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A B S T R A C T

The need for the detection and monitoring of changes in the environment is greater today than ever before.
Through classification we can obtain insights into the state of the land surface. No known classification methods
are fully automated, and their implementation requires preprocessing and postprocessing. This research provides
a novel, fully automatic and cost-effective land cover classification method (ALCC). This novel automatic
method does not require prior knowledge of the terrain or the assignment of training samples. The ALCC method
is based on unsupervised classification methods, which is performed over the spectral indices rasters and six
Landsat-8 30m spatial resolution bands. The method was tested in three different study areas. Furthermore, all
three study areas were classified by common supervised classification methods, namely, the Maximum
Likelihood Classification (MLC) and the Random Forests (RF) method. For comparison accuracy, assessment of
the three applied classification methods, namely, the figure of merit, overall agreement, omission and com-
mission, were used. The results show that the overall agreement of the new automatic classification method for
the Rijeka, Zagreb and Sarajevo study areas is 90.0%, 89.5% and 89.9%, respectively, and the overall agreement
always falls between the overall agreement of the MLC method (88.1%, 88.9% and 86.7%, respectively) and the
overall agreement of the RF method of classification (91.7%, 90.4% and 90.2%, respectively). These results
confirm that this new automatic, cost-effective and accurate land cover classification method can be easily
applied for numerous remote sensing applications.

1. Introduction

Currently, many orbiting optical sensors collect land surface data at
high spatial and temporal resolutions (Landsat-8, Sentinel-2, RapidEye,
PlanetScope, etc.). The main purpose of such satellites is to monitor and
detect changes in the Earth's land cover (Clark, Aide, & Riner, 2012;
Roy et al., 2014). One of the ways of detecting land cover changes is
through the classification of satellite imagery (Xian & Homer, 2010).
Change detection can be accomplished using a time series of land cover
classifications (Hermosilla, Wulder, White, Coops, & Hobart, 2015).

Land cover classification (LCC) methods for satellite imagery have
been developed and tested in various remote sensing studies (Foody,
2002; Gašparović & Jogun, 2018; Gislason, Benediktsson, & Sveinsson,
2006; Otukei & Blaschke, 2010; Pal & Mather, 2003). There are two
basic approaches to classification of remotely sensed imagery, namely,
supervised and unsupervised (Mather & Tso, 2016). Supervised
methods for LCC require prior knowledge of the terrain, as well as
training samples to classify the satellite imagery. Many researchers
have developed and studied a supervised method for LCC, such as the
Maximum Likelihood Classifier (MLC) (Otukei & Blaschke, 2010),

Random Forests (RF) (Breiman, 2001) and Support Vector Machine
(SVM) (Suykens & Vandewalle, 1999) methods. The basic deficiency of
such methods is the need for operator intervention, which slows the
processing chain. Unsupervised classification methods are much faster
and easier to process and do not require prior knowledge of the terrain
and training samples assignment. These methods only require the
number of classes involved and the algorithm then classifies the entire
scene according to the radiometric characteristics of the pixels. The
drawback is that the user must identify real land cover classes based on
an unsupervised calculation of these classes. There is a high probability
for mixed classes and for other problems. Frequently used methods for
unsupervised LCC in use today are k-means (Hartigan & Wong, 1979)
and ISODATA (Bezdek, 1980). Recently developed LCC methods are
based on machine and deep learning (LeCun, Bengio, & Hinton, 2015;
Nasrabadi, 2007), e.g., Neural Networks (Krizhevsky, Sutskever, &
Hinton, 2012) and TensorFlow (Abadi et al., 2016). In such methods, it
is also necessary to provide a certain number of known training samples
for the learning algorithm process. Using the training algorithm, LCC
can be applied to similar imagery.

In remote sensing, for fast and accurate detection, monitoring and
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classification of various land cover classes, various spectral indices have
been proposed (Estoque & Murayama, 2015). Spectral indices can also
be used to emphasize areas where certain classes are dominant. The
normalized difference vegetation index (NDVI) (Tucker, 1979) and soil-
adjusted vegetation index (SAVI) (Huete, 1988) emphasize vegetation
over other types of land, while the normalized difference water index
(NDWI) (Gao, 1996) and modified NDWI (MNDWI) (Xu, 2006) high-
light water and the normalized difference bare land index (NBLI) (Li
et al., 2017) and normalized difference bareness index (NDBaI) (Zhao &
Chen, 2005) indicate bare land.

