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a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 March 2019
Received in revised form 12 April 2019
Accepted 21 April 2019
Available online 26 April 2019
Editor: B. Grinstein

Keywords:
Hard exclusive processes
Perturbative QCD
Meson transition form factors
Eta mesons

At leading-twist accuracy the form factors for the transitions from a virtual photon to the η or η′ can 
be expanded into a power series of the variable ω, being related to the difference of the two photon 
virtualities. The series possess the remarkable feature that only the Gegenbauer coefficients of the meson 
distribution amplitudes of order l ≤ m contribute to the term ∼ ωm . Thus, for ω → 0 only the asymptotic 
meson distribution amplitude contributes, allowing for a test of the mixing of the η and η′ decay 
constants. Employing the Gegenbauer coefficients determined in an analysis of the form factors in the 
real photon limit, we present predictions for the γ ∗η and γ ∗η′ form factors and compare them to the 
BaBar data.
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1. Introduction

The photon-meson transition form factors have always found 
much attention; there is a rich literature about these simple ob-
servables. These form factors have been measured in a rather large 
range of photon virtualities and the data are analyzed within the 
framework of collinear factorization. An interesting generalization 
of these observables are the form factors for the transitions from 
a virtual photon to a meson. Also these form factors have repeat-
edly been studied theoretically. Recently, the BaBar collaboration 
has measured such a form factor for the first time [1], namely the 
γ ∗η′ one. Although the data are not very accurate this measure-
ment is important since it demonstrates the feasibility of measur-
ing such form factors at large photon virtualities. The prospects of 
getting better and more data from future experiments, as for in-
stance BELLE 2, are high. Ji and Vladimirov [2] already analyzed 
the BaBar data within the collinear factorization approach. The au-
thors showed agreement of the data with perturbative QCD and 
put the emphasize on special features like power corrections and 
effects of the binning of the data. They also elaborated on the 
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https://doi.org/10.1016/j.physletb.2019.04.054
0370-2693/© 2019 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
kinematic regions that are especially sensitive to the underlying 
dynamics. A particular aspect of the theoretical description of the 
transition form factors is not investigated in [2] although the au-
thors are aware of it: the separation of Gegenbauer coefficients in 
dependence of the difference between the two photon virtualities, 
Q 2

1 = −q2
1 and Q 2

2 = −q2
2 (with the qi being the momenta of the 

photons), or rather in dependence on the variable

ω = Q 2
1 − Q 2

2

Q 2
1 + Q 2

2

. (1)

This property of the collinear factorization approach has first been 
pointed out in [3]. The purpose of the present paper is to study 
this property in some detail and to generalize it to next-to-leading 
order (NLO) of perturbative QCD for the case of the γ ∗η and γ ∗η′
form factors. A comparison with the BaBar data will also be made.

2. The general idea

Consider the process γ ∗ γ ∗ → M where M is an unflavored, 
charge-parity even meson. The behavior of the transition form fac-
tors appearing in that process is, at large photon virtualities, deter-
mined by the expansion of a product of two electromagnetic cur-
rents about light-like distances [4]. The form factors then factorize 
into a hard scattering amplitude, T H , and a soft meson matrix el-
ement, parametrized as a process-independent meson distribution 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. A LO Feynman graph for γ ∗ γ ∗ → M .

amplitude, �M(ξ), where ξ = 2x − 1 and x is the usual momen-
tum fraction carried by the quark inside the meson. We assume 
that the distribution amplitude possesses a Gegenbauer expansion

�M(ξ,μF ) = (1 − ξ2)λ−1/2
∑

aMn(μF )C (λ)
n (ξ) (2)

where C (λ)
n is the n-th Gegenbauer polynomial of order λ. In gen-

eral several Fock components of a meson may contribute to a par-
ticular form factor; the Gegenbauer expansions of the correspond-
ing distribution amplitudes may have different values of λ. The 
Gegenbauer coefficients, aMn , depend on the factorization scale, 
μF , at which the distribution amplitude is probed. The hard scat-
tering amplitude, T H , has a very simple structure with the quark 
propagator ∼ 1/(1 ± ξω), see the LO Feynman graph shown in 
Fig. 1. At leading-twist accuracy and for ω < 1 the hard scat-
tering amplitude can be expanded into a double power series ∑

m ωm p(ξ). Here, p is a polynomial of ξ of order m′ = m + l′
where l′ is a small integer, typically |l′| ≤ 1. Consider a term ωmξk

