings to reduce biases introduced by the labeling procedure.

The created database has 50 color fundus images of which 36 contain signs of the diabetic

retinopathy and 14 which do not contain any signs of the diabetic retinopathy according to all

experts who participated in the evaluation.

Because blood vessels differ from other structures the image annotation tool can be actually

divided into two tools. The first tool is used to mark microaneurysms, hemorrhages, hard exu-

dates, soft exudates, macula and optic disk. The image annotation tool supports the following

graphical directives:

∙ Centroid

∙ Polygon region

∙ Ellipse region

The centroid item is typically used to mark microaneurysms because they can be represented

with a single point. The ellipse region is typically used to mark the optic disk and macula

because they appear as round structures in fundus images. The polygon region is typically used

for clusters of exudates and hemorrhages but the expert can use any of mentioned tools for any

visual findings as he deems necessary.

Because some of the visual markings are more visible in the red-free images the expert

can change the annotated image from color to red-free fundus image during the annotation

procedure.
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The second tool which was available to the experts was used for blood vessel segmentation

and to mark neovascularizations. It is used for neovascularizations because neovascularizations

are actually blood vessels so it was natural to use the blood vessel segmentation tool for this task.

The tool is actually a modified version of the Live-Vessel software [39]. Using this software

the user opens up an image, clicks the starting seed point of a vessel, and points the mouse

to the end of the vessel. Also, the user can change the offered starting thickness of the blood

vessel. The software automatically calculates the best vessel path from the seed point to the

mouse position. As the user moves the mouse, the vessel is updated allowing user to control

the accuracy of the segmentation with minimal effort. Usage of this annotation tool reduced the

labeling time drastically because the alternative would be to mark each vessel pixel individually,

which would be an extremely time consuming and tedious process.
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Chapter 4

Optic disc detection using a voting based
classifier and stochastic learning

The optic disc is usually visible as a bright, round structure with many blood vessels converging

to this point. In Fig. 4.1 we can see a typical optic disc region marked in green. The optic disc

often serves as a landmark point for other fundus features. In [40], the authors used the optic

disc location as a priori knowledge to help estimate the location of the macula because of the

relatively constant distance between the optic disc and the macula region. The optic disc can

also be used as an initial point for retinal vasculature tracking methods [41]. Large vessels

found in the optic disc vicinity can serve as seeds for vessel tracking methods [42]. Identifying

and removing the optic disc can improve the classification of exudate regions due its similarity

to yellowish exudates. The optic disc dimensions can be used to measure abnormal features

of certain retinopathies, such as diabetic retinopathy and glaucoma, because the change in the

shape, color or depth of the optic disc is an indicator of various pathologies such as the diabetic

retinopathy and glaucoma [43].

In the literature, several optic disc algorithms can be found [44, 45, 46, 47, 48, 49, 50].

Most of them try to find the optic disc based on color, shape, brightness or some other similar

features. These algorithms work very well when they are applied to healthy patients with no

changes in fundus photographs. But if applied to images of low quality or images with a lot of

visible artifacts their accuracy decreases.

In order to increase the accuracy of optic disc detection we combine several optic disc

detection algorithms into an ensemble. First, we apply each optic disc detection algorithm to

the input image and obtain optic disc probability maps for each algorithm applied. Then, we

combine these probability maps into a single probability map and find the point, which has the

highest probability of being a point inside the optic disc. This simple procedure increases the

accuracy of optic disc detection compared to individual optic disc detection algorithms. The

flowchart of the proposed method is visible in Fig. 4.2.
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Fig. 4.1: A fundus image with optic disc marked

Fig. 4.2: Flowchart of the proposed optic disc detection method

4.1 Individual optic disc detection algorithms

In this section we give a short description of optic disc detection methods, which we used

in order to create the ensemble. We implemented seven different methods described in the

literature.
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4.1.1 Hough transformation of vessels approach

In [46] the authors propose a method which uses Hough transformation on the thinned vessels.

The method starts with blood vessel detection. The performance of the blood vessel detection

method is not crucial for the performance of this method because only thick vessels near the

optic disc have to be segmented in order for the method to work properly. After thresholding,

morphological thinning is performed. The thinning operation is performed in order to approxi-

mate each vessel with a line segment. After thinning, Hough transform [51] is applied to the

binary image. After performing the Hough transform, lines, which have a slope smaller than

45∘ are removed. For each line pair, intersection points are found and a vote is cast at the inter-

section point resulting in a voting map. If the intersection point is located outside of the image

no votes are cast. Values in the voting field represent the number of line pairs intersecting at

that point. In order to spread the influence of the voting to the surrounding area, a circular mean

filter of size 5× 5 is applied to the voting field. Because the optic disc is one of the brightest

areas of the fundus image, the voting field values are weighted by the intensity values located at

the intersection points in the original image. The weights were empirically found and were set

to 0.7 for voting field and 0.3 for the brightness level of each pixel. In this approach the highest

value would represent the center of the optic disc, but we do not want the optic disc position but

a probability map of pixel being an optic disc center so we normalize the voting values to 0-1

range.

4.1.2 Pyramidal decomposition approach

Pyramidal decomposition can be used to detect large areas of bright pixels that probably repre-

sent the optic disc. Because the pyramidal decomposition can be easily fooled by large areas of

bright pixels that may occur near the image borders due to uneven illumination in [49] authors

first perform illumination equalization of the green channel in order to decrease the effects of

uneven illumination present in such images. After illumination equlization, resolution pyramid

is created using a simple Haar-based discrete wavelet transform citechen1997haar. At the fifth

level of the resolution pyramid, the small bright pixels belonging to exudates disappear but the

optic disc is still visible. In the proposed method the brightest pixel at the fifth level would be

selected as the optic disc area in the original image but because we want the probability map

we just upscale the downscaled image to the original size and normalize it to the 0-1 range.

4.1.3 Vessel direction matched filtering (VDM) approach

In [47] the authors propose a simple vessels direction matched filtering approach. The algorithm

starts by performing illumination equalization of the green channel and finds the blood vessels

using a simple edge fitting algorithm proposed by [52]. The binary vessel image is thinned,
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and all remaining vessel-labeled pixels that are not within 41× 41 square centered on each of

the highest 4% intensity pixels in the illumination equalized image are relabeled as non-vessel

pixels. In the final step a direct matched filter is applied to roughly match the direction of the

vessels at the optic disc vicinity. The output of the matched filter, which represents the optic

disc location is normalized to 0-1 range in order to obtain the probability map.

4.1.4 Fuzzy convergence approach

In [45] the authors propose an optic disc detection method based on a fuzzy voting mechanism.

The method tries do find the blood vessel origination point and in this way finds the optic disc

as the point of blood vessel origination. The inputs to the algorithm are six segmented binary

vessel images obtained from the green channel of the input image each taken at a different

scale. The binary vessel images are obtained by thresholding the images obtained using Frangi

vesselness [53] filter. After thresholding, the binary images are thinned to one pixel width.

Branch points are relabeled as background, thus breaking up the vessels into segments, which

contain two end points each. Each thinned vessel is defined with two endpoints (x1,y1) and

(x2,y2) and is modeled by a fuzzy segment model, which is defined by a set of parametric line

segments:

x(t) = x1 + r cos(α +θ)+(x2 − x1 −2r cos(θ)cos(α))t (4.1)

y(t) = y1 + r sin(α +θ)+(y2 − y1 −2r cos(θ)sin(α))t (4.2)

where:

0 ≤ t ≤ 1

0 ≤ θ ≤ 2π

0 ≤ r ≤ R

In this case, R defines the amount of fuzziness of each line segment. If this parameter is set

to zero, each fuzzy segment is actually reduced to a normal line from (x1,y1) to (x2,y2). The

parameter α corresponds to the orientation of the original line segmented and is calculated as:

α =
π

2
− arctan

y2 − y1

x2 − x1
(4.3)

Using this fuzzy model it is possible to generate a voting map where each pixel equals the

amount of fuzzy segments on which the pixel lies. Finally, the voting map image is smoothed

using a circular 5× 5 mean filter and normalized to 0-1 range in order to obtain a probability

map.
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4.1.5 Brightness approach

In [54] the authors propose an optic disc localization method, which uses a thresholding pro-

cedure in order to obtain pixels with high intensity values and selects the center of the largest

object as the optic disc center. The detection of the optic disc is performed on the intensity

component of the Hue-Saturation-Intensity image. The algorithm assumes that the optic disc is

the largest and brightest part of the fundus images, which usually holds true. A fixed threshold

is applied to obtain a binary image containing parts of the optic disc and perhaps other bright

pathologies such as exudates. The threshold is found by first calculating the histogram of the

intensity image and selecting the value for which the binary image contains the brightest two

percent of pixels. The largest connected object within the thresholded image is expected to be a

part of the optic disc. So we assign value one to pixels belonging to the largest connected object

and value zero to all other regions in our probability map.