Influenced by the advantages and disadvantages of the LCC methods
mentioned above, this research aims to develop a method for auto-
matic, fast and accurate LCC of satellite images. This newly developed
method, ALCC (Automatic Cost-effective Method for Land Cover
Classification), is automatic and eliminates the need for training sam-
ples or for field knowledge. Furthermore, this method is based on un-
supervised classification methods supported by certain types of spectral
indices. Similar approaches have thus far been described by some au-
thors (Baraldi, 2011; Baraldi & Boschetti, 2012; Baraldi, Bruzzone, &
Blonda, 2005; Baraldi, Puzzolo, Blonda, Bruzzone, & Tarantino, 2006;
Li, Wang, Zhong, Zhang, & Liu, 2017). The present method is fully
developed, based on open-source software and is applicable to a large
number of different types of research. Fast and automatic access to
satellite imagery classification allows researchers to create large
amounts of spatial data for detection and monitoring changes of the
terrestrial surface.

2. Study area and data

For this research, three different study areas covering highly diverse
landscapes were selected (Fig. 1). Each study area contained water,
vegetation, bare land and urban areas. The first study area covered the
area surrounded the city of Rijeka, in the Republic of Croatia and re-
presented a Mediterranean landscape. The second study area covered
the region around the capital of Croatia, Zagreb. The third study area
was in central Bosnia and Herzegovina and focused on the capital,
Sarajevo. The Zagreb and Sarajevo study areas were similar and

represent a continental landscape; however, relief was uniform in the
Zagreb study area while the Sarajevo study area was dominated by
vegetation and mountains. Each study area had the same dimensions
(57 km×56 km).

Satellite imagery used for this research consisted of cloud-free
Landsat-8 imagery (Table 1), obtained during the summer (July or
August). Landsat-8 satellite imagery was downloaded from the USGS
Earth Explorer service (Roy et al., 2014; https://earthexplorer.usgs.
gov/).

The Landsat-8 satellite payload consists of two scientific instru-
ments: The Operational Land Imager (OLI) and the Thermal Infrared
Sensor (TIRS). These two sensors provide seasonal coverage of the
global landmass at a spatial resolution of 30m for the visible, near-
infrared, and shortwave infrared bands, 100m for the thermal band,
and 15m for the panchromatic band. The Landsat-8 scene size is
185 km×180 km (Roy et al., 2014).

3. Methods

A novel method for automatic land cover classification (ALCC) using
Landsat satellite imagery was developed in this research. The method is
based on a combination of spectral indices and k-means unsupervised
classification. For clarity, the new automatic land cover classification
method described in this section is divided into three main steps de-
scribed in the following subsections. Furthermore, the classification
accuracy assessment methodology is presented.

3.1. Preprocessing

The atmosphere exerts an influence on radiation signals recorded by
satellite sensors through scattering, absorbing and refracting light;
therefore, when the land surface reflectance is measured, an atmo-
spheric correction must be performed to correct for atmospheric effects
on satellite scenes (Zhang, He, & Wang, 2010). The Dark Object Sub-
traction 1 (DOS1) atmospheric correction assumes that the atmospheric
transmittance in the illumination direction and in the viewing direction
are in unison and that the diffuse downwelling irradiance is zero
(Chavez, 1989). This method has been found to be data dependent and
is well accepted by the geospatial community for correcting light
scattering in remote sensing data (Song, Woodcock, Seto, Lenney, &
Macomber, 2001). The DOS1 atmospheric correction was performed in
the QGIS software (version 2.18.19). The brightness temperature for
conversion to degrees Celsius was made for Landsat-8 band 10
(Thermal Infrared band, TIR) during preprocessing in the QGIS soft-
ware. Observed band 10 thermal radiance is transformed into digital
numbers (DN) for storage and transfer. By transforming the DN values
into thermal radiance, followed by conversion of radiance into bright-
ness temperature, it is possible to compute the brightness temperature
from Landsat-8 data (Wang et al., 2015). Satellite imagery that includes
the first and second study areas were georeferenced to the WGS 84 UTM
33N coordinate system, while satellite imagery that includes the third
study area were georeferenced to the WGS 84 UTM 34N coordinate
system. Finally, for visualization of results, all study areas were geor-
eferenced to the WGS 84 UTM 33 N coordinate system.