(m, k positive integers) in that expansion. Its convolution with a 
distribution amplitude reads

Imk =
1∫

−1

dξ(1 − ξ2)λ−1/2
∑

n

anC (λ)
n (ξ)ωmξk . (3)

Any power of ξ can be expressed in terms of the Gegenbauer poly-
nomials [5]

ξk =
k∑

l,k−l≡ 0 mod 2

dλ
klC

(λ)

l (ξ) (4)

where

dλ
kl = (l + λ)k!�(λ)

2k
(

k−l
2

)
!�( k+l+2λ+2

2 )
. (5)

Using this property and applying the orthogonality of the Gegen-
bauer polynomials, one arrives at

Imk = ωm
∑

n

an

k∑
l,k−l≡ 0 mod 2

dλ
kl
π21−2λ�(l + 2λ)

l!(l + λ)[�(λ)]2
δnl . (6)

Obviously, Gegenbauer coefficients an with n > k do not contribute 
to the integral Imk . This is the observation made in [3] for the 
γ ∗π0 form factor to NLO (the latter corrections were taken from 
[6]) and, to LO, for the γ ∗η and γ ∗η′ ones. Below we are going 
to generalize the latter case to NLO. In [7] it has been shown that, 
for the γ ∗π0 form factor, this property of the ω-expansion even 
holds to NNLO.1 The correlation between the power of ω and the 
Gegenbauer coefficients also holds for the γ ∗ f0(980) [8] to LO and, 
exploiting the NLO corrections given in [6], also to that order. For 
the axial-vector, e.g. γ ∗a1(1260) [9], and tensor, e.g. γ ∗ f2(1270)

1 The result generalizes to higher order of perturbative QCD provided no terms 
∼ ln ξ or ∼ ln (1 − ξ) occur.
[9,10], form factors the correlation holds to LO; the NLO correc-
tions are unknown as yet. Meson-mass corrections, taken into ac-
count for instance in [9,10], do not spoil this property of the ω
expansion provided Q̄ 2 is much larger than the meson mass. Un-
der the same premise the ηc form factor is another example. As 
shown in [11] such an expansion holds for the vertex function of 
the annihilation of two virtual gluons into a pseudoscalar meson 
too. Results presented in [12] are in agreement with the find-
ings in [11]. We anticipate similar properties for other mesons. It 
should be stressed that for ω → 1, i.e. in the real photon limit, 
the hard scattering amplitude cannot be expanded this way and 
the sum of all Gegenbauer coefficients controls the transition form 
factors. However, if power corrections to the leading-twist result, 
accumulated in the soft end-point regions ξ → −1, 1, are taken 
into account the higher Gegenbauer coefficients are gradually sup-
pressed [13–15].

3. The γ ∗η and γ ∗η′ form factors

Because of η − η′ mixing the γ ∗η and γ ∗η′ form factors are 
much more complicated than the γ ∗π0 one. Even more so, there 
is an additional complication at NLO due to contributions from the 
gluon-gluon Fock component of the η and η′ mesons. Thus, we 
have to take into account three distribution amplitudes for each of 
the mesons:

�P i(ξ,μF ) = 3

2
(1 − ξ2)

[
1 +

∑
n=2,4,...

ai
Pn(μF ) C (3/2)

n (ξ)
]
,

�P g(ξ,μF ) = 15

8
(1 − ξ2)2

∑
n=2,4,...

ag
Pn(μF ) C (5/2)

n−1 (ξ) (7)

where P = η, η′ and i = 1, 8 refers to the flavor singlet and octet 
contributions.2 The full γ ∗ P transition form factor is the sum of 
the flavor octet and singlet contributions

F Pγ ∗(Q̄ 2,ω) = F 8
Pγ ∗(Q̄ 2,ω) + F 1

Pγ ∗(Q̄ 2,ω) (8)

where

Q̄ 2 = 1

2

(
Q 2

1 + Q 2
2

)
. (9)

The two parts of the form factor read

F 8
Pγ ∗ = 1

3
√

6

f 8
P

Q̄ 2

1∫
−1

dξ�P 8(ξ,μF )
1

1 − ξ2ω2

×
[

1 + αs(μR)