4.1.6 LoG filtering approach

Because we assume that the optic disc is an object, approximately circular and consisting of

bright pixels, general methods for detection of blobs in grayscale images can be used [55]. In

this approach, we decided to use the Laplacian of Gaussian (LoG) filtering approach [56]. We

start with the green channel of the original image, and apply the Laplacian of Gaussian filter

to the original image. The green channel is used because the most contrast is usually present

in that channel. The convolution mask used is circular and the radius of the mask is similar to

the radius of the optic disc because we want the kernel shape to be similar to the optic disc.

After applying the convolution we just normalize the image to 0-1 range to obtain the optic disc

probability map.

4.1.7 Entropy approach

In [50] the authors use entropy filtering for optic disc detection. Because the optic disc is

the origination point of the main vessels we can expect high entropy in those areas because

high entropy corresponds to areas with high local variability. The method starts by taking

the original RGB image and transforming it into Hue-Saturation-Intensitiy color space where

median filtering in a 5 × 5 window is applied to remove noise. To increase local contrast,

Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to the intensity channel

after noise removal [57]. After preprocessing, entropy is calculated in a small sliding window

using (4.4).

H(Ix) =−
255

∑
i=0

PIx(i) · logPIx(i) (4.4)
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Here, PIx is the probability mass function of pixel intensities Ix in a local neighborhood of x.

In the paper, authors apply the Otsu’s [58] binarization algorithm to separate complex regions

represented with high entropy from smooth regions represented with low entropy but because

we want to preserve as much information as possible we just normalize the entropy values to

0-1 range.

4.2 Combining different probability maps

In the proposed approach an improved optic detection algorithm is created by using an ensem-

ble of seven methods described in the previous section. Each method in the ensemble generates

a probability map, which defines the probability of a pixel being part of the optic disc. Infor-

mation from different probability maps can be combined in different ways because we generate

seven probability maps for each input image. We decided to implement a straightforward met-

hod, which constructs a new probability map by weighting different probability maps obtained

by our optic disc detection methods and adding them together. The optic disc can be easily

found in this new probability map by finding the maximum value in the probability map. An

example of the input image and corresponding optic disc probability map is visible in Fig. 4.3

and Fig. 4.4.

Fig. 4.3: An example image used for optic disc detection

The weights used for creation of the final optic disc probability map can be chosen in vari-

ous ways. If we set each weight to 1
N , where N is the number of optic disc detection algorithms,
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Fig. 4.4: Final optic disc probability map

this would translate into equal weighting of each method. From our experiments, we know that

different methods show different accuracies we would like to find the weights, which would

increase the overall accuracy of the proposed system. We decided to use the well known simu-

lated annealing search algorithm to find the optimal weights for each probability map [59]. The

energy function, which is used by the simulated annealing search algorithm, is just the number

of misclassified optic disc locations. In our experiments, for each image the optic disc was

manually segmented so we could easily check if the optic disc location found by each of the

algorithms was correct by looking if the location was inside of the marked optic disc region.

After each step of the simulated annealing algorithm, weights in the current iteration were

used to create the combined probability map. In this probability map, the optic disc location

was found by looking at the maximum value in the probability map. If this location was outside

of the marked optic disc mask the counter of misclassified optic locations was increased. The

goal of the simulated annealing optimization procedure was to minimize the number of miscla-

ssified locations. This approach can be used for arbitrarily large number of different optic disc

detection algorithms and shows improved performance compared to individual optic detection

algorithms.
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4.3 Performance evaluation

We have evaluated our ensemble based algorithm for optic disc detection using several publicly

available database. We split the database into two disjoint sets for training and testing purposes.

We need to split the database because we need training images to find the weights using the

simulated annealing search algorithm. The training database contains 30% of the images from

each of the databases and the test database contains the the other 70% of the images. To increase

the statistical significance of the results multiple rounds of cross-validation are performed using

different image database partitions, where we use different images for training and other images

for testing the proposed method.

We evaluated the accuracy of the methods using a simple criterion. We count the number of

fundus images in which the output of the optic disc detection algorithm falls inside the manually

selected optic disc patch. Table 4.1 shows the performance of different optic disc detection

algorithms compared to the proposed method.

Table 4.1: Performance of optic disc detection algorithms

Method DiaretDB0 DiaretDB1 DRIVE DRiDB

ODHough 93.00% 88.76% 95.00% 80.00%

ODPyramidal 93.08% 89.89% 97.50% 96.00%

ODVDM 84.62% 88.76% 100% 88.00%

ODFuzzy 76.92% 78.65% 95.00% 88.00%

ODBrightness 95.38% 95.51% 97.50% 100.00%

ODLoG 87.69% 87.64% 95.00% 92.00%

ODEntropy 93.85% 94.38% 97.50% 86.00%

Proposed 98.46% 98.88% 100% 100%

The results show that the proposed method outperforms other optic detection algorithms,

which are part of the proposed ensemble. This framework is expandable and other optic disc

detection algorithms can be easily added, which could probably increase the performance of the

proposed method even further.

Because the DRIVE database consists of mainly high quality images the accuracy is high

and doesn’t represent a problem for the proposed method but so was the case for other methods.

The solution can fail in cases where some other structures similar to the optic disc exist in the

fundus image. This can happen if a large structure of exudates appears near the optical disc due

to the fact that exudates appear as bright yellow structures, which affects the localization of the

optic disc.
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Chapter 5

Blood vessel segmentation from fundus
photographs using model-based
multi-scale vessel tracking

Blood vessel segmentation in color fundus photographs is useful for diagnosis, screening and

evaluation of different cardiovascular and ophthalmic diseases such as diabetes, diabetic retino-

pathy, hypertension. Automating the segmentation of blood vessels is very important because

manual segmentation is long and time consuming task, which requires medical knowledge and

skill. In order to develop an automated screening system for early detection of diabetic retino-

pathy an automated blood vessel segmentation is required. In the literature, we can find many

different methods and approaches for automatic detection of blood vessels in color fundus pho-

tographs. A good overview of different blood vessel detection methods is given in [7]. In the

literature we can find a lot of methods based on matched filtering where the original fundus

image is convolved with a 2-D kernel [10, 52, 60]. The kernel is designed to match the structure

of blood vessels and typical blood vessel properties such that vessels usually have a limited

local curvature, they can be approximated by piecewise linear segments and the cross-sectional

pixel intensity profile of the line segment can be approximated with an inverted Gaussian curve.

For example, in [52] authors use a two-dimensional linear kernel with a Gaussian profile for

segmentation of retinal vessels. The profile of the filter was designed to match the Gaussian

shape of the blood vessel profile. In order to detect blood vessels in all directions the kernel was

rotated by 15∘ increments. The maximum response over all rotations is taken and the image

is thresholded in order to obtain a binary image. Morphological processing based methods for

blood vessel detection are also common in the literature [11, 61, 62, 63, 64]. For example,

authors in [11] combined morphological multi-scale enhancement, fuzzy filtering and water-

shed transformation for vessel segmentation. The background is estimated by using non-linear

multi-scale morphological opening operators with different structuring elements and then the
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background is subtracted from the original image for contrast enhancement. Vessel tracking

methods segment a vessel between two points and usually work at a vessel level and multiple

start points are required to segment the whole vasculature tree. The main advantage of vessel

tracking methods is that they provide accurate vessel widths and usually can give information

about the structure of the whole vasculature tree. Usually, vessel tracking approaches are com-

bined with matched filtering or morphological operators. In [65] authors used matched filtering

combined with the Kalman filter in order to segment the blood vessels. First, the second or-

der Gaussian matched filter is employed to estimate the vessel centerline and then the tracking

procedure is started where the Kalman filter is employed to estimate the next vessel segment.

Some authors used machine learning and classification techniques in order to segment the blood

vessels [66, 67, 68]. For example, in [67] authors used a deep convolutional neural network

combined with random forests. In the proposed approach outputs of the pooling layers were

used as features for an ensemble of random forests. Different types of ensembles were used and

impressive results were obtained both on the DRIVE [31] and STARE [32] databases. Model

based approaches apply the explicit vessel models to extract the retinal vessels [12, 69, 70, 71].

In [12] authors presented a regularization based multi-concavity modeling approach, which is

able to handle both normal and pathological retinas. A line shape concavity measure is used

to distinguish the irregular shape intensity structure of dark lesions from the line shape inten-

sity structure of the blood vessel. A locally normalized concavity measure is used to filter out

noise. Those concavity measures are combined according to their statistical and geometrical

properties. A lifting scheme is used for regularizing the solution towards the ideal vessel shape.

The method presented here builds upon the method presented in [72]. Most vessel tracking

methods start with an initial point and then estimate the vessel width and orientation within a

local region at the current point. After the vessel width and orientation are estimated, a small

step is taken in the direction of the vessel orientation. This procedure is repeated until the full

vessel is traced out.

Different methods of estimating the vessel width and orientation can be used. Some proceed

by detecting the edges of the vessel closest to the current point to estimate the orientation [73].

