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Axion helioscopes search for solar axions and axionlike particles via inverse Primakoff conversion in
strong laboratory magnets pointed at the Sun. While helioscopes can always measure the axion coupling to
photons, the conversion signal is independent of the mass for axions lighter than around 0.02 eV. Masses
above this value on the other hand have suppressed signals due to axion-photon oscillations which destroy
the coherence of the conversion along the magnet. However, the spectral oscillations present in the axion
conversion signal between these two regimes are highly dependent on the axion mass. We show that these
oscillations are observable given realistic energy resolutions and can be used to determine the axion mass to
within percent-level accuracies. Using projections for the upcoming helioscope International Axion
Observatory, we demonstrate that >3σ sensitivity to a nonzero axion mass is possible between 3 × 10−3

and 10−1 eV for both the Primakoff and axion-electron solar fluxes.
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I. INTRODUCTION

Axions [1–5] and axionlike particles [6] (hereafter
referred to as axions) are low-mass pseudoscalars that
are expected to couple extremely weakly to standard model
fields. The coupling of axions to two photons is of
particular interest as it is guaranteed—barring any acci-
dental cancellations—for “QCD” axions involved in the
well-known solution to the strong CP problem [1,2].
This coupling is potentially observable if one is able to
coherently boost axion-photon conversion inside a strong
macroscopic magnetic field [7–9]. Three established
experimental approaches use this coherent conversion:
light-shining-through-wall (LSW) experiments use high-
intensity light sources and strong magnetic fields to
produce axions in a laboratory [10–12], haloscopes search
for relic axions that may constitute the dark matter (DM)
halo of our galaxy [13–20], and helioscopes search for the
axions that may be emitted by the Sun [21–26]. See
Ref. [27] for a recent review of experimental searches
for axions.

A helioscope technique aims to observe the precious few
solar axions converting into x rays inside a long transverse
magnetic field. The expected number of converted photons
is given by a convolution of the solar axion spectrum and
the axion-photon conversion probability. For axion masses
below a critical value the conversion probability is effec-
tively constant over the full spectrum of axions but the
resulting signal is insensitive to the value of the mass ma.
Above this value, the photons converting from axions at
different positions along the magnet interfere destructively.
Although this destructive interference reduces the strength
of the observable signal overall, the resulting spectral
oscillations introduce a strong dependence on ma. Hence
with a large enough and sensitive enough helioscope, and
an x-ray detector with good energy resolution, a measure-
ment of the axion mass may in fact be possible. This effect
was highlighted as potentially exploitable for CAST in
Ref. [23], but a detailed exploration of its utility for the
International Axion Observatory (IAXO) has not yet been
performed. Understanding how the effect can be used is
important if we wish to measure the axion mass below
∼0.01 eV. The feasible step sizes of a buffer gas density scan
below this point would not be small enough to make a
measurement that distinguishes the massive axion from
ma ¼ 0.
An investigation into the measurability of the axion mass

in a helioscope is extremely well motivated. First, while the
presence of a significant x-ray flux above background may
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well imply the existence of a new pseudoscalar behaving
like an axion, only a measurement of the mass can enable
a particle identification. This step is essential for relating
the new particle to a QCD axion model or otherwise.
Moreover, a helioscopic measurement of the mass may well
turn out to be a crucial step in discovering dark matter. The
most powerful technologies for axion haloscopes require
the precise tuning of a device into the frequency of galactic
axion oscillations; given essentially by the axion mass.
Since the signal is very weak, and technological restrictions
limit the range of frequencies over which any one experi-
ment can operate at one time, the search for DM axions
usually requires very slow scans over very narrow band-
widths. Even then, while a positive signal does immediately
provide the axion mass, the coupling to photons gaγ will
require a different measurement. In contrast to helioscopes,
a haloscope has the orthogonal problem in that they are
only sensitive to the combination g2aγξaρ0, where ρ0 is the
local DM density, and ξa is the fraction made up of axions.
In the event of a positive signal, a haloscope cannot provide
gaγ, unless an assumption is made on ξa.
A helioscope is therefore manifestly complementary. For

example, if the axion is found first by IAXO, this detection
would serve as an input to design DM searches.
Experiments for this mass range such as the proposed
optical haloscopes [28] are fraught with difficulty and
require fine-tuned designs with limited ranges of mass
sensitivity. Nevertheless the motivation is strong, if a
detection was possible in both a haloscope and a helioscope
this would eventually enable the determination of the
fraction of dark matter in axionic form.1 In the range of
masses accessible to a helioscope, the QCD axion is
generally associated with being a subdominant DM com-
ponent in the simplest cosmologies. Although given the
uncertainties, it could in fact easily account for all of it in
both the postinflationary [29–32] and preinflationary sce-
narios [33,34]. Furthermore there are long-standing astro-
physical anomalies for which an axion in this range has
been shown to be a viable explanation [35–46].
We investigate the observability of the axion mass in the

International Axion Observatory [47,48]. IAXO aims to be
sensitive to QCD axion-photon couplings, down to a few
10−12 GeV−1. This value is more than one order of
magnitude beyond the existing experimental and astro-
physical bounds, shown in Fig. 1. Along with these bounds
we display the main result of this paper: the median limit
for a 3σ discovery of the axion mass in the vacuum phase of
IAXO (and babyIAXO, discussed in Sec. IV C). We shade
in various hues of red (green) experimental (astrophysical)
exclusion limits (opaque) and projections (transparent):
solar neutrinos [49], horizontal branch stars [41], SN1987A

