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Abstract 
Hyperspectral imaging (HSI) is being shown as an emerging modality with a great potential in 
disease diagnosis and surgical cancer resection. Herein, we evaluate feasibility of the HSI to 
discriminate and diagnose colon cancer metastasis in a liver from five hematoxylin and eosin 
stained histopathological specimens. They were collected from the same patient during 
intraoperative frozen section analysis. Cancer and non-cancer spectra along with corresponding 
spatial maps were estimated from hyperspectral images by means of spectral unmixing. It was 
found that maximal angle between cancer spectra is 1.02 degrees less than minimal angle between 
cancer vs. non-cancer spectra. Thus, spectrum angle mapper was used for pixel-based diagnosis of 
cancer yielding sensitivity between 81.23% and 97.12%, specificity between 85.85% and 97.3%, 
and accuracy between 86.85% and 96.92%. 
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1 INTRODUCTION 
 

Hyperspectral imaging (HSI), also called imaging spectroscopy, produces images up to several 
hundreds of adjacent spectral bands [1]. HSI systems, originated from remote sensing, were used 
for military needs and explored for various applications by NASA [2]. With the appearance of 
commercial airborne HSI systems new applications in resource management, agriculture, mineral 
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exploration and environmental monitoring have emerged [3]. HSI is also an emerging modality for 
medical applications, especially in disease diagnosis and image-guided surgery [4]. HSI acquires 
three-dimensional dataset, called image cube, with two spatial dimensions and one spectral 
dimension. Upon assumption that physical properties of tissue such as absorption, fluorescence and 
scattering change during progressions of disease, [5], acquired hyperspectral image carries 
quantitative information about tissue pathology [6, 7]. Thus, spectra associated with specific tissues 
can serve as basis for disease screening, detection and diagnosis [4]. In particular, HSI has 
demonstrated great potential in diagnosis of cancer in the cervix [6, 8], breast [9, 10], colon [11-
14], head and neck [15], prostate [16], ovary [17] and lymph nodes [18], to name a few. For more 
in depth coverage of the use of HSI in diagnosis of various diseases we refer interested reader to 
[4]. The aim of the present study was to evaluate feasibility of the HSI to discriminate and diagnose 
colon cancer metastasis in a liver from five hematoxylin and eosin (H&E) stained specimens. They 
were collected from the same patient during intraoperative frozen section analysis. Spectral 
unmixing [19, 20], was applied on recorded hyperspectral images yielding pixel-based 
decomposition into spectra of pure tissues and fractional abundances that indicate spatial maps of 
pure tissues. Pathologist identified spatial maps associated with metastasis of colon cancer. 
Consequently, corresponding spectra were identified as spectra of metastasis of colon cancer. 
Afterwards, maximal angle between cancer spectra and minimal angle between cancer spectra and 
spectra of non-cancer tissues were calculated yielding a gap in the amount of 1.02 degrees. Thus, 
angular threshold was defined for pixel-based spectral angle mapper (SAM) diagnosis. Afterwards, 
the angle between the reference cancer spectra, obtained as average of cancer spectra, and spectra 
of each pixel was calculated and compared with the threshold, whereas pixels with angles less than 
the threshold were diagnosed as cancerous. That pixel-based diagnosis enabled quantification of 
diagnostic performance. Thereby, spatial maps obtained through spectral unmixing, and identified 
by pathologist as metastasis of colon cancer, served as ground truth necessary to estimate 
sensitivity, specificity, accuracy and Dice coefficient (DC). The rest of this paper is organized as 
follows. Sec. 2 presents details related to the collection and preparation of the specimen, 
hyperspectral image acquisition, identification of cancer spectra by means of spectral unmixing and 
patholgist' identification of cancer spatial maps. Design of spectral angle mapper (SAM) classifier 
for pixel-based diagnosis is also presented in Sec. 2.  Quantification of the performance of the SAM 
pixel-based diagnosis is presented in Sec. 3. Discussion and conclusions are given in Sec. 4.  
 

 
2 MATERIALS AND METHODS 

 
2.1 Ethics statement 
 
This study was approved by the Ethics Committee of the Clinical Hospital Dubrava (May 24, 
2016).  
 