These methods can fail or produce inaccurate results if insufficient number of edge pixels are

used. Some methods try to rectify this problem by applying a convolution operation. In this

case, a model of the vessel shape or two separate operators modeling the vessel edges in the

neighborhood of the vessel edges are used. By applying the convolution with the model rotated

at different orientations, the peak response can be used to more accurately measure the vessel

orientation. Instead of applying the convolution operator at different orientations one could

try to fit a model of the vessel using an optimization procedure. Using such an optimization

procedure one could potentially find the orientation and width of the vessel at the given point.

Using a two-dimensional model and a two-dimensional local region around the current point can
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increase the accuracy and robustness of blood vessel orientation and width estimation. Such an

optimization problem is highly non-linear so a good starting solution is required in order to

increase the probability of proper convergence. Because vessels usually do not change the

profile or orientation within a local region using such a two-dimensional model and a good

starting solution increases the probability of a better solution, which enables a more accurate

estimate of the next tracking point. Because a reasonable number of pixels is used for model

fitting, vessels in noisy images or in low contrast regions can be properly tracked.

In our approach the optimization procedure starts with a point (x,y) on the vessel, an esti-

mate of orientation θ and an estimate of vessel width σ . Using that information, a small region

around that point is cut out and a 2D non-linear least-squares fit of the vessel model is made

over the local region. This procedure increases the robustness of blood vessel width and orienta-

tion estimate. After the optimization procedure, the estimated width and orientation are used to

make a small step using the estimated vessel orientation. The step is proportional to estimated

width of the blood vessel. Those new estimated orientations and widths are used for the next

iteration of the optimization process.

5.1 One-dimensional blood vessel models

The blood vessel model used in the non-linear optimization procedure assumes that the dar-

ker appearance of blood vessels is primary due to the attenuation of red-free light as it passes

through the blood column [72]. The attenuation can be modelled according to the Bouguer’s

law [74], where the exit beam intensity is given by (5.1).

I(x) = I0e−
∫

α(x,z)dz (5.1)

Here, α(x,z) is the linear attenuation coefficient, x is the dimension in the plane of the retina

across the vessel and z is depth into the retina. If α is taken as constant throughout the vessel,

and the vessel profile is said to be symmetric and circular, then the received light is defined with

(5.2).

I(x) = I0

(
1−ae−(x−x0)

2/2σ2
)

(5.2)

Here, x0 is the center of the vessel, σ defines the width of the vessel, and a is a constant giving

the relative amount of light absorbed by the vessel. Using such a model would fail to take in

account the light reflex often seen in the center of the vessel. In Fig. 5.1 we can clearly see the

light reflex.

According to the [75] the light reflex is explained by the scattering of light off the rough co-

lumn of blood and the intravascular column of erythocytes. This scattering can also be usefully

modeled by a Gaussian that is narrower and inverted compared to the simple vessel model. This
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Fig. 5.1: Segment of the image with light reflex marked

reflex can than be modeled using (5.3).

I(x) = I0

(
1−ae−(x−x0)

2/2σ2
+be−(x−x0)

2/2σ2
r

)
(5.3)

Here, b is the relative fraction of the light reflex, and σr is the light reflex width where σr < σ .

In [76] authors proposed another model for light reflex but instead of adding the two components

together, switches for two components exist as is presented in (5.4).

I(x) = I0

(
1−ae−(x−x0)

2/2σ2
)
, x < P, x > Q

I(x) = I0be−(x−x1)
2/2σ2

r , P ≤ x ≤ Q
(5.4)

Here, a and b are the relative amount of the two amount of the two components of the blood

vessel, x1 is the blood vessel center point, σr is the width of reflex, P and W are the cutover

points between the two components.

5.2 Two-dimensional blood vessel model

Models presented here are made for 1D case, where we look at the intensity profile of the

blood vessel. In order to find the width and orientation of the blood vessel, a two dimensional
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model has to be used. The extension of the model is presented [72] and explained in short here.

The 2D model extends the basic 1D model presented in (5.2), which explains the change the

brightness level across the blood vessel. The 2D model extends the 1D model by giving the

vessel an orientation in the 2D plane and extending the vessel in the direction orthogonal to its

cross-section. It is assumed that the extension of the blood vessel in 2D is linear and uniform.

This means that the blood vessel has the same cross section at all points along the vessel.

In order to convert the 1D vessel model to a 2D vessel model and reduce the number of op-

timization parameters (x,y) coordinates of the local optimization region are converted to a new

coordinate space (u,v). Here, u points in the same direction as the vessel and v is orthogonal to

the vessel. The connection between two coordinate spaces is given by (5.5).

u = xsin(θ)− ycos(θ)

v = xcos(θ)+ ysin(θ)
(5.5)

The vessel profile is given by the single Gaussian model presented with (5.6).

I(v) = A−Be−(v−v0)
2/2σ2

(5.6)

Here, A is the background intensity, B is the contrast of the vessel with respect to the back-

ground intensity B, and v0 enables the vessel center to be shifted in the v direction.

Sometimes a vessel may be tortuous and bend suddenly in a localized region. This can lead

to bad optimization results or even it cause the whole fitting procedure to fail, as the assumption

that the vessel cross-section can be extended linearly in one direction is violated. This problem

can be solved by allowing the vessel to flex inside the optimization region. This can be achieved

by adding a quadratic term in v to u so the (5.5) is extended in (5.7).

u = xsin(θ)− ycos(θ)+ηv2

v = xcos(θ)+ ysin(θ)
(5.7)

Here, η describes the curvature of the vessel. If η = 0 than there is no curvature in the

fitting area. If |η |> 0 then the vessel will bend in the direction of u about the origin.

5.3 Blood vessel enhancement

In order to improve the performance of the algorithm the optimization procedure is not applied

to raw pixel values of the image but to the blood vessel enhanced image. A common approach

for detection of linear structures is the well known Frangi vesselness filter [53]. In this appro-

32



Blood vessel segmentation from fundus photographs using model-based multi-scale vessel
tracking

ach the vessel enhancement process can be formulated as a filtering process that searches for

tubular structure in images. Because blood vessels can appear in different sizes it is important

to introduce a measurement scale which varies within a certain range. In order to analyze the

local behavior of an Image a Taylor expansion in the neighborhood of point xo is considered in

(5.8).

L(xo +δxo,s)≈ L(xo,s)+δxT
o ∇o,s +δxT

o Ho,sδxo (5.8)

This expansion approximates the structure of the image up to second order. ∇o,s and Ho,s

are the gradient vector and Hessian matrix of the image computed in xo at scale s. In the linear

scale space theory framework explained in [77, 78] the differentiation operator is defined as a

convolution with derivatives of Gaussians as visible in (5.9).

∂

∂x
L(x,y) = sγL(x)* ∂

∂x
G(x,s) (5.9)

Here, the D dimensional Gaussian is defined as (5.10).

G(x,s) =
1

D
√

2πs2
e−

||x||2

2σ2 (5.10)

The parameter γ was introduced in [79] to define a family of normalized derivatives. This

normalization is particularly important for a fair comparison of the response of differential

operators at multiple scales. Analyzing the second order information embedded in the Hessian

matrix can be used in the context of blood vessel detection. The second derivative of a Gaussian

kernel at scale s generates a kernel mask, which when applied to the image measures the contrast

between the regions inside and outside of the range (−s,s) in the direction of the derivative. The

third term from (5.8) is actually the second order directional derivative (5.11).

δxT
o Ho,sδxo =

(
∂

∂δxo

)(
∂

∂δxo

)
L(xo,s) (5.11)

The analysis of the Hessian matrix is useful because after extracting the eigenvalues and

eigenvectors of the Hessian matrix this information can be used to directly obtain the direction

of the smallest curvature. In areas, which contain blood vessels, the direction of the smallest

curvature is along the vessel. This procedure avoids applying several filters in multiple direc-

tions because applying multiple filters is much more computationally expensive and requires a

discretization of the orientation space. For simplicity, let |λ1| ≤ |λ2| denote the two eigenva-

lues of the Hessian matrix and u1, u2 the corresponding eigenvectors. Since λ1 is the eigenvalue

with the smallest magnitude, the eigenvector u1 points in the direction of the smallest curvature,

λ2 corresponds to the eigenvector u2, pointing in direction of the largest curvature. For vessel

points this means that eigenvector u1 points along the vessel and the corresponding eigenvalue
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(a) Original image

(b) Output of the Frangi vesselness measure for selected scale

Fig. 5.2: Example of the Frangi vesselness filtering

λ1 should be close to zero. This also means that the eigenvector u2 points towards the edge

of the blood vessel and the corresponding eigenvalue λ2 is large in magnitude. The Frangi ve-

sselness measure combines this observation to create a response, which should be high in areas

belonging to blood vessels and low in other areas. In order to incorporate this information two
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measures are defined in (5.13), which capture the anisotropy and contrast of the given pixel.