[50], the Perseus cluster [51], H.E.S.S. [52], Fermi-LAT
[53], telescopes [54], LSW [10,11], CAST [26], RBFþ UF
[55,56], ADMX [57], HAYSTAC [14], ABRACADABRA
[58], MADMAX [16], KLASH [17], topological insulators
[59], and optical haloscopes [28].
The plan of the paper is as follows. In Sec. II we outline

the calculation of an axion signal inside IAXO and describe
the axion mass dependence that we use to derive projec-
tions for its discovery using the statistical methodology
outlined in Sec. III. In Sec. IV we demonstrate how well
IAXO can distinguish the massive axion from a massless
axion and the accuracy to which the axion mass can be
measured. In Sec. V we conclude.
The results presented in this work are reproducible via

publicly available PYTHON notebooks.2

II. THE AXION MASS IN A HELIOSCOPE

A. Solar axions

If the axion exists, then the Sun will be a factory,
generating axions in its center via several model-dependent
processes. Given the most readily observable coupling—
that to the photon gaγ—the Sun will produce axions via

FIG. 1. The axion parameter space gaγ-ma. The main result of
this paper is shown as an opaque blue region: the median range of
masses and couplings for which IAXO can determine the axion
mass to be nonzero with 3σ significance. Within this region we
also show the limit for babyIAXO as a lighter dashed line. The
QCD axion band is shaded in orange. In various shades of green
are axions excluded by astrophysical arguments, and in red are
experimental bounds, cited in the main text. We also show
projected sensitivities as transparent regions. In particular we
show the “optical haloscope” proposal of Ref. [28] which
overlaps with our result and would hence be directly comple-
mentary.

1It is worth noting that direct searches for any DM candidate
are generally completely incapable of determining how much of
the local DM distribution is comprised of the detected particle. 2https://cajohare.github.io/IAXOmass
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Primakoff conversion. The differential flux at Earth due to
this mechanism ΦP can be parametrized as (assuming Ea is
always in units of keV)

dΦP

dEa
¼ ΦP10

�
gaγ

10−10 GeV−1

�
2 E2.481

a

eEa=1.205
; ð1Þ

where ΦP10 ¼ 6.02 × 1010 cm−2 s−1 keV−1. This flux is
dominant in hadronic axion models like the Kim-
Shifman-Vainshtein-Zakharov (KSVZ) [60,61].
For nonhadronic models which possess a tree-level

coupling to electrons gae, the axion flux is instead domi-
nated by three distinct processes: Compton scattering (ΦC),
bremsstrahlung (ΦB), and atomic recombination and deex-
citation (ΦA) [62]. The former two can be parametrized as

dΦC

dEa
¼ ΦC13

�
gae
10−13

�
2 E2.987

a

e0.776Ea
; ð2Þ

where ΦC13 ¼ 13.314 × 106 cm−2 s−1 keV−1, and

dΦB

dEa
¼ ΦB13

�
gae
10−13

�
2 Ea

1þ 0.667E1.278
a

e−0.77Ea ; ð3Þ

where ΦB13 ¼ 26.311 × 108 cm−2 s−1 keV−1. HoweverΦA
cannot be efficiently or accurately parametrized so we have
included it numerically using the simulation result of
Ref. [62]. Figure 2 compares the solar axion flux expected
on Earth produced via the axion-photon (blue) and
axion-electron (orange) coupling. In general the flux of
the axion-electron processes is much more intense than the

corresponding Primakoff flux and is shifted to lower
energies, peaking around 1 keV.
In concrete axion models the ratio of the axion-electron

to Primakoff flux is prescribed. We have verified that in
nonhadronic benchmark models like Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ) I and II the axion-electron
flux tends to dominate throughout the whole spectrum,
while for the hadronic model KSVZ—where the electron
coupling is generated radiatively—the Primakoff flux
dominates. Therefore it is reasonable to study the axion-
electron and Primakoff cases separately. Note however, that
in some models like the Axi-majorons, both contributions
can be of the same order. Details about these models and
their couplings can be found in Ref. [63].

B. Helioscopes

A helioscope consists of a long magnetic bore pointed at
the Sun with a collecting x-ray detector at one end.
Independent of the mechanism of their production in the
Sun, a helioscope relies on gaγ to convert the axion flux into
photons. This leads to a signal proportional to g4aγ for the
Primakoff flux and g2aeg2aγ for the axion-electron flux. The
expected number of photons reaching a detector placed at
the end of the bore is given by the integral

Nγ ¼ St
Z

dEaεDðEaÞεTðEaÞ
dΦi

dEa
Pa→γðEaÞ; ð4Þ

where dΦi
dEa

is the axion flux due to process i (i.e., P or
Aþ Bþ C), Pa→γ is the axion-photon conversion proba-
bility, S is the total cross-sectional area of the helioscope, and
t is the measurement time. We parametrize two efficiency
functions for the detector (εD) and the telescope (εT).
The axion-photon conversion probability inside the

magnet bore is (assuming a vacuum)