3.2. Spectral indices

Interaction with radiation of each specific substrate is described by
the spectral signature whose properties are the basis for developing
spectral indices. Spectral indices emphasize certain characteristics of
land cover, which are formed as a combination of multispectral bands.
An index is defined as a synthetic variable having an ordinal scale
characterizing the intensity or the extension of overly complex phe-
nomenon to be separated into a manageable number of parameters
(Caloz & Collet, 2001).

For the purposes of this research, it is necessary to classify the

Fig. 1. a) Geographic location of the study areas; b) satellite image of the Rijeka
study area; c) satellite image of the Zagreb study area; d) satellite image of the
Sarajevo study area. All satellite images use the Landsat-8 “true colour” com-
posite (4–3–2).
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Landsat satellite imagery for the five most common land cover classes,
namely, water, high vegetation, low vegetation, bare land and built-up
(Table 2), based on similar research by Rawat & Kumar, 2015;
Natarajan, Latva-Käyrä, Zyadin, & Pelkonen, 2016; Yu, Zhou, Qian, &
Yan, 2016; Baskan, Dengiz, & Demirag, 2017; Li, Wang, Zhong, Zhang,
& Liu, 2017.

Spectral indices were used to emphasize areas where certain land
cover classes dominate. Currently, in order to make spectral indices
more accurate, scientists test existing spectral indices, create new in-
dices, and test their accuracy. For the purpose of this research, i.e., to
emphasize the water, high vegetation, low vegetation, bare land, and
built-up classes, several spectral indices such as the normalized differ-
ence water index (NDWI) (Gao, 1996), the enhanced vegetation index
(EVI2) (Jiang, Huete, Didan, & Miura, 2008), the index-based built-up
index (IBI) (Xu, 2008), and the enhanced built-up and bareness index
(EBBI) (As-syakur, Adnyana, Arthana, & Nuarsa, 2012) were tested.
Empirical spectral indices, including the modified normalized differ-
ence water index (MNDWI) (Xu, 2006), the normalized difference ve-
getation index (NDVI) (Tucker, 1979), the normalized difference
bareness index (NDBaI) (Zhao & Chen, 2005) and the normalized dif-
ference bare land index (NBLI) (Li, Wang, Zhong, Su, et al., 2017), have
proven to be most appropriate for our studies.

The MNDWI, described by Xu (2006), is one of the most widely used
water indices for a variety of applications, including surface water
mapping, land cover change analyses and ecological research
(Davranche, Lefebvre, & Poulin, 2010; Duan & Bastiaanssen, 2013;
Feyisa, Meilby, Fensholt, & Proud, 2014; Hui, Xu, Huang, Yu, & Gong,
2008; Poulin, Davranche, & Lefebvre, 2010). The MNDWI can be ex-
pressed as follows (Li, Jiang, & Feng, 2014):

=
−

+

MNDWI Green SWIR1
Green SWIR1 (1)

where Green is a green band, such as Landsat-8 band 3
(0.533–0.590 μm) and SWIR1 is a shortwave infrared band, such as
Landsat-8 band 6 (1.566–1.651 μm). Water has positive values for this
index and for built-up land, such as soil and vegetation, has negative
values (Xu, 2006).

The NDVI is often used as a monitoring tool for vegetation health
and dynamics, enabling easy temporal and spatial comparisons
(Myneni, Keeling, Tucker, Asrar, & Nemani, 1997). The NDVI is derived
from the red and near-infrared reflectance ratio (Myneni, Hall, Sellers,
& Marshak, 1995; Running, 1990; Tucker, 1979):

=
−

+

NDVI NIR Red
NIR Red (2)

where NIR is a near-infrared band such as Landsat-8 band 5

(0.851–0.879 μm) and Red is a red band such as Landsat-8 band 4
(0.636–0.673 μm). NDVI values thus range from −1 to +1, where
negative values correspond to the absence of vegetation (Myneni et al.,
1995).

According to Zhao and Chen (2005), NDBaI enables differentiation
of primary bare lands, secondary bare lands and fallow lands. This
index is based on significant differences in the spectral signature in the
near-infrared between bare soil and the background. NDBaI is calcu-
lated as follows (Zhao & Chen, 2005):

=
−

+

NDBaI SWIR1 TIR
SWIR1 TIR (3)

where SWIR1 is a short-wavelength infrared band such as Landsat-8
band 6 (1.566–1.651 μm) and TIR is thermal infrared band such as
Landsat-8 band 10 (10.600–11.190 μm). By selecting an appropriate
threshold, different types of bare land can be detected (Zhao & Chen,
2005).