π
K(ω, ξ, Q̄ /μF )

]
,

F 1
Pγ ∗ = 2

3
√

3

f 1
P

Q̄ 2

⎧⎨
⎩

1∫
−1

dξ�P 1(ξ,μF )
1

1 − ξ2ω2

×
[

1 + αs(μR)

π
K(ω, ξ, Q̄ /μF )

]

+ αs(μR)

π

1∫
−1

dξ�P g(ξ,μF )Kgg(ω, ξ, Q̄ /μF )

⎫⎬
⎭ (10)

where f i
P is the constant of the decay of the meson P through

the action of either a singlet or octet axial-vector current. One 

2 As compared to previous work [11,16] we changed the definition of the gluon 
distribution amplitude by a factor of 30 in order to facilitate comparison with other 
work.
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notices that the LO term in (10) has the simple expansion 
∼ ∑

n=0,2,...(ξω)n . The quark parts of the NLO leading-twist contri-

butions, K, in (10) (evaluated in the MS-scheme) are the same as 
for the case of γ ∗π0 form factor and can be taken from [3]. The 
hard scattering amplitude for the gluon contribution which con-
tributes to NLO, can be adapted from double DVCS [17–19]. The 
result is 3

Kgg = 1

3(1 − ξ2)ω2

{
−4(1 − ω)

1 − ξ
ln (1 − ω) + 1 − ω

1 − ξ
ln2 (1 − ω)

+ 4 − ω(1 + ξ)2

1 − ξ
ln2 (1 − ξω)

− 2 − ω(1 + ξ)

2(1 − ξ)
ln2 (1 − ξω)

+1 − ω

1 − ξ

(
2 ln (1 − ω) − (1 + ξ) ln (1 − ξω)

)
ln

Q̄ 2

μ2
F

}

+ (ω → −ω) − (ξ → −ξ) − (ξ → −ξ,ω → −ω)

= − 5

9
ξ ω2

(
1 − 2

5
ln

Q̄ 2

μ2
F

)
− 37

135
ξ(1 + 2ξ2)

× ω4
(

1 − 12

37
ln

Q̄ 2

μ2
F

)
+O(ω6) . (11)

As one sees this is an expansion of the type discussed in Sect. 2. 
Power corrections to the above leading-twist result are mainly ac-
cumulated in the soft end-point regions where ξ → ±1. They are 
expected to be small for small ω and large Q̄ 2. This is obvious 
from the parton propagator 1/(1 − ξ2ω2) in (10). For ω → 0 the 
form factor becomes less sensitive to the end-point regions. Esti-
mates of power corrections arising from quark transverse momen-
tum [3] or from meson-mass corrections [15] support this expec-
tation. Thus, for the case of interest, it seems to be reasonable to 
work at leading-twist accuracy.

4. Expansion of the NLO leading-twist γ ∗η and γ ∗η′ form factors

Expanding the form factor (8) upon ω leads to

F Pγ ∗(Q̄ 2,ω) =
√

2

3Q̄ 2

∑
n=0,2,...

cPn(Q̄ 2)ωn (12)

where the first coefficients of the series read

cP 0 = f P

(
1 − αs

π

)
,

cP 2 = f P

5

(
1 − 5

3

αs
π

)
+ 12

35
aeff

P 2

(
1 + 5

12

αs
π

(
1 − 10

3
ln

Q̄ 2

μ2
F

))

−
√

2

3

50

63
f 1

P ag
P 2

αs
π

(
1 − 2

5
ln

Q̄ 2

μ2
F

)
,

cP 4 = 3 f P

35

(
1 − 59

27

αs
π

)

+ 8

35
aeff

P 2

(
1 + 173

216

αs
π

(
1 − 300

173
ln

Q̄ 2

μ2
F

))

+ 8

77
aeff

P 4

(
1 + 523

270

αs
π

(
1 − 546

523
ln

Q̄ 2

μ2
F

))

3 In [15] a part of the gluonic hard scattering amplitude is given. A part corre-
sponding to ξ → −ξ is lacking and when it is added agreement with our results is 
to be seen.
−
√

2

3

370

567

αs
π

(
1 − 12

37
ln

Q̄ 2

μ2
F

)
f 1

P

(
ag

P 2 + 28

55
ag

P 4

)
. (13)