Pa→γðEaÞ ¼
�
gaγB

q

�
2

sin2
�
qL
2

�
; ð5Þ

where L is the magnet length, B is the magnetic field, and
q ¼ m2

a=ð2EaÞ is the axion-photon momentum transfer.
The conversion probability is maximized when the axion
and photon remain in phase over the length of the magnet,
satisfying the coherence condition qL < π. As a result, the
experimental sensitivity for a vacuum filled magnet bore is
restricted to a range of axion masses, e.g., ma ≲ 0.016 eV
for L ¼ 20 m and hEai ¼ 4.2 keV.
For IAXO to achieve its stated sensitivity, the construc-

tion of a large-scale (L ≈ 20 m) strong magnet with
multiple bores is envisaged. The bores would have large
aperture (∼60 cm diameter) and would be equipped with
x-ray optics focusing the photons to a few spots of mm2

size. The signal areas would be imaged by ultralow back-
ground x-ray detectors like micromegas [64], optimized for

FIG. 2. The solar axion flux expected on Earth and its
components due to the axion-electron coupling (bremsstrahlung,
Compton, and axiorecombination) in orange and the axion-
photon coupling (Primakoff) in blue. For this plot we assume
gaγ ¼ 10−11 GeV−1 and gae ¼ 10−13.
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energies between 10 keV down to well below 1 keV [65].
Additional detection technologies, like GridPix [66],
metallic magnetic calorimeters (MMCs) [67,68], transition
edge sensors, or silicon drift detectors are also under
consideration, promising better energy threshold and reso-
lution than the baseline micromegas detectors. In particular,
the most advanced MMCs have shown a 2 eV full width at
half maximum energy resolution. So a suitable range for our
energy resolutions to capture the importance of this exper-
imental parameter while remaining realistic is E0 ¼
10–200 eV (where we quote E0 as the standard deviation
for the Gaussian smoothing kernel). The system would be
capable of tracking the Sun for about 12 h each day.
The procedure we follow in this work is based around

extracting the mass dependence found in the axion signal
Eq. (4). The numerical values we adopt for the exper-
imental parameters entering this formula are summarized in
Table I. We use the configuration anticipated in the IAXO
conceptual design [47,48] which assumes eight bores (total
S ¼ 2.26 m2) and a 3 year total data-taking time. IAXO is
considering several x-ray detector technologies for the focal
planes of the telescope. So in order to keep the widest
generality, we have convoluted Eq. (4) with a Gaussian of
width E0 representing an energy resolution for the detec-
tors. The energy threshold is assumed to be equal to E0.
Again following Refs. [47,48] we assume the telescope
and detector efficiency functions are flat in energy, with
εT ¼ 0.8 and εD ¼ 0.7, respectively.
The background level in the IAXO detectors is expected

to be extremely low [47,48], amounting to only a few
counts in the signal region of interest over the full data-
taking campaign. Since the detection of the axion mass will
always require a larger number of signal events than this,
we have assumed a zero background. It is also highly
unlikely that the IAXO background will share any spectral
properties with the signal, so including it would not have a
significant impact on the results.

C. The axion mass signal

One of the advantages of the helioscope technique is the
capability to explore such a wide range of axion masses.
For light axions which satisfy the coherence condition, the
expected signal is viewed as independent of ma. This

means that a helioscope can set limits to arbitrarily small
masses. Of course, this comes at the cost of having no
ability to measure the mass. Even with a positive detection
of an axion with a mass in this regime, only the coupling is
strictly measurable. In fact, such an axion is not even
distinguishable from a massless analog particle. However
the axion, per its definition, is not massless. If heavy
enough, the coherence condition, which facilitates the
axion detection for low masses, will be violated. The
conventional wisdom for a helioscope is that for axions
that are too massive the signal is destroyed by the
oscillations brought about when qL > π in the sin2 term
in the axion conversion probability (5). But this is not
immediately true. There is an intermediate regime, one in
which the coherence condition is only mildly violated. This
same oscillatory term will give rise to highly characteristic
spectral oscillations that are strong enough to be measur-
able, but not so strong as to destroy the signal entirely.
As an illustration, we show in Fig. 3 the expected x-ray

photon spectra dNγ=dEa, for values of ma between the
effectively massless 10−4 eV (black line) and 10−1 eV
(blue line). We show spectra observed from the axion-
photon flux controlled by gaγ (upper row) and the axion-
electron flux controlled by gae (lower row). Notice also that
in the gaγ case there are only very small differences in the
spectra in the 2 orders of magnitude between ma ¼ 10−4

and 0.01 eV (comparing the black and green lines). Clearly
high statistics will be required for these lowest masses,
meaning we can anticipate that the sensitivity of a helio-
scope to the axion mass will rise rapidly in coupling
towards smaller ma. This is true even in the limit of zero
energy threshold and despite the fact that the number of
events remains high down to low masses (see inset). In the
right-hand panels of Fig. 3 we also show the resulting spectra
after a convolution with a Gaussian energy resolution
function with an energy-independent width E0 ¼ 100 eV.
A finite energy threshold and resolution we can foresee will
play greater importance at these lowest masses where the
Gaussian will smooth out the very small low-energy oscil-
lations thatwill be characteristic of a givenvalue ofma. In the
case of heavier axions, for which the oscillations continue
to higher energies, the finite resolution will likely be less
important.
In principle one should also account for the systematic

uncertainties on the theoretical spectrum, which come
mostly from our imperfect understanding of plasma screen-
ing effects.3 In order to overcome this drawback, one can
consider taking additional data with an artificially reduced
magnet length, e.g., L=2. For the masses under consid-
eration here, in which the coherence condition is only
slightly violated (qL ∼ π). Data taken from a half-magnet

TABLE I. IAXO experimental configuration fixed in this study,
as well as the range of energy resolutions we consider.