NBLI (Li, Wang, Zhong, Su, et al., 2017) separates the bare land
from the other land cover classes. In particular, the difference between
bare land and built-up areas becomes great enough to be easily sepa-
rated. NBLI is defined as follows (Li, Wang, Zhong, Su, et al., 2017):

=
−

+

NBLI Red TIR
Red TIR

,
(4)

where Red is Landsat-8 band 4 (0.636–0.673 μm) and TIR is Landsat-8
band 10 (10.600–11.190 μm). A particular problem is that water bodies
containing large amounts of suspended soil may have values similar to
those of bare land. To avoid this problem, water must be removed in
advance (Li, Wang, Zhong, Su, et al., 2017; Li, Wang, Zhong, Zhang, &
Liu, 2017).

For all three study areas, in order to emphasize the areas dominated
by a particular land cover, the following four new rasters were created:
the modified normalized difference water index (MNDWI), the nor-
malized difference vegetation index (NDVI), the normalized difference
bareness index (NDBaI) and the normalized difference bare land index
(NBLI) by use of the SAGA GIS software (version 6.2.0).

3.3. Using k-means unsupervised classification

The primary problem with automatic extraction of individual land
cover areas from a single index raster is determination of the threshold
value. Index value ranges for different land cover types fall in certain
ranges and are specific to each satellite imagery scene (Lee, Chen,
Wang, & Zhao, 2011). Determining thresholds for separation of in-
dividual land cover types in each satellite image is a difficult and
lengthy process (Xian, Homer, & Fry, 2009; Zuur, Ieno, & Smith, 2007).
According to Li, Wang, Zhong, Su, et al. (2017), k-means unsupervised
classification can be used to extract a specific land cover. The k-means
algorithm is a popular and well known algorithm for partitioning data
into k clusters. It is assumed that the number of clusters, k, is known in
advance (Gllavata, Ewerth, & Freisleben, 2004). Using k-means un-
supervised classification, water, vegetation, bare land and built-up
classes are extracted from MNDWI, NDVI, NDBaI and NBLI rasters,
respectively. The novel ALCC method is developed by first distin-
guishing classes that show higher contrast to the rest of the satellite
scene imagery. Accordingly, the water class is first extracted from the
MNDWI raster; then, the high and low vegetation classes are extracted
from the NDVI raster, and finally, the bare land class is extracted from

Table 1
Landsat-8 satellite imagery used in this research.

Study area Sensing date Satellite imagery ID Path/row

Rijeka 5 August 2013 LC08_L1TP_190029_20130805_20170503_01_T1 190/29
Zagreb 19 July 2015 LC08_L1TP_189028_20150719_20170407_01_T1 189/28
Sarajevo 11 August 2017 LC08_L1TP_187030_20170811_20170824_01_T1 187/30

Table 2
Descriptions of land cover classes.

Class Description

Water All forms of water, such as seas, rivers, and lakes
High vegetation All types of forests and woody vegetation
Low vegetation Mixtures of cropland, grassland and other forms of

undergrowth
Bare land Empty surfaces, such as soil, rocks, and karst plains
Built-up Concrete and asphalt surfaces, such as buildings, roads, and

airports
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the NDBaI and NBLI rasters. Fig. 2 shows the workflow for the ALCC
method.

First, the water is extracted from the MNDWI raster, using k-means
unsupervised classification, which splits the raster into two classes. The
class with the higher mean value represents water. The MNDWI raster is
divided into two new rasters, namely, MNDWI_water and MNDWI_land,
containing other land cover types (high and low vegetation, bare land,
built-up). The water class is removed from the NDVI raster. This raster
is then divided into three classes by k-means unsupervised classifica-
tion. The highest mean value class represents the high vegetation class,
the middle mean value class represents the low vegetation class, and the
lowest mean value class represents the other land cover types (bare land
and built-up). Three new rasters, namely, NDVI_lowveg, NDVI_highveg,
and NDVI_other, are created. From the NDBaI raster, water, low vege-
tation and high vegetation are removed. According to Li, Wang, Zhong,
Su, et al. (2017), it is possible to extract only bare land from the NDBaI
raster but, due to the small differences between the bare land and built-
up values and the specifics of karst relief (particularly noticeable in the
Rijeka study area) the raster NDBaI is divided into three classes. The
class with the highest mean value represents bare land, while the re-
maining two classes represent a built-up class and a bare land class
whose value is close to the value for the built-up class. Two new rasters,
NDBaI_bareland and NDBaI_others, are created. Finally, the NBLI which
contains only the remaining bare land class and built-up class is divided
into two classes using k-means unsupervised classification where a
higher mean value represents bare land and the second class represents

the built-up class. The classified scene is then generated by merging all
rasters with extracted certain land cover type in one raster. Based on
the above-described workflow (Fig. 2) and according to the mean value
of the classified indices, the automatic algorithm extracts the final land
cover classes.