Rb =
|λ1|
|λ2|

(5.12)

S = ||H||=
√

λ 2
1 +λ 2

2 (5.13)

For blood vessel pixels RB should be low because λ1 should be close to zero in magnitude and

λ2 should be large in magnitude. S will be low if both the eigenvalues are small for the lack of

contrast so that the larger S is the more likely it is a blood vessel. For images where the vessels

are darker than their background, meaning that the vessels are valleys, the curvature will be

negative so λ2 < 0. Using this information, the Frangi vesselness output can be expressed using

(5.14).
F(x,y) = 0 , if λ2 > 0

F(x,y) = e−
R2

b
2α2

(
1− e

S2

2β2

)
, otherwise

(5.14)

Here, α and β are parameters to adjust the effect of Rb and S. Because the second order

Gaussian derivative can be calculated at different scales s there are multiple responses of the

vesselness filter for each pixel. Usually, the maximum value response over the scales can be

used to create a single vesselness output. Here, this is not done in order to preserve the informa-

tion about the scale at which the maximum was obtained. This information is then used in the

tracking phase of the algorithm. In Fig. 5.2 we can see the original image and the corresponding

vesselness response image.

5.4 Blood vessel tracking

Given a seed point, the scale with the maximum vesselness is taken as the starting estimate of

the blood vessel width. In the vesselness calculation stage, information about the vessel orien-

tation is obtained by looking at the eigenvector corresponding to the smallest eigenvalue. This

eigenvector points in the vessel direction and is used as a start estimate of the blood vessel ori-

entation. The start estimate of the blood vessel orientation is used in order to cut out the fitting

region in the blood vessel direction. The region for fitting is defined by taking 2 ceil(2σ)+ 1

pixels along the u axis and 2 ceil(3
2σ)+ 1 pixels along the v axis. The local region has to be

oriented with the vessel in order to enable more robust estimate of the parameters. Because the

scale with the largest vesselness response is known, the region is cut from the vesselness me-

asure at that scale. Optimization is done by the standard non-linear Marquardt [80] algorithm.

After the optimization step is performed, a new estimate of the blood vessel orientation and

width is obtained. This estimate is then used to move to the next point. The next point where
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Fig. 5.3: Example of blood vessel tracking. The tracked points are marked with red and the starting
seed point with green

the fitting procedure continues is found using (5.15).

xnew = xold + cos(θe)*σe *a

ynew = yold + sin(θe)*σe *a
(5.15)

Here, θe is the estimate of the blood vessel orientation found using the optimization proce-

dure applied in (xold,yold), σe is the estimate of the blood vessel orientation found using the

optimization procedure applied in (xold,yold) and a is a small constant defining the amount of

movement in the blood vessel direction. After this step, a new region is cut out and the optimi-

zation procedure is repeated. The new blood vessel width estimate is used to select the proper

vesselness map. The vesselness map, which was generated using the σ value closest to the

estimated blood vessel width is used to cut the fitting region. After the optimization procedure

fails the optimization procedures restarts at the same seed point but the tracking direction is

reversed. This is achieved by applying (5.16) instead of (5.15).

xnew = xold − cos(θe)*σe *a

ynew = yold − sin(θe)*σe *a
(5.16)

In Fig. 5.3 an example of a tracked line is visible in red with the seed point marked with a large

green cross.
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5.5 Seed point generation

Before the tracking procedure can start seed points have to be generated. The seed points are

generated using the vesselness information. First, the maximum over all scales is taken, which

creates a grayscale image. In this images, higher values should represent higher blood vessel

probabilities. In order to have a uniform distribution of seed points across the whole image, the

vesselness images is divided in m×m non overlapping square blocks. In each block, k points

with highest vessleness values are chosen as the the seed points. In Fig. 5.4 image with seed

points superimposed is visible. Values for m and k were found empirically.

Fig. 5.4: Example of seed points used for blood vessel tracking

5.6 Performance evaluation

In order to quantitatively measure the performance of the proposed method we calculate the

accuracy, true positive rate (TPR) and false positive rate (FPR). TPR represents the fraction of

pixels correctly detected as vessel pixels and is given by (5.17),

T PR =
T P

T P+FN
(5.17)

FPR is the fraction of pixels erroneously detected as vessel pixels and is given by (5.18).

FPR =
FP

T N +FP
(5.18)
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The accuracy is measured by the ratio of the total number of correctly classified pixels to the

number of pixels in the image field of view. The method achieves an average accuracy of 0.9436

with 0.7134 and 0.0415 TPR and FPR, respectively on the DRIVE database [31].

In Fig. 5.5 we can see the original, ground truth image and result of our vessel tracking

method.

(a) Original image (b) Ground truth data

(c) Output of our blood vessel segmentation met-
hod

Fig. 5.5: Example of blood vessel tracking

From the example image we can clearly see that the method can generate reasonably ac-

curate segmentation of the blood vessel network. Compared to the ground truth segmentation

we can notice some pixels marked as blood vessels although they are clearly not blood vessels.

Those false positive pixels usually appear due to bad initialization of the tracking procedure.

Because we want to detect as many thin vessels as possible we need to have a large number
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of seed pixels because tracking can fail due to any number of reasons such as low contrast,

complicated branching, edge of the blood vessel etc. Because the seed points can be wrongly

initialized, in some case the tracked points do not represent the actual blood vessel network.

This happens because the optimization model assumes that darker linear structures are blood

vessels, which can be problematic if other similar structures are present in the image but don’t

represent blood vessels.
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Chapter 6

Exudate detection using voting-based
classifier and stochastic learning

In the literature, we can find many different techniques for automatic detection of diabetic

retinopathy pathologies in color fundus photographs such as exudates. Most of the methods

start with some sort of image preprocessing, followed by exudate candidate extraction procedure

where a set of exudate candidates, i.e. structures, which are exudates or which are similar to

exudates are extracted. In order to segment all exudate regions large number of non-exudate

regions are also segmented. Finally, a classification step is applied, where different features

are extracted for each exudate candidate in order to keep the real exudate areas only. The final

classification step reduces the number of false positives, i.e. the goal of this step is to discard

regions which are not actually exudates but were selected in the candidate extraction step.

The main goal of the preprocessing step is usually to reduce noise in input images but can

also be used to increase the contrast of bright structures such as exudates. In color fundus pho-

tographs different bright structures are present such as the optic disc, which appears as a large,

bright disc and is present in each image but also some structures such as drusen and optic nerve

fibers, which do not appear in each image. Such bright structures can decrease the performance

of exudate detection algorithms so one of the main goals of image preprocessing is to detect

and remove such bright structures from original images. In Fig. 6.1 we can see several bright

structures such as drusen marked with arrow b and optic nerve fibers marked with arrow a,

which come out of the optic disc and are usually visible near the main vessels. The optic disc is

marked with a black circle.

In the literature we can find different preprocessing methods used in algorithms for detection

of anatomic structures in retinal images of which many are presented in [81]. For example,

authors use histogram equalization, adaptive histogram equalization, division by over-smoothed

version of the original image in order to increase contrast levels, where the original intensity
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Fig. 6.1: Bright structures in healthy patients: a) Optic nerve fibers and b) drusen

image is normalized by dividing the original intensity image by an over-smoothed version of the

original image using a spatially large median filter [82], Gray World normalization [83] where

normalization is performed by dividing each color channel by its average value, illumination

equalization where pixel values are modified by subtracting the mean intensity value calculated

in a window.

After preprocessing, a candidate extraction procedure is applied in order to detect potential

exudate areas. In the literature, we can find many different approaches for candidate extraction

such as methods based on morphological operations [50, 84, 85, 86], dynamic thresholding ap-

proaches [87], pixel-wise feature extraction and classification [26, 85, 88, 89], clustering based

approaches [90]. For example, in [84] authors start the exudate detection procedure by finding

areas with high standard deviation in a sliding window followed by a thresholding procedure. In

order to find the precise border of each exudate area, morphological reconstruction by dilation

is used where the generated binary image is used for morphological reconstruction. The recons-

tructed image is then subtracted from the original image and after a final threshoding procedure

a binary image containing exudate pixels is generated. In [87] authors used a Gaussian mixture

model for histogram modelling. They used the Expectation Maximization algorithm to estimate

the mixture parameters for the Gaussian distributions. After parameter estimation, a dynamic

threshold based on two Gaussian components with highest mixing weights is found and applied

in order to segment the image into exudate and non-exudate regions. In [26, 85] authors used

pixel-wise features such as difference of Gaussians, standard deviation in a window, hue, satu-

ration, mean intensity values, maximum values, difference between highest and lowest value in

a window, entropy, edge strength and then apply different classifiers such as K-Nearest Neig-
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hbours or Naive Bayes in order to classify each pixel as as an exudate or non-exudate. In [90]

authors applied the Fuzzy C-Means clustering algorithm on locally contrast enhanced image.

In this approach RGB values for each pixel were used as input features for the clustering algo-

rithm. After clustering, elements in the brightest cluster we assigned as exudate pixels. In [91]

authors use the k-means clustering procedure on raw image pixels but also add output of the

Kirsch edge operator as clustering features in order to remove areas with low edge strength.