Magnetic field B 2.5 T

Length L 20 m
Total aperture area S 2.26 m2

Measurement time t 3 years
Telescope efficiency εT 0.8
Detector efficiency εD 0.7
Energy resolution E0 10–200 eV

3An educated estimate outputs a maximum uncertainty of
∼30% in the case of bremsstrahlung. This is certainly negligible
for our purposes.
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length would still enjoy the coherence condition qL=2 < π,
effectively amounting to a measurement of the reference
zero-mass spectrum. This additional reference spectrum
could be used to subtract off any underlying theory
systematic. For the sake of simplicity, in the present study
we have not followed such a procedure and are assuming
our spectra are exempt from theoretical uncertainty.
Nevertheless, in the event of a signal, a detailed study of
its dependence on L would be a mandatory cross-check to
assess its axionic nature.
The distinction between the Primakoff and axion-elec-

tron fluxes (or a mixture thereof) will be another important
task for IAXO should a detection be made. A similar
spectral analysis to that which we describe here will be
appropriate for this. However we do not focus on model
discrimination here and deal mainly with the measurement
of the mass given an assumption about the spectrum. This is
in order to highlight several physical effects and require-
ments on the performance of the IAXO detectors. In
addition, as mentioned previously, the reference massless
spectrum is always obtainable from a shorter magnet length
experiment. A similar recent work which approaches the

problem from a model discrimination perspective can be
found in Ref. [69].

D. Higher axion masses

Our study here deals only with axion masses for which
the coherence condition is held (ma ≲ 10−2 eV) or only
mildly violated (ma ≈ 10−2–10−1 eV). Since we do not
consider higher masses than this in detail, before we
proceed it is worth describing schematically how one
would approach a similar analysis for them.
For axion masses above the coherence condition, axion-

photon oscillations along the magnetic field destroy the
signal. It is possible however to recover the condition by
filling the bore with a buffer gas. The new medium provides
an effective photon massmγ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παne=me

p
, where ne and

me are the electron density and mass and α is the fine
structure constant. When the axion mass matches this
value, the axion-photon momentum transfer vanishes and
axions can convert coherently across the magnet length.
In this setup, the axion-photon conversion probability

takes the form [9]

FIG. 3. Differential x-ray spectra as a function of energy due to solar axion conversion inside a 20 m long 2.5 T magnet. We display
spectra for different values of the axion mass ma as well as for both the solar Primakoff (top) and axion-electron (bottom) fluxes. The
left-hand panels in both cases show the underlying spectra, whereas the right-hand panels show the spectra after being convolved with a
Gaussian energy resolution of width E0 ¼ 100 eV. For comparison, we have normalized all spectra to one. Instead we display, in the
inset, the total integrated number of events Nγ as a function of the five masses, assuming gaγ ¼ 10−11 GeV−1.
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Pa→γ ¼
�
gaγB

2

�
2 1

q2 þ Γ2=4

× ð1þ e−ΓL − 2e−ΓL=2 cosðqLÞÞ; ð6Þ

where q ¼ jm2
a −m2

γ j=ð2EaÞ and Γ is the inverse absorp-
tion length for photons in a buffer gas. A search over a
range of masses can then be performed by tuning the buffer
gas density.
In the gas scanning mode the coherence is restored in a

range of masses Δma ≃ π=2
ffiffiffiffiffiffiffiffiffiffiffiffi
4E=L

p
[23] (∼0.02 eV for

IAXO using Ea ∼ 4 keV), which is set as the natural Δma
between consecutive pressure settings. This gives the
precision with which the axion mass can be measured
from the Oð1Þ difference in the total x-ray flux at
neighboring steps. For heavier axions, the measurement
of ma in this mode is then already essentially complete
when the axion itself is detected. Naturally, if one wanted
higher precision this would be achieved by measuring
smaller flux differences between steps, requiring higher
statistics. Experimentally this would involve monitoring
the pressure to better precision than CAST and taking
multiple pressure settings. This could allow one to measure
the axion mass even if it is smaller than the natural
Δma ∼ 0.02 eV, but only if the axion coupling is large
enough. Nevertheless, since the signal differences between
consecutive pressure steps will be small, a spectral analysis
would be needed. In the rest of the paper we show how a
much simpler determination of the axion mass can be
obtained already in the vacuum phase by measuring the
spectral distortions of the conversion probability. This
involves a similar level of sophistication in the analysis
but much less in the experiment itself, and has the advantage
that it can be done already with the vacuum mode data.