For scientific curiosity, another variant of the ALCC method was
explored. The order of flow of the method is the same, but a k-means
unsupervised classification is performed over the rasters of individual
indices and another six Landsat-8 30m spatial resolution bands.

The algorithms for both variants of the method were created in
SAGA GIS, using the toolchain and are fully automated. Since SAGA GIS
is open-source software and is publicly available, implementation of
this method for future research is very accessible and straightforward.

3.4. Accuracy assessment

For comparison of the results of the novel ALCC method presented
in this study, all three study areas were classified using two commonly
used supervised classification methods: The Maximum Likelihood
Classification (MLC) and the Random Forests classification (RF). MLC is
one of the most widely used image processing routines in remote sen-
sing (Erbek, Özkan, & Taberner, 2004; Foody, Campbell, Trodd, &
Wood, 1992; Rawat & Kumar, 2015). Most current maximum likelihood
classifiers calculate relative class membership “likelihoods” in-
corporating all training sets for each pixel in an image. The resultant
most likely class identity is then assigned to the output image and the

Fig. 2. Workflow of the ALCC method.
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intermediate computational results are discarded (Bolstad & Lillesand,
1991). The RF method is an ensemble learning algorithm that produces
multiple decision trees based on a random subset of the training sam-
ples and the locations of splits within each decision tree are based on a
random subset of the input predictors (Belgiu & Drăguţ, 2016). Satellite
imagery scenes were divided into five classes (described in Table 2) by
MLC and RF supervised LCC methods. MLC and RF were performed on
the same training samples, which were collected by visual inspection of
RGB composite rasters from Landsat-8 at 30m spatial resolution and
from Sentinel-2 at 10m spatial resolution while using the closest ac-
quisition time of Sentinel-2 imagery to that of the Landsat-8 imagery
used.

The classification accuracy assessment was undertaken based on the
work of Gašparović and Jogun (2018). Reference samples for land cover
classification accuracy assessment were determined independently
from the classification results using Sentinel-2 and Landsat-8 satellite
imagery and without overlap with training samples. For the Rijeka
study area, 824 reference samples were collected, i.e., 1.06% of the
total area. A total of 553 reference samples were collected for the Za-
greb study area, i.e., 1.63% of the total area. For the Sarajevo study
area, 457 reference samples were collected, i.e., 1.46% of the total area.
Following Pontius and Millones (2011), the figure of merit (F), overall
agreement (A), omission (o) and commission (c) were used for quan-
titative accuracy assessment.

4. Results

As mentioned before, the first step after preprocessing was to create
rasters of individual spectral indices. Fig. 3 shows MNDWI, NDVI,
NDBaI and NBLI rasters.

From Fig. 3, we see that water in the MNDWI raster has the highest
value and is very well separated from the other land cover types. It is
also noticeable that vegetation is prominent in the NDVI raster. The
next two rasters, NDBaI and NBLI, show that bare land is clearly de-
fined.

A classified scene with five land cover classes was obtained by

automatic extraction of certain classes from the spectral indices rasters
(MNDWI, NDVI, NDBaI and NBLI) using k-means unsupervised classi-
fication. The two methods of automatic classification of the raster scene
differ in which input rasters for k-means unsupervised classification. In
the first method, k-means is performed only on the spectral indices
rasters, while in the second method k-means is performed on the
spectral indices rasters and the six Landsat-8 30m spatial resolution
bands (Fig. 4).

To achieve improved visual inspection, the Rijeka study area is di-
vided into two example subsets. By visual inspection of the classifica-
tion results and a comparison with the RGB composite, we observe that
the method using six bands and spectral indices rasters for the un-
supervised classification produced a better result. For example subset
no. 1, it is evident that the method using spectral indices and six bands
better separates bare land from the built-up class, while the method
using only the spectral indices rasters overstates the extent of the built-
up class. The difference between these two methods becomes much
greater for example subset no. 2. The karst relief contained in the bare
land class is better classified by the method that uses six bands and
spectral indices rasters. Both methods exhibit similar differentiation of
the water, low vegetation and high vegetation classes. To confirm these
statements objectively, an accuracy assessment of these two methods
was made (Table 3).