After candidate extraction different features can be extracted for each connected component

in order to eliminate spurious regions. Features such as area, length, perimeter, ratio of major

and minor axis, average value inside the exudate area, mean and standard deviation of Gaussian

derivative filter outputs in the candidate area are extracted from each exudate candidate [92, 93].

Some of the authors proposed features, which take into account the environment of the exudate

candidate, for example distance from the blood vessel because exudates typically do not appear

near the main vessels [94].

6.1 Weighted ensemble based exudate detection

Accuracy of existing exudate detection algorithms can be improved by combining different

exudate detection algorithms into an ensemble because s many of the proposed algorithms have

some drawbacks but by combining the outputs of different algorithms we can expect better

results. We start by applying different candidate extraction algorithms for each image. This

generates large number of potential exudate candidates. For each exudate candidate extracted

by the ensemble we calculate different morphological and statistical features, which are used

for classification of each potential exudate candidate. In Fig. 6.2 we can see the flowchart of

the proposed ensemble method.

In the following subsections we describe which preprocessing methods and candidate ex-

traction methods are used, how they are combined into an ensemble and finally how the machine

learning based classification is performed.

6.1.1 Preprocessing methods

In order to increase the candidate extraction algorithms performance we can apply different

preprocessing algorithms. In this subsection we present different preprocessing methods used

in creation of the ensemble.

∙ Green Channel Extraction: Green channel is the channel with the highest contrast between

the background and other important parts like lesions, so using only the green channel can

improve the accuracy of an exudate detection algorithm.

∙ CLAHE: Contrast-Limited Adaptive Histogram Equalization (CLAHE) is a well-known
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Fig. 6.2: Flowchart of the proposed weighted ensemble based exudate detection method.

contrast enhancement technique, which is used because some exudate detection algorit-

hms rely on good contrast between exudates and the background. This preprocessing

algorithm is very similar to the adaptive histogram equalization method but also adds

histogram clipping at a predefined value before computing the cumulative distribution.

∙ Gray-World Normalization: Gray-World Normalization is used as a preprocessing met-

hod because it can eliminate effects due to illumination changes, so it is used to eliminate

the shining along temporal arcades. Gray World normalization performs the normaliza-

tion by dividing each color channel by its average value.

∙ Illumination correction: The illumination of the input image is non-uniform, which is

caused by spherical shape of the eye and different tissues present in the eye. In order to

compensate this type of non-uniformity a median filtered image is subtracted from the

original image where the median filtering is performed using a large mask in order to

properly estimate the median value of the region.

∙ White Top-Hat Transformation: This simple morphological transformation is used for

highlighting brighter regions and because exudates appear as bright, yellowish structures

this transformation can be used to increase the contrast of exudate regions. In order to per-

form the white top-hat transformation the result of grayscale opened image is subtracted

from the original image. Grayscale opening is performed by first performing grayscale

morphological erosion followed by grayscale morphological dilation.

∙ Contrast enhancement (Contrast): This method was proposed in [95] and starts by co-

nverting the original RGB image to YIQ color space. In this color space the original Y

channel is replaced by a weighted sum of the channels Y, I and Q according to (6.1).

Ymod(x,y) = 1.5 ·Y (x,y)+(−1) · I(x,y)+(−1) ·Q(x,y) (6.1)
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Apply applying the correction, the modified image is converted back to the RGB color

space. In the new image, bright regions are amplified so they appear brighter and dark

regions become darker.

∙ Adaptive contrast enhancement: In this preprocessing method the contrast of the input

images is improved by changing the illumination of the original image using (6.2)

Ieq(x,y) = (I(x,y)− Iw(x,y))/σw(x,y) (6.2)

where I(x,y) is the original intensity image, Iw(x,y) is the mean intensity value within

a local neighborhood of point (x,y) and σw(x,y) is the standard deviation of intensity

within a local neighborhood of point (x,y). Areas with low contrast typically have a

smaller standard deviation of intensity in their neighborhood so dividing the difference

between original and background image with the standard deviation increases contrast

more in areas with low contrast.

6.1.2 Candidate extraction algorithms

After image preprocessing a candidate extraction step is performed in which potential exudate

regions are coarsely found. In this subsection we present the candidate extraction algorithms

used for the ensemble creation.

Morphological-based candidate extraction algorithm

The morphological-based candidate extraction algorithm uses the approach presented in [84]

where authors proposed a method for detection of exudates using morphological operations.

Because of usually high contrast between exudate regions and surrounding background the met-

hod assumes that exudate regions are regions with large standard deviation. In order to detect

the exudates, the method starts with morphological closing, which is actually morphological

dilation followed by morphological erosion of the input image with a large structuring element.

This step is performed in order to eliminate the blood vessels, which also show large local de-

viation due to contrast of blood vessels compared to the surrounding background. After this

step, the standard deviation in a sliding window is calculated and a fixed threshold is applied

to find the candidate regions with high standard deviation. The candidate regions are dilated

to ensure that the background pixels next to exudates are included in the candidate regions. In

order to find the contours of the exudates and to distinguish them from other well contrasted

regions all the candidate regions are set to zero in the original image and then morphological

reconstruction by dilation of the original unchanged image under the new image is performed.

With this procedure exudates are completely removed from the image. The final result is ob-

tained by applying a simple threshold operation to the difference between the original image
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and the reconstructed image. In this way only the candidates that have a contrast level above a

minimum threshold level are selected as exudate regions.

Local and global thresholding-based candidate extraction algorithm

The thresholding candidate extraction algorithm is based on work by [96] where the authors

segment the bright regions in the preprocessed image that show high global and local brightness

levels. This method assumes that exudates are locally and globally bright regions. The method

starts by calculating a global histogram and several local histograms by partitioning the original

image into non-overlapping square blocks. The blocks have to be large enough to ensure that

enough background pixels are present in each block, which allows the local differentiation of

background from bright regions but small enough to capture the local properties of the image.

Global and local histograms are usually bell shaped and they show one maximum corresponding

to the background and one tail on each side of the maximum. To separate the bright regions from

the background a threshold is set at the gray level of the right tail of the histogram for which

the histogram decreases to a 10% of the histogram maximum. As a result of the histogram

thresholding process two binary images are obtained. One binary image contains regions which

are globally bright and the other image contains regions, which are locally bight. In order to find

the final binary image containing locally and globally bright regions two images are combined

using the logical AND operation.

SVM-based candidate extraction algorithm

In this approach, various features for each pixel are extracted and a linear SVM classifier is used

to decide if the pixel belongs to an exudate region or if the pixel belongs to the background. The

features are selected from a range of various features, which are relevant for exudates such as

the mean, standard deviation, maximum value, range (difference of maximum and minimum)

of the intensities within a window. RGB value of the pixel being classified is also added to

the feature vector. In the literature [26] it has been shown that Gaussian derivative taken at

different scales can be used for pixel-wise detection of exudate so responses to zero, first and

second order Gaussian derivatives are added to the feature vector. Because exudate regions are

usually regions with sharp edges the Frei-Chen edge detector is applied to the original image

and different features such as the highest gradient value, average and standard deviation of the

strength of the edge pixels and number of the edge pixels in the pixel neighborhood are added

as the features of the feature vector. Output of the classifier is a binary image with exudate

candidates marked with the label “one” and background pixels marked with the label “zero”. In

order to train the SVM classifier per pixel label image of exudate regions is required. We use

the DRiDB [97] database, which is explained in more detail in ?? for classifier training.
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Clustering-based candidate extraction algorithm

The clustering-based candidate extraction algorithm uses the approach described in [91] where

the authors used a k-means based clustering procedure to find exudate regions. The procedure

starts by using raw image pixels as feature vectors for k-means clustering. After applying k-

means clustering and taking the cluster with the highest mean value some structures, such as

the papillary region and other yellow lesions, such as cotton wool spots are detected, because

of their similar attributes to hard exudates in terms of brightness, color and contrast. In order

to detect only hard exudates characterized by yellowish color and sharp edges and remove

all lesions with high intensity but blurred edges such as cotton wool spots an edge strength

criterion is used. In order to measure the edge strength Kirsch operator [98] is applied to the

original image and the resulting image is thresholded using a fixed threshold. In order to remove

spurious regions a boolean AND operation between the original k-means clustered image and

the thresholded edge image is performed. This operation finds only the edges of bright objects.

Finally, in order to find the exudate regions morphological reconstruction by dilation under the

retinal image of the green channel from the original image is performed.

6.1.3 Combining candidate extraction algorithms

Combining different preprocessing and candidate extraction algorithms into an ensemble can

increase the accuracy of exudate candidate detection. In the proposed approach we start by

creating a pool of possible pairs of preprocessing methods and candidate extraction methods

explained previously. In the case of a <preprocessing method, candidate extraction method>

pair, the given preprocessing method is applied before performing the given candidate extraction

method. The simulated annealing search algorithm [59] is used to find the optimal weights for

each of the <preprocessing method, candidate extraction method> pairs present in the ensemble.