The effective decay constant is defined by

f P = 1√
3

[
f 8

P + 2
√

2 f 1
P

]
, (14)

and the effective quark Gegenbauer coefficients by

aeff
Pn(μF ) = 1√

3

[
f 8

P a8
Pn(μF ) + 2

√
2 f 1

P a1
Pn(μF )

]
. (15)

The various Gegenbauer coefficients depend on the factorization 
scale, μF . Thus,

a8
Pn(μF ) = a8

Pn(μ0) Lγ
qq

n /β0 ,

a1
Pn(μF ) = 1

1 − ρ
(+)
n ρ

(−)
n

[(
Lγ

(+)
n /β0 − ρ

(+)
n ρ

(−)
n Lγ

(−)
n /β0

)
a1

Pn(μ
2
0)

+
(

Lγ
(−)

n /β0 − Lγ
(+)

n /β0
)
ρ

(−)
n ag

Pn(μ
2
0)

]
,

ag
Pn(μF ) = 1

1 − ρ
(+)
n ρ

(−)
n

[(
Lγ

(−)
n /β0 − ρ

(+)
n ρ

(−)
n Lγ

(+)
n /β0

)
ag

Pn(μ
2
0)

+ (
Lγ

(+)
n /β0 − Lγ

(−)
n /β0

)
ρ

(+)
n a1

Pn(μ
2
0)

]
. (16)

The parameters ρ(±)
n read

ρ
(+)
n = 1

5

γ
gq

n

γ
(+)

n − γ
gg

n

, ρ
(−)
n = 5

γ
qg

n

γ
(−)

n − γ
qq

n

, (17)

and

L = αs(μ0)

αs(μF )
(18)

The anomalous dimensions, γ i
n , can, for our conventions, be found 

in [16] (β0 = 25/3 for four flavors).4 As we see from (13) the 
Gegenbauer coefficients ai(g)

Pn are suppressed in the transition form 
factors by a power ωn . Thus, accurate data on the transition form 
factors, F Pγ ∗ , offer the possibility to measure at least the lowest 
Gegenbauer coefficients of the meson distribution amplitudes. This 
is to be contrasted with other hard exclusive processes where fre-
quently the 1/ξ -moment of the distribution amplitudes controls 
the observables. To this moment all Gegenbauer coefficients con-
tribute equally. The expansion coefficients cPn depend on Q̄ 2 only 
logarithmically through αs and the evolution. The transition form 
factors F Pγ ∗ scale as 1/Q̄ 2.

5. Comparison with the BaBar data

The most interesting result is that, for ω → 0, the leading term 
of the transition form factor only depends on the asymptotic me-
son distribution amplitudes:

Q̄ 2 F Pγ ∗ =
√

2

3
f P

(
1 − αs

π

)
+O(ω2,α2

s) . (19)

This result has been already given in [3]. In contrast to the case 
of the pion where the decay constant fπ is known, f P depends 
on the η − η′ mixing parameters. In the two-angle mixing scheme 
[20] the decay constants, f i

P , are parametrized as

4 Because of the definition of the gluon distribution amplitude in Eq. (7) the 
quantities ρ(±)

n differ from those quoted in [16] by the factor of 30.
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Table 1
Predictions for the scaled γ ∗η and γ ∗η′ transition factors. The data are taken from [1] and the mixing 
parameters from [20] (phenomenological values). For ω 	= 0 the Gegenbauer coefficients (23) are used. 
Parametric errors of the theoretical results are also quoted. The χ2 values are evaluated with regard to 
the experimental errors.

Q̄ 2 [GeV2] ω Q̄ 2 F exp
η′γ ∗ [MeV] Q̄ 2 Fη′γ ∗ [MeV] χ2 Q̄ 2 Fηγ ∗ [MeV]

6.48 0.000 92.8 ± 13.8 92.7 ± 3.9 0.00 56.2 ± 3.3

16.85 0.000 90.1 ± 37.3 93.8 ± 3.9 0.01 56.8 ± 3.3
9.55 0.553 78.7 ± 13.5 98.7 ± 4.1 2.19 59.9 ± 3.5

26.53 0.436 161.0 ± 44.2 97.7 ± 4.1 2.05 59.2 ± 3.5

45.63 0.000 397.4 ± 400.9 94.6 ± 4.0 0.57 57.4 ± 3.4
f 8
η′ = f8 sin θ8 , f 1

η′ = f1 cos θ1 ,

f 8
η = f8 cos θ8 , f 1

η = − f1 sin θ1 . (20)