Table 3 confirms our observations based on the visual inspection.
The largest difference between the two variants of the novel method is
for the classification of the built-up class, where the classification ac-
curacy for the variant of our method which uses spectral indices and six
bands is better. The results obtained indicate that classification accu-
racy for all classes is much better when utilizing the version of our
method which incorporates spectral indices and six bands, with the
exception of classification accuracy for the low vegetation class. The
difference between the two variants of the method for classification
accuracy of the low vegetation class is small. Based on the previous
quantitative and visual assessment, the variant of the novel method
using spectral indices and six bands proves to be superior, and this is
the variant of our method that will be used in further research.

Fig. 3. a) MNDWI; b) NDVI; c) NDBaI; d) NBLI rasters in the Rijeka study area.
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To demonstrate the applicability of the ALCC method, two more
scenes, the Zagreb study area and the Sarajevo study area, were clas-
sified. The supervised LCC based RF and MLC methods were applied to
all three study areas. The average time required to perform ALCC, MLC
and RF classification methods was 660 s, 120 s and 30 s, respectively.
Additionally, the average time required to perform RF and MLC clas-
sifications should be added to the time required for creating re-
presentative training samples, which is approximately 1500 s. Based on
the previously mentioned duration for all steps needed for land cover
classification procedures, it is obvious that our ALCC method is ap-
proximately, when comparing relative times, three times faster than
normal supervised (MLC or RF) methods (included time for training
sample collection). To better compare the results of the proposed au-
tomatic classification method with the usual methods of supervised
classification, Fig. 5 was constructed.

First, Fig. 5 shows wide applications of the ALCC method, which can

be successfully implemented for different types of satellite imagery
scenes. Second, the high vegetation and low vegetation classes were
classified quite similarly using all three methods. Furthermore, for the
example subset no. 3, the ALCC method classified clouds as water,
while the other two methods classified clouds as bare land. Ad-
ditionally, only the ALCC method, e.g., subset no. 4, classified small
rivers as water. Visual inspection has determined that RF classifies the
built-up class most accurately while MLC overestimates the built-up
class and, conversely, the proposed method underestimates the built-up
class. The ALCC method overestimates the bare land class, whereas the
MLC method underestimates this class. To confirm the visual analysis,
the results of accuracy assessment for all classification methods are
shown in Table 4.

The classification accuracy for water was similar for all classifica-
tions, except in the Sarajevo study area, where the ALCC method gave
the best results. The ALCC method proved to be the best method for

Fig. 4. The results of automatic classification in the Rijeka study area: a) RGB composite; b) results of the method in which k-means is performed on rasters of spectral
indices with six Landsat-8 30m spatial resolution bands; c) results of the method in which k-means is performed based on rasters of spectral indices.

Table 3
Classification accuracies for two variants (spectral indices, spectral indices and six bands) of the novel ALCC method for the Rijeka study area.

ALCC method variants Water High vegetation Low vegetation Built-up Bare land A

F o c F o c F o c F o c F o c

Spectral indices 99.1 < 0.1 0.4 89.3 1.6 0.8 67.6 2.2 2.4 40.1 3.9 4.8 58.8 3.8 3.3 88.4
Spectral indices and six bands 99.8 < 0.1 0.1 90.3 1.3 0.8 66.8 2.1 2.8 49.2 2.8 4.2 63.8 3.7 2.1 90.0

F: figure of merit (%); o: omission (%); c: commission (%); A: overall agreement (%).
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Fig. 5. The results of applied classification methods for the different study areas: a) RGB composite; b) MLC; c) ALCC; d) RF.
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extracting the water class in the Rijeka study area. The figure of merit
for high vegetation was over 90%, except when the MLC classification
method was used in the Rijeka study area. The classification accuracy
for the high vegetation class was the best for the RF method, except in
the Sarajevo study area, where the ALCC method yielded the best re-
sults. The classification accuracy for low vegetation was low for all
classifications on all study areas, but the ALCC method gave a slightly
better result for all study areas. The classification accuracy for the built-
up class was lowest for the Rijeka study area for all classification
methods. In the Rijeka study area, the ALCC method yielded the least
accurate results while the largest difference between omission and
commission was for the MLC method. The worst accuracy for the bare
land class was in the Zagreb study area when using the MLC classifi-
cation method, while the RF method provided the best results for all
study areas. Finally, it is important to note that the overall agreement of
the ALCC method always fell between the overall agreements of the
MLC and RF methods and was much closer to the RF. According to this
accuracy assessment, the RF classification provided a better overall
classification while ALCC better classifies the water and low vegetation
classes. As expected, MLC has lower accuracy than RF and ALCC.