The simulated annealing search algorithm is used because this problem represents a non-linear

optimization problem. In order to evaluate the goodness of the solution energy function given

by (6.3) is used.

E =−Fscore =−5 · sensitivity ·PPV
4 ·PPV+sensitivity

(6.3)

In the equation (6.3), sensitivity is defined as T P/(T P + FN) and positive predictive value

(PPV) as T P/(T P+FP), where TP is the number of true positive pixels, FN is the number of

false negative pixel and FP is the number of false positive pixels. A pixel is classified as a true

positive if the pixel is marked as an exudate pixel in both the ground truth image and in the

binary image created using current weights. A pixel is classified as a false positive if the pixel

is marked as an exudate pixel in the binary image created using current weights but not in the

ground truth image. A pixel is classified as a false negative if the pixel is marked as an exudate

pixel in the ground truth image but nut in the binary image created using current weights. When
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the simulated annealing algorithm picks the weights a weighted image of the binary images

produces by each <preprocessing method, candidate extraction method> pair is created. The

weighed image is then normalized to [0,1] interval by dividing each image element with the

sum of weights, which are used for creation of the weighted image. In order to evaluate the

energy function the weighted image has to be thresholded. Because the image is normalized to

[0-1] range the pixel values in this image can be treated as probabilities of pixels being part of

an exudate region. In order to create a thresholded image a fixed threshold of 0.5 is used.

The energy function used is actually the F2 score measure. This measure was chosen in order

to increase the effect of sensitivity in the energy function. This is used because in the subsequent

exudate classification step a lot of false positive exudate candidates can be eliminated but no new

exudate regions can be added. Eliminating false positive regions in the exudate classification

step will lead to higher positive predictive value and finally to higher overall accuracy of the

algorithm.

6.1.4 Exudate classification

After finding the optimal ensemble weights the ensemble can be used to extract potential exu-

date regions in unseen images. After finding the potential exudate regions different features for

each exudate candidate regions can be extracted. To find efficient features for classification, se-

veral shape and statistical descriptors for exudate candidates are calculated and the most useful

ones are selected by using a Wilcoxon rank test[99]. Most obvious features that can be extrac-

ted and are used in the literature are the mean, standard deviation, difference between maximal

and minimal value, minimal and maximal values under the given region and under the boun-

dary of the region using the intensity values of the image. Also, the mean, standard deviation,

difference between maximal and minimal value, maximal and minimal values of the intensities

under the region and under the boundary of the region in the green channel, CLAHE image,

illumination corrected image are added to the feature pool. Because first and second order Ga-

ussian derivatives have shown good discriminative power the mean and standard deviation of

zero, first and second order Gaussian derivatives taken at different scales are calculated under

the region and added to the feature pool. Homogeneity of the the region measured in terms of

the Shannon’s entropy of the RGB values calculated for each channel is added to feature pool.

Several morphological features like exudate candidate area, major and minor axis length and

compactness are also added to the feature pool.

During experimentation it was noticed that a lot of false positive exudate areas are visible

near the main arteries and veins, especially in younger patients so it was decided to add distance

from main veins and arteries as a feature to the feature pool. Since exudates often appear close

to the center of the image distance from the optic disk was added as a feature to the feature pool.

Most of the mentioned descriptors are appropriate for distinguishing between exudate and
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non-exudate regions. However, there are some irrelevant descriptors and these can decrease the

generalization performance of the trained classifier. To select the most significant descriptors

the Wilcoxon rank test was used as mentioned.

After selecting the best features the AdaBoost classifier was used for exudate classification.

A small subset of feature vectors was used for training and all other feature vectors were used

for testing purposes.

6.2 Performance evaluation

The testing was done on the DRiDB database [97], which is presented in more detail in Chap-

ter 3. The database was split into two disjoint sets for training and testing purposes.

To test the method the ground truth data available in the mentioned datasets was used. For

each image, number of true positives (TP), false positives (FP) and false negatives (FN) is calcu-

lated. Measuring the true positives, false positives and false negative could be done by counting

the number of pixels, which are correctly classified but this approach has some drawbacks be-

cause it can happen that we actually detect the exudate blob correctly but because the ground

truth segmentation is not perfect several border pixels can be assigned as false positive or false

negative. In order to solve this problem the approach explained in [100] was used. Each seg-

mented image can be divided into a set of candidates {C1,C2, . . . ,CN} where each Ci represents

a connected component. Each ground truth image can also be divided int a set of candidates

{G1,G2, . . . ,GM}. So the ground truth mask is given by (6.4).

G =
⋃

1≤ j≤M

G j (6.4)

The segmented images can be represented with (6.5).

C =
⋃

1≤i≤N

Ci (6.5)

A pixel is considered to be a true positive pixel if, and only if, it belongs to any of the following

sets:

∙ C∩G

∙ Ci such that |Ci∩G|
|Ci| > σ

∙ G j such that |G j∩C
G j

> σ

Here, |, | represents number of elements in set and σ is a parameter in [0,1] range. A pixel is

considered to be a false positive pixel if, and only if, it belongs to any of the following sets:

∙ Ci such that Ci ∩G = /0

∙ Ci ∩ Ḡ ≤ σ
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A pixel is considered to be a false negative if, and only if, it belongs to any of the following

sets:

∙ G j such that G j ∩C = /0

∙ G j ∩C̄ such that |G j∩C|
|G j| ≤ σ

The true negatives are omitted from the analysis because the number of true negatives can be

very high since all non exudate pixels are actually true negatives. The σ was set to 0.2.

The sensitivity S of detection is calculated using (6.6),

S =
T P

T P+FN
(6.6)

and the positive predictive value (PPV) using (6.7).

PPV =
T P

T P+FP
(6.7)

Finally the F-score is calculated using (6.8)

F =
2 ·S ·PPV
PPV +S

(6.8)

Table 6.1 presents the results of the experimental validation after 3-fold cross-validation for

the DRiDB database. The proposed method outperforms all algorithms used in the validation

process. From the table it can be seen that the method shows good balance between sensitivity

of detection and positive predictive value of detection, which is consistent with the optimization

function used during the training process.

Table 6.1: Results of different exudate detection methods.

Method name Sensitivity PPV F-Score

Walter [84] 0.69 0.48 0.57

Sánchez [95] 0.34 0.61 0.44

Harangi [85] 0.66 0.65 0.66

Harangi [93] 0.71 0.66 0.68

Amel [91] 0.41 0.09 0.15

Weighted ensemble based exudate detection method 0.75 0.77 0.76

In Fig. 6.3, we can compare the ground truth marked by an expert with the output obtained

by the weighted ensemble based exudate detection method. It can be clearly seen that the

results are pretty good and most of the candidates are properly detected. The method fails

in detecting small isolated exudate areas, which are similar to other normal structures in eye

fundus. Sometimes, nearby regions are merged into one larger exudate cluster, which causes
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(a) Ground truth data

(b) Output of the weighted ensemble method

Fig. 6.3: Comparison of ground truth with output of the weighted ensemble method.

some false positive detections but this is expected.
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Chapter 7

Automatic early detection of diabetic
retinopathy using rule-based system and
specific ophthalmologic knowledge

In order to improve the overall performance of a system for early detection of diabetic reti-

nopathy information obtained by detecting normal structures can be combined with detection

results of patholological structures. In this chapter we present a method for automatic early de-

tection of diabetic retinopathy using a rule based system and specific ophthalmologic knowledge

about normal and pathological retinal anatomy

In the proposed method outputs of different anatomical landmark detection algorithms are

combined with a deep learning based exudate detection procedure in order to increase the ove-

rall accuracy of exudate detection, which is a prerequisite in development of a system for early

detection of diabetic retinopathy. The general flowchart of the method explained in following

paragraphs is visible in Fig. 7.1.

According to the flowchart we can see that the information about blood vessel locations,

bright borders and optic disc location is used to increase the exudate detection performance.

The exudate detection is done using a deep convolutional neural network, which is applied to

the preprocessed image.

The optic disc detection is performed by combining outputs of different simple optic detec-

tion algorithms, which generate optic disc probability maps. In this map, higher values repre-

sent increased probability that this point belongs to the optic disc. The procedure is explained

in more detail in Chapter 4.

Parabola fitting is performed using information about the optic disc center and information

about the main blood vessels. The output of this step is a probability map, with higher values

representing regions with higher probability of containing exudates. This procedure is explained

in more detail in Sec. 7.2.
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Fig. 7.1: Flowchart of the proposed fusion based method for exudate detection. Outputs of vessel
detection and optic disc detection methods are combined with the output of the deep neural network in
order to increase the accuracy of exudate detection.

Probability maps related to blood vessels, optic disc, parabola fitting and values for the

bright border detection are combined together to get one probability map. This map is created

using a simple weighted sum of per pixel probability maps, were weights were found empiri-

cally. This map incorporates higher level ophthalmolgical knowledge about diabetic retinopahy.