III. STATISTICAL METHODOLOGY

Our statistical methodology is based on the popular
profile likelihood ratio test, in common use for deriving
discovery and exclusion limits in particle physics experi-
ments. Our hypothesis test compares the massive axion
model Mma≠0 with two parameters ðma; gÞ against the
massless model,Mma¼0 with only one parameter (g). Here
we use the generic g to imply either gaγ or ffiffiffiffiffiffiffiffiffiffiffiffigaγgae

p .
We can construct the profile likelihood ratio between the

two models,

Λ ¼ Lð0; ˆ̂gÞ
Lðm̂a; ĝÞ

; ð7Þ

where L is a likelihood function which is maximized at ˆ̂g
whenma is set to zero and ðm̂a; ĝÞwhenma is free. We next
define the profile likelihood ratio test statistic,

q0 ¼
�−2 lnΛ m̂a > 0;

0 m̂a < 0:
ð8Þ

Since the two models differ by the fixing of one parameter
and the hypothesis is being compared against a parameter at
the boundary of the allowed space, Chernoff’s theorem [70]
holds. This is a generalization of Wilk’s theorem and states
that the statistic q0 is asymptotically distributed according
to 1

2
χ21 þ 1

2
δð0Þ when the Mma¼0 hypothesis is true. The

consequence of this that is useful for us is that the
significance of the signal from a massive axion when
tested against the massless hypothesis is simply

ffiffiffiffiffi
q0

p
. See

Ref. [71] for a detailed discussion of the use of these
asymptotic formulas.
We use a binned likelihood for L so that we can employ

the Asimov asymptotic limit for the test [71] in which the
number of events in each bin is set equal to the expectation.
The value of q0 yielded when applying the profile like-
lihood ratio test on these data approaches the median value
that would be obtained from many Monte Carlo realiza-
tions. This method can therefore straightforwardly provide
us with the median discovery projections, greatly saving on
computational cost. Nevertheless, we have verified the
Asimov formalism with Monte Carlo simulations and find
very good agreement, as can be seen in Fig. 4.
The Asimov dataset technique is in common use in

studies like this one for facilitating the fast computation of
asymptotic limits on particle physics properties, e.g.,
Refs. [58,72–74]. It is not surprising that we obtain good
agreement since an Asimov test statistic converges on the
median Monte Carlo result rapidly with few events for
strongly Gaussian or Poissonian likelihoods. In any case we
only want to estimate the median value of the test statistic
distribution and hence compute the “typical” limit IAXO
might set. For the median value the relationship between
the Asimov and Monte Carlo results is asymptotically
exact. One caveat is that we must use typically in excess of
200 bins between ½E0; 20� keV. This is required for our
Asimov limit to match the Monte Carlo results using an
event-by-event unbinned likelihood. Since very fine energy
information is needed to make measurements of the mass,
we anticipate that the most powerful approach in a real
experimental scenario would be to resort back to an
unbinned likelihood.

FIG. 4. Comparison between one of the median mass discovery
limits obtained via the Asimov data formalism (blue) and the
same when computed via a full Monte Carlo simulation of the test
statistic distribution (orange).
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The binned likelihood that enters Eq. (7) is the product
of the Poisson probability distribution function P for Nobs
x rays, given an expected number Nexp,

Lðma; gÞ ¼
YNbins

i¼1

P½Ni
obsjNi

expðma; gÞ�: ð9Þ

Since we are background free the expected number of
events follows Eq. (4). To aid our discussion later we will
write this schematically as

Ni
expðma; gÞ ¼

�
g

10−10

�
4
Z

Eiþ1
a

Ei
a

dEa
dNγ10

dEa
pðmaÞ

≡ g4N iðmaÞ: ð10Þ

The function dNγ10=dEa is the x-ray spectral fluencewith the
coupling constant (gaγ or

ffiffiffiffiffiffiffiffiffiffiffiffigaγgae
p ) fixed at 10−10 (GeV−1 or

GeV−1=2). The utility of this object is that it is independent of
any axionic parameters for both the Primakoff and axion-
electron fluxes. Instead all of the axion dependence is stored
in a coefficient and a form factor for the conversion
probability,4 pðmaÞ ¼ sinc2ðm2

aL=4EaÞ.
Before we use this test to calculate the discovery limit on

the axion mass, we can gain some intuition by illustrating
the shape of the likelihood introduced above for different
axion masses. In Fig. 5 we show the shape of the likelihood
for four values of ma across our range of interest. In each
case the coupling is chosen so that the likelihood ratio test

FIG. 5. Two- and one-dimensional profile log-likelihood ratios for four input axion masses, where gaγ has been chosen to yield a 3σ
discrimination of the mass from ma ¼ 0, assuming a Primakoff dominated axion flux. In each case we plot the difference between the
likelihood value and the maximum likelihood, which, since we are using Asimov data, is always correctly located at the input parameter
values (indicated by straight lines and a red marker). In the two-dimensional likelihood we also show the 1σ and 2σ enclosed contours on
both parameters.

4We use the definition sincx ¼ sin x
x .
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statistic for the correct value of the axion mass is equal to 9
(which corresponds to a 3σ detection of a nonzero mass, as
is derived in the next section). The left-hand side and
bottom panels in each of the four cases show the one-
dimensional profile likelihood for gaγ and ma, respectively.
One can notice that for the lower masses the likelihood is
smooth and the axion parameters would be very well
reconstructed. However for the largest mass shown here,
ma ¼ 0.1 eV, the x-ray spectrum is highly oscillatory and
the shape of the likelihood reflects this. Since we have used
Asimov data, the maximum likelihood is always correctly
located at the true values. However in a real dataset which
will suffer Poissonian fluctuations, strong biases may be
possible, leading to spurious reconstructions of the axion
mass with confidence intervals not enclosing the true value.