5. Discussion

Global and regional assessments of land cover and of land use status
and changes are of fundamental importance for climate and environ-
mental change studies (Foley et al., 2005; Matthews, Weaver, Meissner,
Gillett, & Eby, 2004; Turner, Lambin, & Reenberg, 2007). Through
classification, we can obtain insights into the state of the land surface.
Remote sensing classification is a complex process and requires con-
sideration of many factors. The major steps for image classification may
include determination of a suitable classification system, selection of
training samples, image preprocessing, feature extraction, selection of
suitable classification approaches, post-classification processing, and
accuracy assessment (Lu & Weng, 2007). Although there are many
classification methods in use, it cannot be stated with confidence which
is the most complete. Application of the various methods depends on
the input data and on the use of the final classification results. For the
requirements of large area analysis, all known methods require much
time and experience in implementation, analysis and interpretation.
This research contributes to classification methods by demonstrating
the importance of our new automatic method. Although Baraldi et al.
(2005) and Baraldi et al. (2006) described the fundamentals of the
automatic classification method, this research has modified these ex-
isting methods and approaches and has also compared the accuracy of
known and novel ALCC classification methods.

Consistent with recent research advocating the importance of using
spectral indices (Baraldi et al., 2006; Deilami, Kamruzzaman, & Hayes,
2016; Lee et al., 2011; Li et al., 2014; Xu, 2007; Yang, Weisberg, &
Bristow, 2012), our findings indicate that using MNDWI, NDVI, NDBaI
and NBLI spectral indices rasters can highlight certain land cover types,

being the basis for their extraction. Furthermore, the workflow used in
this research is quite simple and provides a method that is easy to
implement and for which execution time is short. Additionally, our
workflow results in no unclassified pixels, which occurs for some clas-
sification methods. To our knowledge, this is the first research that
provides an automatic classification method based on spectral indices
and six Landsat-8 bands. By objective and subjective analysis, this
method, using the spectral indices and six band rasters, has been de-
monstrated to be superior. The results of this study show that the ALCC
method is applicable to landscapes containing various land cover types
and whose final classification is similar to the final classification of
already well-known and applied classification methods (MLC and RF).
Furthermore, we compared the accuracy assessment of the three clas-
sification methods and found that their accuracy assessment is most
similar for the high vegetation class. The best accuracy assessment for
the low vegetation class uses an ALCC method, as expected; the k-means
methods use statistical indicators for class separation, while supervised
classification uses data from the subject to determine training samples.
Moreover, the ALCC method distinguishes the water class most accu-
rately, as is demonstrated in the Sarajevo study area. The three methods
of classification used in this study have the highest difference in accu-
racy for classifying the built-up and bare land classes. The ALCC
method has been shown as the least accurate for extracting the built-up
class, which is quite logical and justified. First, the proposed method is
based on spectral indices, where calculation of spectral indices em-
phasizing built-up areas includes a Landsat-8 thermal band with an
original spectral resolution of 100m. Second, mixed pixels have been
recognized as a problem impacting effective use of remote sensing data
for urban land use/land cover classification (Cracknell, 1998; Fisher,
1997). Due to the use of a thermal band related to the urban heat island
(UHI) effect, separation of the built-up and bare land classes is not
straightforward. The UHI effect is a phenomenon in which urban areas
experience higher temperatures compared to surrounding non-urban
areas (Deilami et al., 2016). Moreover, the nature of the MLC classifi-
cation method is such that it overestimates the built-up class. Hence, its
accuracy assessment of the built-up class is higher. On the other hand,
by comparing the MLC and ALCC methods, the ALCC method classifies
the bare land class with higher accuracy. To improve the performance
of the ALCC method in build-up areas, future studies should include
pansharpening (Aiazzi, Baronti, & Selva, 2007; Alparone et al., 2007) or
fusion with other sensors (Gašparović & Jogun, 2018; Zeng, Huang, Liu,
Zhang, & Zou, 2010). By visual inspection as well as statistical in-
dicators, the RF method has shown to be the best method of classifi-
cation, followed by an ALCC method. RF is efficient for large databases
and is relatively robust in the presence of outliers and noise such as the
fast classification method (Breiman, 2001; Feng, Liu, & Gong, 2015;
Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez,
2012). When classifying large areas by the RF method, much time is lost
for collecting the correct training samples (approximately 1500 s). Al-
though the RF gave slightly better classification results than the

Table 4
Classification accuracies for three classification methods for the three study areas.