Example of such information is that exudates do not appear inside of the optic disc or inside

blood vessels. The contrast and brightness of the optic disc can affect the performance of the

exudate detection procedure so it is a common practice to eliminate the optic disc area before

applying the exudate detection algorithm. In our case, removal of the optic disc is performed

by assigning zero probability of exudate appearance inside of the optic disc. Also, exudates

have lower probability of appearing near the main blood vessels. This information can be used

to define regions with small probability of containing exudates. In order to dynamically define

such regions it is necessary to detect the blood vessels and find the optic disc and then use this

information to define regions with low exudate probability. Because bright structures such as

52



Automatic early detection of diabetic retinopathy using rule-based system and specific
ophthalmologic knowledge

optic fibers appear near the main blood vessels assigning lower probability of exudate appe-

arance in those areas can decrease the number of false positive detections and lead to higher

overall accuracy of exudate detection. Due to imaging artefacts some fundus images contain

extremely bright regions along the border of the fundus image. Detecting such areas and assig-

ning lower probabilities of exudate appearance in those areas can decrease the number of false

positive detections and increase the accuracy of the exudate detection procedure.

7.1 Detection of bright borders

Some images have extremely bright regions along the border of the visible part of the fundus

image. Those regions can cause problems with exudate detection because they are very bright.

Example of such a border is marked in Fig. 7.2. In order to account for such anomalies the

Fig. 7.2: Image with bright border marked

bright border should be segmented if it is present in the image. Using this information areas

with low exudate probabilities can be defined because exudates should not appear inside of

those areas. This probability map is then incorporated in the exudate detection procedure.

The approach explained here builds upon the method presented in [100] so the green channel

of the original image is taken and a large median filter is applied to the green channel in order to

estimate the background of the image. After that the estimated background is subtracted from

the green channel in order to remove the background from the image. Only positive values are
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kept and negative values are set to zero. This eliminates structures darker than the background.

Because we are only interested in bright areas around edges of the field of view the bright

regions inside of the retina need to be eliminated. This is done by creating an attenuation map

for each pixel of the image. Values of the proposed map are calculated using (7.1) where S(x,y)

is the value of the attenuation at point (x,y), D(x,y) is the distance from the closest point to the

edge of the field of view and a is a positive constant. In our experiments, a was set to 0.02.

The field of view mask can be easily calculated using a simple thresholding procedure.

Image pixels outside of the field of view are zero or close to zero so applying a low threshold

will segment the field of view. The field of view mask in this case is just the largest blob in

the obtained binary image. In order to fill any potential holes in the field of view mask a filling

operation is performed.

S(x,y) = exp−a·D(x,Y ) (7.1)

Fig. 7.3: Bright border segmented

The attenuation map is then applied to the green channel with the estimated background

subtracted. This creates a new image in which only bright regions near the edge of the field of

view are preserved. In order to eliminate darker pixels a fixed threshold to this new image is

applied. Pixels with values less than the threshold are set to zero and all other pixels are left

unchanged. The threshold was empirically found. In this new image, higher values represent

bright points near the border. Example of such an image can be seen in Fig. 7.3.

54



Automatic early detection of diabetic retinopathy using rule-based system and specific
ophthalmologic knowledge

7.2 Parabola fitting

Most reflections and optic fibers are found along the main retina vessels and they lie inside a

parabolic region passing through the optic disc. In order to eliminate the false positive exudate

regions caused by such bright structures a symmetric double parabolic region passing through

the optic disc center is fitted. The parabola is fitted to the largest blood vessels, which converge

around the optic disc area, which is similar to the approach presented in [101]. In Fig. 7.4 we

can see a parabolic region drawn on top of the original image.

Fig. 7.4: Parabola fitted to main vessels

In order to perform parabola fitting the location of the optic disc is required and blood

vessels should be segmented. In order to segment main blood vessels we start with the blood

vessel image and take 10% of the thickest blood vessels. This is done by iteratively eroding the

binary vessel image. After this step the blood vessels are thinned so all blood vessels are only

one pixel thin. The remaining points after thinning are the points used to estimate the parabola.

Because the parabola should be shifted to the optic disc center (xOD,yOD) the resulting parabola
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equation is given by (7.2).

a · (y− yOD)
2 = |x− xOD| (7.2)

The only unknown parameter is the scaling factor a. This parameter is found by applying the

standard non-linear Marquardt [80] optimization procedure to the criterion function J from (7.3)

where S is the set of points in blood vessel image after thinning. The optimization procedure

converges quickly, usually in less than 10 iterations.

J(a) = ∑
(x,y)∈S

a · (y− yOD)
2 −|x− xOD| (7.3)

The main purpose of parabola fitting is to define regions with low exudate probability. The

regions around main blood vessels tend to contain many reflections and optic fibers, which can

decrease the performance of the exudate detection algorithm. In our case an adaptive probability

mask for those regions based on parabola fitting of main vessels is created. So regions, which are

close to the parabola should have low probability of exudate appearance, and regions far away

should have higher probability of exudate appearance. This is modeled by using a distance

function from the fitted parabola. The probability of exudate appearance is defined by the

distance function in(7.4).

P(x,y) = 1− exp−a·D(x,y) (7.4)

Fig. 7.5: A priori exudate probability map generated from parabola fitting procedure

Here, P(x,y) is the a priori probability of point (x,y) containing exudates, D(x,y) is the

euclidean distance of point (x,y) from the parabola fitted to the main vessels and a is a small

positive constant. Example of the proposed a priori probability function can be seen in Fig.

7.5. Blue values mean that there is a small probability of finding exudates in that area and red
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that there is a high probability of finding exudates in that area. This probability map is later

combined with output of the exudate detection procedure to increase the accuracy of exudate

detection.

The exponential function was chosen as the generator function for the a priori probability

map because the exponential function has only one tunable parameter (small positive constant

a), which was empirically found.

7.3 Convolutional neural network for exudate detection

In order to detect exudates semantic information from optic disc detection, bright border detec-

tion, parabola fitting, blood vessel detection is combined with the output of the convolutional

neural network. In convolutional neural networks used as semantic segmentation tool feature

extraction is learned from the data and not enforced by designers. Approaches based on co-

nvolutional neural networks obtained state of the art results in a very broad range of applicati-

ons [102]. The exudate detection procedure starts with a preprocessing step.

7.3.1 Preprocessing

In order to reduce the noise levels in fundus photographs before using the convolutional neural

networks for exudate detection the Total Varaiation (TV) regularization denoising is used, which

was originally developed for additive white Gaussian noise denoising by Rudin, Osher and

Fatemi [103]. The authors proposed to estimate the denoised image u as the solution to the

minimization problem in (7.5),

argmin
u∈BV (Ω)

||u||TV (Ω)+
λ

2

∫
Ω

( f (x)−u(x))2x. (7.5)

where λ is a positive parameter. Here, f is the observed noisy image, which is related to

the underlying true image u by f = u+η , and η is at each point in space independently and

identically distributed as a zero-mean Gaussian random variable. This problem is referred to as

the Rudin-Osher-Fatemi or ROF problem.

In our case total variation is the integral of its gradient magnitude given by (7.6).

||u||TV (Ω) =
∫

Ω

|∇u|x. (7.6)

Such formulation of the minimization function discourages the solution from having oscilla-

tions, yet it does allow the solution to have discontinuities. This is possible because if u is

monotonic in [a,b] then TV (u) = |u(b)−u(a)|, regardless of whether u is discontinuous or not.
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The second term in (7.5) encourages the solution to be close to the observed image f . By this

combination, the minimization finds the denoised image.

Fig. 7.6: Original noisy image

In order to perform the denosing the split Bregman algorithm is used, which is explained in

more detail in [104, 105].

Fig. 7.7: Denoised image

In Fig. 7.6 it can be seen how the original image looks like, and in Fig. 7.7 it can be seen

how the denoised image looks like. Small section of the original and denoised image is shown

in Fig. 7.8. Obviously, it can be seen that noise levels are reduced and all edges are still present.

This is important because hard edges are one of the main characteristics of exudates.
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Fig. 7.8: Denoised image (left) and noisy image (right)

7.3.2 Convolutional neural network architecture

After preprocessing, a deep neural network is applied. For exudate detection the convolutional

neural network (CNN) is used, which is a specific type of a deep learning structure. Our method

is inspired by work presented in [106] where authors used deep neural networks in order to seg-

ment neuronal membranes in electron microscopy. The classification goal of our convolutional

neural netowork is to classify each pixel in exudate or non-exudate class. Our convolutional

neural network calculates the probability of a pixel being one of the mentioned two classes. In-

puts of the network are raw intensity values in the total variation preprocessed image of a square

window centered in the pixel p, which is currently processed. The size of the window is an odd

number in order to enforce symmetry around the given pixel. For pixels near the image border,

the window would include pixels outside the image boundaries. In those cases new values in the

sliding window are inserted by mirroring the pixels from window which fall inside the image.