IV. RESULTS

A. Mass discovery

Wewish to calculate theminimumvalue of gaγ or gaγgae as
a function of ma for which IAXO can determine that the
axion is notmassless.We can display this bydefining a “mass
discovery limit” gdiscðmaÞ to be the median coupling as a
function ofma for which the mass can be distinguished from
zero at3σ. Practically this requires us to calculate the smallest
coupling for which q0 ¼ 9when the test is applied to a set of
Asimov data. A major advantage of the background and
systematic-free likelihood is that this process can be done
semianalytically andwill lendus some insight into the impact
of the threshold and energy resolution.
Since the coupling constant only enters as a multiplica-

tive factor, the maximum likelihood estimators for the

parameter g when the likelihood is fixed at a particular
value of ma can be calculated as simply

g4profðmaÞ ¼
P

iN
i
obsP

iN
iðmaÞ

≡DðmaÞ: ð11Þ

When we set the mass to zero in this formula we get the
maximum likelihood estimator for the massless likelihood,
i.e., gprofð0Þ ¼ ˆ̂g. Under the Asimov approximation we are
guaranteed that ĝ and m̂a are the true values of the coupling
and mass, so we write Nobs ¼ ĝN ðm̂aÞ. Evaluating Eq. (8)
when set to nine for a 3σ result we get

gdiscðmaÞ ¼ 10−10

 
9

2
P

iN
iðmaÞ log N iðmaÞ

DðmaÞN ið0Þ

!1
4

; ð12Þ

where the dimensions of gdisc follow the dimensions of
either gaγ or ffiffiffiffiffiffiffiffiffiffiffiffigaγgae

p .
The lines corresponding to this condition are shown in

Fig. 6, for both gaγ and
ffiffiffiffiffiffiffiffiffiffiffiffigaγgae

p . We show sets of curves
corresponding to a range of energy thresholds and reso-
lutions, E0. The effect of the energy resolution is more
pronounced in the latter case, as the spectrum is centered at
lower energies. Generally, as one would expect, a higher
energy threshold requires a stronger coupling in order to
reach the same sensitivity. However only for the highest
value considered here (200 eV) is the difference extended
up to masses of 0.01 eV, while the remaining cases
converge below ma ∼ 0.006 eV. The principal cause for

FIG. 6. Median discovery limits for determining a massive axion to 3σ in terms of the coupling to photons (left) and electrons (right).
In each we plot from dark to light blue the discovery limits for increasing energy resolution E0. The lightest blue region shows the
sensitivity of IAXO to exclude gaγ or

ffiffiffiffiffiffiffiffiffiffiffiffigaγgae
p . The black lines indicate contours in these spaces which give constant numbers of x rays

Nγ . The symbols on the left-hand plot indicate the example values of the mass and coupling used for the four panels of Fig. 5. The red
regions indicate the exclusion limits from CAST on gaγ [26] and

ffiffiffiffiffiffiffiffiffiffiffiffigaegaγ
p [75], and the green indicates the limits on the same, from

horizontal branch stars: Refs. [41,44], respectively.
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the differences between these curves present at low masses
turns out to be the finite threshold at E0, rather than the loss
in spectral information by the energy resolution, as we now
discuss.
The scaling towards small masses can be understood

from considering the distribution of probabilities that make
up the likelihood function. Comparing our discovery limits
with the contours of constant Nγ (black lines in Fig. 6),
clearly when ma is small we are in a very high statistics
regime. It is suitable then to approximate the likelihood
with a product of Gaussian probabilities with standard
deviation

ffiffiffiffiffiffiffiffiffi
Nexp

p
,

Lðma; gÞ ≃
YNbins

i¼1

ðNi
obs − Ni

expðma; gÞÞ2
2Ni

expðma; gÞ
: ð13Þ

We take the further approximation of very small bins to
convert these sums into integrals. Under Asimov data these
approximations result in the following formula for the test
statistic:

q0 ¼
�

g
10−10

�
4
Z

dEa
dNγ10

dEa

ðDðmaÞ − pðmaÞÞ2
DðmaÞ

; ð14Þ

where we have used the fact that Ni
obs ¼ Ni

expðĝ; m̂aÞ ¼
ĝpðm̂aÞN ið0Þ.
Next we can use the fact that DðmaÞ ≃ 1 for low values

of ma because the total sum over bins is relatively mass
insensitive, i.e.,

P
NiðmaÞ ∼

P
Nið0Þ. This simplifies the

expression further to

q0 ¼
�

g
10−10

�
4
Z

dEa
dNγ10

dEa

�
1 − sinc2

�
m2

aL
4Ea

��
2

: ð15Þ

With the test statistic expressed in thiswaywe can see that the
power to determine the axion mass in fact scales with
½1 − pðmaÞ�2. This is in contrast to the total number of
events (i.e., the power to determine the axion coupling),
which scaleswithpðmaÞ. This is in accordancewith the result
of Fig. 6where the coupling exclusion limit of IAXOplateaus
towards small masses since pðmaÞ → 1, but the mass
discovery limit sharply increases since ½1 − pðmaÞ�2 → 0.
To understand more precisely this scaling in the mass

discovery limit we can look at the behavior of this function
of ma with energy

�
1− sinc2

�
m2

aL
4Ea

��
2

∼

8>><
>>:
1 Ea <

4

9
1
4m2

aL

1
9

�
m2

aL
4Ea

�
4

Ea > 4

9
1
4m2

aL

: ð16Þ

Taking the Primakoff flux example first, we use the fact that
its energy dependence is