Study area Classification method Water High vegetation Low vegetation Built-up Bare land A

F o c F o c F o c F o c F o c

Rijeka MLC 99.5 0.2 < 0.1 85.3 2.8 0.4 55.8 3.2 3.7 51.6 1.4 6.3 62.8 4.3 1.5 88.1
ALCC 99.8 < 0.1 0.1 90.3 1.3 0.8 66.8 2.1 2.8 49.2 2.8 4.2 63.8 3.7 2.1 90.0
RF 99.6 < 0.1 0.2 92.4 1.3 0.4 66.4 2.9 1.7 62.6 2.4 1.9 67.8 1.7 4.2 91.7

Zagreb MLC 94.3 0.3 0.0 91.5 3.3 1.6 69.7 3.0 4.0 65.5 2.5 2.0 53.2 1.9 3.5 88.9
ALCC 97.9 0.1 < 0.1 93.2 0.4 3.7 69.7 5.0 1.3 59.6 4.1 0.6 55.3 0.9 4.9 89.5
RF 98.2 0.1 < 0.1 93.3 0.6 3.4 69.7 4.8 1.5 69.8 2.3 1.4 55.8 1.8 3.2 90.4

Sarajevo MLC 0.0 2.1 0.0 91.4 5.0 0.2 59.7 1.1 6.9 60.5 0.3 5.3 66.2 4.8 0.9 86.7
ALCC 98.8 < 0.1 < 0.1 94.0 1.6 2.1 61.7 2.6 3.9 66.9 1.5 2.1 64.4 4.5 1.9 89.9
RF 81.5 0.1 0.3 93.7 1.9 2.0 60.5 2.3 4.8 75.3 1.1 1.5 67.3 4.4 1.2 90.2

F: figure of merit (%); o: omission (%); c: commission (%); A: overall agreement (%).
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proposed ALCC method, our proposed method would be a more cost-
effective choice as it is fully automated through use of the toolchain in
SAGA GIS and only requires preprocessing of satellite imagery.

One of the limitations of this research and of our novel method is
the predetermined number of classes. A small number of classes (only
five) are used in this research as this is common practice when devel-
oping new approaches and methods (Baskan et al., 2017; Li, Wang,
Zhong, Zhang, & Liu, 2017; Natarajan et al., 2016; Rawat & Kumar,
2015; Yu et al., 2016). In future studies, it will be necessary to explore
the possibility of defining more classes, such as dividing the low ve-
getation class into cropland and grassland classes. Additionally, in fu-
ture work, the method should be applied to areas that are shaded and
covered with clouds. The main limitation of this research is that the
method is based on a thermal band which does not use all available
high-resolution sensors. To apply the automatic method to high-re-
solution data, future studies should develop spectral indices that extract
individual land cover types equally well, but which would not be based
on the thermal band.

6. Conclusions

Presently, in a world undergoing rapid changes in the environment,
it is extremely important to detect changes on the terrestrial surface.
Remote sensing plays a major role in detecting changes in large areas of
the surface of the earth. To detect such changes, it is necessary to
classify satellite imagery scenes. All known and applied classification
methods are limited by the time spent in preprocessing or postproces-
sing.

With a goal of improving existing classification methods, we have
created a novel automatic classification method based on the use of
spectral indices rasters and unsupervised classification k-means. In
terms of accuracy assessment, the version of the ALCC which used both
spectral indices and six Landsat 8 OLI bands as input to the k-means
clustering was found to be superior to the version that used spectral
indices alone. This novel method is automatic, cost-effective, practical,
easy to use in other study areas, does not require a large number of
computer operations and, most importantly, is of high accuracy.

The subject and purpose of this research, as well as the novel
method based on open-source software, are of great importance for
global applications. Global application of the ALCC method, when using
different sensors and applied to different study areas, can remove cur-
rent limitations of our classification methods and provide improve-
ments.
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