The convolutional neural network is first trained using images from the training set. After

training, in order to segment the image, the convolutional neural network has to be applied for

each image pixel. This means that output of the image classification is another image where

each pixel value represents the probability of the pixel being an exudate. In order to get a binary

image a fixed threshold would have to be applied. In our case the probability maps for blood

vessels, optic disc, parabola fitting and bright border as a priori information are combined with

the output of the convolutional neural network in order to create the final exudate probability

map. This map can then easily be thresholded in order to get the exudate areas.

A typical convolutional neural network consists of a sequence of convolutional, max-pooling

and fully connected layers [106]. This type of deep neural network is hierarchical feature ex-

tractor, which uses raw pixel intensities of the original image in order to create a new feature

vector, which is then classified by several fully connected layers. This is the main difference

compared to other machine learning approaches where we have to manually decide on the fe-

atures to be used in a classifier because, in the convolutional neural networks the filters are

automatically learned from training data. Each convolutional layer from the network performs

a 2D convolution of its input images called input maps with a sequence of square filters. Output
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of each input map is calculated by summing the convolutional responses over the whole input

map. After that, this sum is passed through a non-linear activation function. Finally, a max-

pooling layer downsamples the output of non-linear activation function by a constant factor.

Their outputs are given by the maximum activation over non-overlapping square regions. Max-

pooling layers are fixed, non-trainable layers, which select the most promising features [107].

After a few stages of alternating convolutional and max-pooling layers outputs of the final max-

pooling layer are brought as inputs to a sequence of fully connected layers. The output layer

is a fully connected layer with one neuron per class, which in this case equals to two neurons.

A softmax activation function after the last layer was added so the output of the convolutional

neural network can be treated as the probability of a particular image pixel belonging to the

exudate class. The architecture of the convolutional neural network is visible in Table 7.1. It

can be seen that there are four convolutional layers and four max-pooling layers. The size of

the input map is 65×65, which means that in order to classify a pixel, convolution in a window

of size 65× 65 is performed in the input layer. As it was mentioned, before max-pooling a

non-liner activation function is applied. In this proposed architecture a rectifying linear unit is

used as the non-linear activation function.

Table 7.1: Architecture of used convolutional neural network

Layer Type Maps and size Kernel size

0 input 1 map of 65×65 neurons -

1 convolutional 48 maps of 60×60 neurons 6×6

2 max pooling 48 maps of 30×30 neurons 2×2

3 convolutional 48 maps of 26×26 neurons 5×5

4 max pooling 48 maps of 13×13 neurons 2×2

5 convolutional 48 map of 10×10 neurons 4×4

6 max pooling 48 maps of 5×5 neurons 2×2

7 convolutional 48 maps of 4×4 neurons 2×2

8 max pooling 48 maps of 2×2 neurons 2×2

9 fully connected 100 neurons -

10 fully connected 2 neurons -

To train our convolutional neural network, we use all available positive training samples

from our training images. From each image, we take all the exudate pixels as positive samples

and the same amount of pixels randomly sampled among all non-exudate pixels but without re-

petition. We perform this in order to have a balanced training set. Because exudates can appear

in different shapes and orientations andi in order to augment the training set we synthetically

add rotated and mirrored versions of training samples. Positive and negative sample are interle-
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aved so to have approximately equal number of positive and negative samples when randomly

sampling the training set. We take the green channel as the input to our network because it

contains the most contrast according to the literature [108].

Initial convolutional kernel weights were drawn from a Gaussian distribution with zero mean

and standard deviation of 0.01 and initial weights of fully connected layers were drawn from

a Gaussian distribution with zero mean and standard deviation of 0.1. Batch size during the

training phase was set to 100 and the network was trained for 200 000 iterations. The training

was stopped when there was no significant improvement of accuracy on the validation set.

7.4 Performance evaluation

Training and testing of the proposed deep learning method was done using a computer with a

Tesla K20C graphics card in order to speed the computation. The Caffe deep learning tool-

kit [109] was used in order to efficiently use the processing power of the Tesla graphics card for

computation of convolutional neural network parameters. It takes approximately 10 hours to

train the proposed neural network using the mentioned hardware. The testing was done on the

DRiDB database [97], which is explained in more detail in Chapter 3. The database was split

into two disjoint sets for training and testing purposes.

Table 7.2: Results of different exudate detection methods.

Method name Sensitivity PPV F-Score

Walter [84] 0.69 0.48 0.57

Sánchez [95] 0.34 0.61 0.44

Harangi [85] 0.66 0.65 0.66

Harangi [93] 0.71 0.66 0.68

Amel [91] 0.41 0.09 0.15

Weighted ensemble based exudate detection method 0.75 0.77 0.76

Expert system based exudate detection method 0.78 0.78 0.78

To test the method the ground truth data available in the mentioned datasets was used. For

each image, number of true positives (TP), false positives (FP) and false negatives (FN) is

calculated. The procedure for calculating the number of true positives, false positives and false

negatives is explained in performance evaluation section in Chapter 6.

Table 7.2 presents the results of the experimental validation after 3-fold cross-validation for

the DRiDB database. The proposed method outperforms all algorithms used in the validation

process. In Fig. 7.9 the results of the proposed method can be seen. Also, we can notice

that the performance is better compared to the original exudate detection method presented in
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Fig. 7.9: Result obtained using the proposed deep learning based exudate detection method. Green:
True positives, Blue: False positives, Cyan: False negatives

Chapter 6. From the example output image, it can be seen that the method misses small exudate

groups but the main parts are detected properly.
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Chapter 8

Conclusion

In the doctoral thesis developed methods for early automated detection of diabetic retinopathy

were presented. The methods are based on advanced image processing and analysis algorithms,

which use machine learning techniques in order to improve the overall performance.

During thesis work a database of 50 fundus images with labels was created. The database

contains normal and pathological structures labeled by five opthatmological experts. Experts

have labeled blood vessels, marked location of the optic disk and the macula region, segmented

soft and hard exudates, small microaneurysms, small and large hemorrhages and neovasculari-

zations. The database can be used for both method evaluation and algorithm development and

is a very helpful tool for the diabetic research community. The database could be improved by

gathering more images and accompanying labels. This would increase the usability of the data-

base for algorithm development especially for deep learning approaches where large quantities

of labeled data is required.

Developed optic disc detection method combines multiple simple optic detection algorithms

to achieve good performance. Some of the methods, which are part of the ensemble are based

on brightness thresholding, pyramidal decomposition of the input image, hough transform of

main blood vessels, entropy filtering and are combined using a simple weighting scheme. The

weights are found using the simulated annealing algorithm where number of missclassified

images is the energy optimization function used. From our analysis the method has shown

good performance over multiple test databases and more performance could be extracted if new

optic disc detection methods were to be added in the pool of detectors. The method works well

in both images without any pathologies and with images where severe pathologies related to

diabetic retinopathy are present.

Exudates are an important visual symptom of diabetic retinopathy and early detection of

exudates is of paramount importance in automated diabetic retinopathy screening systems. We

developed an expert system based on ophthalmological knowledge which uses outputs of nor-

mal and pathological structure detectors in order to increase the overall exudate detection per-
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formance. In order to detect exudate candidates, a deep convolutional neural network was tra-

ined on gathered database, which shows the algorithm development potential of our database.

Overall performance of the exudate detection algorithm could be improved by incorporating

even more ophthalmological knowledge in the segmentation procedure. Also, the performance

could be improved by using newer and more advanced deep convolutional networks [110, 111].

In [112] authors presented a deep neural network, which can efficiently learn to make dense

predictions for per-pixel tasks like semantic image segmentation. In our case, we have each

exudate pixel segmented so applying such a network would be straightforward and should yield

better results compared to our sliding window deep neural network approach.

The blood vessel detection method developed during thesis work is based on a model-based

multi-scale approach. The method starts with an initial point and then estimates the vessel

width and orientation within a local region at the processed point. After the vessel width and

orientation are estimated, a small step is taken in the direction of the vessel direction. This

procedure is repeated until the full vessel is traced out. The vessel width and orientation estima-

tion is based on an model based optimization procedure. Using a two-dimensional model and

a two-dimensional local region around the current point increases the accuracy and robustness

of blood vessel orientation and width estimation procedure. The optimization procedure is not

applied to raw pixel values of the image but to the blood vessel enhanced image where blood

vessel enhancing is performed using a multi-scale Frangi vesselness filter. The method shows

promising results and can be used as a part of a system for early detection of diabetic retino-

pathy, where location of blood vessels is important for locating other landmark points such as

the optic disc or helping with pathology detection.

The focus of the thesis was on developing individual detection methods for optical disc

localization, blood vessel segmentation and exudate segmentation. Due to increased capabilities

of deep neural networks an area of improvement would be to use a holistic approach, where a

single deep neural network could be applied directly on a particular fundus image and directly

output the diabetic retinopathy severity level. In order to implement such a system a larger pool

of images is required. But in this case only one label per image would be required so it would

be much easier to gather such a dataset.
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2. Prentašić, P., Lončarić, S., Detection of exudates in fundus photographs using deep neural

networks and anatomical landmark detection fusion, Computer methods and programs in

biomedicine, Vol. 137, 2016, 281-292.

76



Biography
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