The various mixing parameters are taken from the phenomenolog-
ical set presented in [20] ( fπ = 131 MeV)

f8 = (1.26 ± 0.06) fπ , θ8 = −21.2 ± 1.4 ,

f1 = (1.17 ± 0.04) fπ , θ1 = −9.2 ± 1.4 . (21)

In contrast to f8 and the mixing angles the singlet decay constant, 
f1, is renormalization scale dependent [21]. The anomalous dimen-
sion controlling this scale dependence is of order α2

s and therefore 
small. In the determination of the mixing parameters this scale 
dependence is usually ignored. It is therefore not clear at which 
scale (21) holds. Since the data on the γ η and γ η′ transition form 
factors [26] as well as a number of charmonium decays play an 
important role in the analysis of η − η′ mixing [20] a possible ini-
tial scale of f1 presumably lies in the range of 2 − 4 GeV2. If so, 
the scale dependence of f1 is weak; its effect on the form fac-
tors is of the order of the theoretical errors quoted in Table 1. We 
therefore ignore the scale dependence of f1 in the following. This 
procedure is consistent with the determination of the mixing pa-
rameters (21).

For the evaluation of the form factors the QCD coupling, αs, 
is evaluated from the two-loop expression with �Q C D = 319 MeV
for four flavors in the M S-scheme [22]. The renormalization scale 
is chosen as 2Q̄ 2. This is all we need for an evaluation of the 
transition form factors at ω = 0. The results of the computation 
are presented in Table 1 and compared to the three BaBar data 
points at this value of ω. Excellent agreement is to be observed, 
all predicted values agree with the experimental ones within the 
admittedly large experimental errors. The mixing parameters have 
been determined repeatedly, using more recent but often less data, 
e.g. [23,24]. Also these sets of mixing parameters agree with the 
BaBar data within the experimental errors. Even the theoretical 
mixing parameters quoted in [25] which, with the help of the di-
vergences of the axial-vector currents, are expressed in terms of 
particle masses, agree with experiment. The predictions for the 
γ ∗η′ form factor obtained from the various sets of mixing param-
eters, even agree within the parametric phenomenological errors 
quoted in Table 1, except for the mixing parameters of [23] which 
lead to values of the γ ∗η′ form factor about 2 σ (with respect to 
the phenomenological errors) larger than the predictions listed in 
the table. A somewhat larger spread of the predictions for the γ ∗η
form factor is obtained.

The BaBar collaboration has also measured the γ ∗η′ form factor 
for two non-zero but adjacent values of ω. The two face values of 
the form factor data differ by about a factor of two. It seems diffi-
cult to accommodate this difference within the NLO leading-twist 
theory since, as we mentioned above, the expansion coefficients, 
cPn , only depend on Q̄ 2 logarithmically. Anyway the present ex-
perimental information on the ω-dependence of the transition 
form factors is too limited for an attempt of fitting even the low-
est Gegenbauer coefficients of the meson distribution amplitudes 
to the BaBar data. Nevertheless, we can carry out the following 
check: We make use of the second Gegenbauer coefficients which 
we extracted in [16] from the data on the meson-photon transi-
tion form factors [26,27]. In this analysis we have had to assume 
that all higher Gegenbauer coefficients do not contribute in the 
real-photon limit. Thus, although the extracted Gegenbauer coeffi-
cients are to be regarded as effective ones, perhaps contaminated 
by higher-order Gegenbauer coefficients, we here identify them 
with the real second order coefficients. It should also be mentioned 
that in [16] particle-independence of the meson distribution am-
plitudes is assumed, i.e.