dNγ

dEa
∝
dΦP

dEa
∝

Eβ
a

eEa=1.205
; with β ¼ 2.481: ð17Þ

Combining the two scaling regimes of Eq. (16) tells us that
the integrand of Eq. (15) must grow initially as Eβþ1

a , but
reaches a peak around

Eχ ≃
m2

aL
4

; ð18Þ

only then to decrease as E1þβ−4
a . Above the peak each log-

interval contributes to the integral following a weak power
law, Eβ−3

a ∼ E0.51
a . So q0 must be primarily influenced by

energies around and above Eχ . The signal at energies below
the peak is rendered relatively unimportant for determining
the mass. Approximating Eq. (15) as just the integrand
above the peak, we find

q0 ≃
�

gaγ
10−10

�
4

ΦP10

Z
∞

Eχ

dEeE
β
a
1

9

�
m2

aL
4Ea

�
4

¼
�

gaγ
10−10

�
4

ΦP10
ðm2

aLÞ4
2304ð3 − βÞ

1

E3−β
max

¼
�

gaγ
10−10

�
4

ΦP10
43−β

2304ð3 − βÞ ðm
2
aLÞβþ1: ð19Þ

So we can see the following trend must follow,

gdiscaγ ∝ q1=40 ∝ m
βþ1
2
a ∼m−1.74

a ; ð20Þ

which reproduces the scaling at low masses of Fig. 6 (left).
We can now understand the effect of the energy threshold

which is cutting the integral at E0. As long as E0 < Eχ , the
test statistic and hence the discovery limit will be unaf-
fected. However, if E0 > Eχ , the threshold removes a large
contribution to q0 and the sensitivity will suffer. Indeed
we find

q0 ¼ g4aγΦP
ðm2

aLÞ4
2304ð3 − βÞ

1

E3−β
0

: ð21Þ

This quantity is only a factor of ðEχ=E0Þ3−β smaller than
the zero-threshold case, so the mass discovery limit can

only relax by ðE0=EχÞ
3−β
4 . Note that, in this regime, the

scaling of the discovery limit will change slightly to

gdiscaγ ∝
1

m2
a
; ð22Þ

which is in agreement with our results of Fig. 6, where one
can see that higher thresholds have steeper inclines.
The axion-electron result follows a similar procedure.

The only change is the shape of the axion flux, which at low
energies goes as
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dΦB

dEa
∝

Eae−0.77Ea

1þ 0.667E1.278
a

∼ Ea; ð23Þ

so β ¼ 1. Indeed, our results approach this scaling as
E0 → 0. The integrand above the peak in this case
decreases faster, ∝ E−3

a , leading to a greater sensitivity to
the value of E0. The curves for increasing E0 in Fig. 6
(right) approach the m−2

a scaling much more rapidly than
the gaγ limits.

B. Mass estimation

As well as knowing how well the mass can be distin-
guished from zero, we also wish to estimate how well the
mass itself can be measured. To do this we consider the
one-dimensional profile likelihood function

L1ðmaÞ ¼ LðgprofðmaÞ; maÞ; ð24Þ
which is found by taking the likelihood defined previously,
fixing a value of ma, and finding the maximum likelihood
estimator for g under this constraint. We define the “nσ”
confidence interval around the best fit ma by finding the
interval over which

2 ln
maxL1

L1ðmaÞ
< n2: ð25Þ

Similar to the procedure for calculating our mass
discovery limits, we can derive a “mass estimation limit”
by finding the minimum coupling value that ensures that
the mass be constrained to within a given precision.
Formally, if the 2σ confidence interval on ma is bounded

from above and below by say mað1 − ϵ−Þ and mað1þ ϵþÞ,
then the mass estimation limit for some accuracy ϵ is the
minimum value of g for which maxðϵ−; ϵþÞ < ϵ.
In Fig. 7 we show a set of these mass estimation limits

for several levels of precision ϵ. Here we show only the
limits for the axion-photon coupling although the same
result for gae is similar. We can see that in general the shape
of the curves follows the mass discovery limit (shown in
orange) at low masses. In this regime the spectral topology
stores very little information about the mass, and most of
the reconstruction power is given essentially by small
changes in the lowest energy part of the spectrum. The
shape of the likelihood in this regime is smooth and well
behaved. So the likelihood ratio for 2σ away from the true
mass and the likelihood ratio relative to ma ¼ 0 both scale
in a similar way. This means that the mass estimation limits
and the mass discovery limits look very similar.
However we start to observe some differences at larger

masses when the spectra have oscillations extending across
the full range of energies. When ma ≳ 0.02 the conversion
spectrum picks up large peaks at particular energies. Since
the energies of these peaks are finely controlled by the
value of the mass, this gives rise to likelihoods with
peculiar shapes where masses slightly off the true value
are very highly disfavored (as can be seen in the highest
mass panel of Fig. 5), even when the value of the coupling
is too small to give enough statistics to fit the rest of the
spectrum. At the very highest masses the spectral oscil-
lations become so rapid that the small window of masses
around the true value that were highly disfavored get
increasingly close together, until eventually they are lost
to the energy resolution. Towards this regime, we see the
mass estimation limits rise more steeply than the mass
discovery limits.

C. Scaling results for other helioscopes

We have framed this discussion around the planned next
generation helioscope IAXO which will be required to
reach the QCD axion. However it is straightforward to use
our results to consider other intermediate helioscopes that
will be realized before IAXO. The scaling of the mass
discovery limit, away from our result gIAXO, in terms of the
relevant experimental parameters, is as follows:

gdisc

�
ma

�
L

20m

�
−1
2

�
¼ gIAXOðmaÞ

�
B

2.5 T

�
−1
2

�
S

2.26m2

�
−1
4

×

�
t

3 years

�
−1
4

�
L

20m

�
−1
2

×

�
εDεT

0.8×0.7

�
−1
4

: ð26Þ

We express the discovery limit in this way to imply that a
shorter L shifts both the coupling and the mass to larger
values. The cases for both Primakoff and axion-electron

FIG. 7. Limiting values of the axion-photon coupling that
permit IAXO to obtain a 2σ confidence interval around the
axion mass, which is at most ϵ away from the true value. We show
results for ϵ ¼ 1%–50%. We assume an energy resolution of
50 eV here. For reference we include the mass discovery limit
originally shown in Fig. 6 (left) as an orange line.
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fluxes are identical, for g corresponding to gaγ and
ffiffiffiffiffiffiffiffiffiffiffiffigaegaγ

p ,
respectively.
To demonstrate this scaling we take the example of

“babyIAXO,” a smaller-scale helioscope planned as a test
bed for the full IAXO. This experiment will use only one
magnet bore rather than eight, reducing its S by the same
factor. It will also only have half the bore length L ¼ 10 m.
For a total exposure time t ¼ 1 years the mass discovery
limit of babyIAXO could reach a minimum coupling
around a factor of 2.6 higher, while also shifted to higher
masses by a factor of ∼1.4. We initially showed these limits
in Fig. 1 as a dashed line inside the final IAXO result.
Along similar lines, we can estimate the result for the
medium-scale helioscope TASTE [76]. We use the projec-
tions of the latter reference which assume a magnetic field
of 3.5 T with a single similarly sized bore with a length of
12 m. Assuming the same exposure as IAXO and a similar
detector (i.e., the same εD;T) we predict that TASTE can
reach a mass discovery limit a factor of 1.42 times higher in
coupling and a factor of 1.29 shifted upwards in mass.

V. CONCLUSIONS

With an axion helioscope it is possible, with uniform
sensitivity, to explore a wide range of masses below a
certain critical value. However this leads to the problem
that, for this vast swath of low-mass axions and axionlike
particles, the value of the mass is indistinguishable from
zero. While the injection of a buffer gas is an option to
incrementally extend the sensitivity at relatively high
masses, this method is not applicable for lower masses.
We have demonstrated here for the first time that helio-
scopes do in fact have the capability of determining the
axion mass in the vacuum mode (see Fig. 1 for this main
result in the context of the full axion parameter space). We
have found good prospects for the measurement of both
solar axion fluxes (see Fig. 2) generated via the axion-
photon and axion-electron couplings.
For axion masses below the buffer gas regime, but above

the critical value at which the axion conversion spectrum is
coherent across the magnet length, there is information
about the mass is encoded in rapid oscillations in the x-ray
spectrum (see Fig. 3). For smaller masses these oscillations
occupy only the very lowest energy bins observable. So to
realize the best results for IAXO—those that match what
we have demonstrated here—good energy resolution and
low detector energy thresholds will be required. Based on
x-ray detection technologies currently under consideration
[47,48], this looks to be more than reasonable. We have
demonstrated that >3σ sensitivity to the axion mass is
possible for axion masses down to ∼1–5 × 10−3 eV (see
Fig. 6). The highly characteristic spectral oscillations allow
the value of the mass to not only be distinguished from
zero, but also constrained to within percent-level accuracies
(see Fig. 7).

At the upper end of the masses we have studied here,
the suppressed number of expected events pushes the
barrier on the mass measurement to higher values of gaγ
and gaegaγ , eventually rising above existing constraints at
around 10−1 eV. Fortunately this is precisely the regime
for which the buffer gas mode is ideal. In this mode the
sensitivity of the helioscope is dramatically increased for a
narrow range around the effective photon mass to which
the chosen gas density corresponds. It is likely then that
the mass sensitivity here will follow the discovery
projections for IAXO, since the very detection of the axion
in this mode requires that it has a mass. In follow-up work
that may consider this regime in more detail, it will also be
worthwhile to account for the theoretical systematic uncer-
tainties on the axion flux.
A remaining question that we have not addressed here is

whether IAXO can use this same spectral information to
distinguish between the axion-photon and axion-electron
coupling. It turns out that for many of the best-motivated
axion models, including those which align with astrophysi-
cal hints [63], such model discrimination is indeed pos-
sible. Towards the completion of this work we were made
aware of a study in preparation [69], which approached a
similar type of analysis from this perspective. The results of
this work deal with a more complete set of model
parameters describing the axion, but use specific bench-
mark masses. On the other hand we have dealt with ranges
of masses more generally, but have had to make an
assumption about which coupling is dominantly controlling
the axion signal. Hence the two studies are highly com-
plementary in their approaches.
We have shown that over a limited range IAXOwill have

sensitivity to the masses of KSVZ axions. Some new
theoretical predictions propose that this range of axion
masses could be of importance in describing both inflation
and dark matter [29–33,77]. Therefore IAXO, as well as
being simply a search for solar axions, may additionally
prove valuable in the search for dark matter and a
companion to future haloscopes searching in the same
range [28]. Alternatively if the axionlike particle does not
possess a measurable mass then this could help constrain
any further astrophysical searches.
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