�
i(g)
P = �i(g) . (22)

This plausible assumption has also been made in [15,20]. The val-
ues of the Gegenbauer coefficients read [16]

a8
2 = −0.05 ± 0.02 , a1

2 = −0.12 ± 0.01 ,

ag
2 = 0.63 ± 0.17 , (23)

valid at the scale μ0 = 1 GeV. In order to match the choice of the 
factorization scale made in [16] in the real photon case we choose 
μ2

F = 2Q̄ 2. From the Gegenbauer coefficients (23) we obtain the 
values for the γ ∗η and γ ∗η′ transition form factors quoted in Ta-
ble 1. Terms ∝ ω4 are included in that evaluation. Both the results 
at the non-zero values of ω deviate by about 2 σ from experi-
ment. One of the theoretical values is too low as compared to the 
BaBar data, the other one too high. We emphasize – a change of 
the Gegenbauer coefficients (23) either increase or decreases the 
values of the form factors for both the ω values. Thus, it seems 
that we cannot improve the predictions. However, we do not think 
that serious conclusions should be drawn from this result; more 
accurate data are required for this. We remark that the ω2-term 
affects the results by about 5%, the ω4 term (with zero fourth-
order Gegenbauer coefficients) by less than 1%. The contribution 
from the gluon-gluon Fock component of the mesons, ∝ ag

n , is tiny 
but, implicitly, it substantially affects the results through the evo-
lution of a1

n , see (16).
In Fig. 2 we display predictions for the scaled form factors ver-

sus ω2 at Q̄ 2 = 5 GeV2. In this computation we have naturally 
used the expressions (8) and (10) for the form factors instead of 
the expansion (12). We stress again – the scaled form factors de-
pend only logarithmically on Q̄ 2. For comparison we have made 
an alternative evaluation of the transition form factors for which 
we have assumed a8

2 = a1
2 = 0.25, positive values for these Gegen-

bauer coefficients are favored by QCD sum rules [15], and, in order 
to have the same effective ai

2 values in the real photon limit, we 
have chosen the following (effective) fourth order Gegenbauer co-
efficient: a8

4 = −0.31 and a1
4 = −0.38. The gluon distribution am-

plitude is left unchanged. As one sees from Fig. 2 the two sets of 
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Fig. 2. Predictions for the scaled γ ∗η and γ ∗η′ form factors versus ω2 at Q̄ 2 =
5 GeV2. Solid (dashed) lines: fit (23) (alternative fit – see text).

Gegenbauer coefficients lead to the same form factors for ω → 0
and, indeed, in the real photon limit. However, for large, but < 1, 
values of ω the predictions differ and for sufficiently accurate data 
on the γ ∗ P form factors one may distinguish between the two 
sets of Gegenbauer coefficients. Thus, we conclude data on the 
γ ∗ P transition form factors may provide more detailed informa-
tion on the meson distribution amplitudes than one obtains in the 
real photon limit.

6. Summary

We have discussed the ω-expansion of the form factors for the 
annihilation of two virtual photons into a meson to leading-twist 
accuracy and have, in particular, investigated the correlation be-
tween the power of ω and the Gegenbauer coefficients of the cor-
responding meson distribution amplitudes in some detail. We have 
applied this property to the γ ∗η and γ ∗η′ form factors and have 
shown that to the ωm-term only the Gegenbauer coefficients of the 
quark octet and singlet distribution amplitudes as well as of the 
gluon distribution amplitude to order n ≤ m contribute. While for 
the quark distribution amplitudes this property has already been 
discussed in [3], it is a new result for the gluon contribution.

The correlation between the power of ω and the Gegenbauer 
coefficients is a possibility to learn more about the meson distri-
bution amplitudes as it is possible from the transition form factors 
in the real photon limit. In the latter case the sum of all Gegen-
bauer coefficients makes up the form factors. While for the γ ∗π0

form factor the application of the ω expansion is very simple and 
straightforward it is more involved for the η and η′ because of the 
η − η′ mixing and the contributions from the gluon-gluon Fock 
components of these mesons. But it is feasible with the plausible 
assumption of particle-independence of the corresponding distri-
bution amplitudes. Still there are three Gegenbauer coefficients at 
any order but only two independent form factor measurements. 
The gluon distribution amplitude is only separated from the two 
quarks ones through the αs-corrections which merely provide a 
small lever arm in practice. In any case, accurate form factor data 
for large ω, close to 1, will certainly allow to check whether the ef-
fective value of a2 extracted in the real photon limit, results from 
the cancellation of rather large individual terms or from the small-
ness of the an for n > 2 as stated in [3]. The much higher accuracy 
of the data on F Pγ than those for F Pγ ∗ could thus be overcom-
pensated. From the high luminosity available at BELLE2 one may 
expect that an accurate measurement of γ ∗ P form factors seems 
to be possible there although this is a challenging task.
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