 
2.2 Samples of human liver tissue and color RGB image acquisition 
 
H&E stained frozen sections of liver with metastasis of colon cancer were collected during 
intraoperative surgery procedure in Clinical Hospital Dubrava, Zagreb, Croatia. RGB color images 
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of H&E stained specimens were acquired on light microscope Olympus BX51 with a DP50 camera, 
Japan, and magnification 400x.  
 
 
2.3 Immunohistochemical staining 
 
To confirm diagnosis, paraffin-embedded sections were immunohistochemically stained to CDX2 
antigene, a diagnostic marker for colorectal differentiation. Primary antibody CDX2 clone DAK-
CDX2 (product No. M3636) and Dako Envision System (Denmark) were used. RGB images of 
stained specimens were acquired under light microscope Olympus BX51 with a DP50 camera, 
Japan, magnification 400x, Figure 1. 
 
 

 

Figure 1. The light microscope acquired RGB color image of the CDX2 stained specimen.  Colon cancer 
metastasis positive to CDX2 are colored brown and that confirms diagnosis of metastasis of colon cancer in 
a liver. 
 
 
 
2.4 Hyperspectral microscopic image acquisition 

Images of the regions of interest marked on H&E stained histopathological specimens were 
acquired with Photon etc’s hyperspectral fluorescence microscope IMA [21, 22]. IMA uses volume 
Bragg gratings (VBG) to acquire spectrally resolved images combined into a data cube. VBG 
allows global imaging, a method where the signal coming from every point in the field of view is 
simultaneously collected avoiding x-y or line scanning. The data cubes are composed of 351 gray 
scale images recorded at 1 nm spectral resolution (ranging from 450 nm to 800 nm) with focus at 
590 nm. Each gray scale image comprised of 1392x1040 pixels with a spatial resolution of 1 µm, 
the images were acquired with a 20X objective. Figure 2 shows grayscale intensity images of 
selected wavelengths from the HSI of H&E stained specimen of liver with colon cancer metastasis.  
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Figure 2. Gray scale intensity images at specified wavelengths as parts of hyperspectral image 
cube of H&E stained specimen of human liver with metastasis of colon cancer. Corresponding 
cancer patterns are denoted in each image by an arrow of the same color.    

 

2.5 Spectral unmixing 
 

Prior to spectral unmixing the hyperspectral image cube 1392 1040 351
0

 
X   comprised of 351 spectral 

images with the size of 13921040 pixels is unfolded into a matrix 351 (1392 1040)
0

 
X   The spectrum 

of each pixel 351 1
0p


x  , p=1,.., 13921040, is well approximated by linear mixture of distinct 

tissues spectra weighted by corresponding abundances [19, 20]: 
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where 351 1

0j


m   stands for pure spectra of the jth tissue, J stands for overall number of tissues, 

and abundance sjp stands for percentage of pure tissue j that is present in the pixel p. In the presents 
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study J  was set to 6. Thus, it was assumed that number of distinct tissues present in the field of 
view of the hyperspectral microscope does not exceed 6. Due to the nature of the problem 
nonnegativity and sum-to-one constraints are imposed on abundances: 
 

                                                

            T, 1 1,...,1392 1040J
p S p       s s s 0 s 1        (2) 

 
where S denotes the feasible set of abundance vectors [20]. Provided that pure tissues spectra are 
estimated accurately, abundances can be obtained by solving constrained least square problem [19, 
20, 23]:  
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where 351 6
0


M   stands for matrix of pure tissues spectra. Thus, knowledge of M is of key 

importance for hyperspectral image analysis. To this end, many state-of-the-art algorithms for 
estimation of pure spectra rely on pure pixel assumption [24-26]. This assumption implies that each 
pure spectra is present in at least one pixel alone. Due to 1 m spatial resolution of  the 
hyperspectral fluorescence microscope the pure pixel assumption is justified experimentally. Thus, 
algorithms such as N-FINDR, [24], vertex component analysis, [25], and successive volume 
maximization, [26], employ various pure pixels search strategies to estimate the pure spectra. In the 
present study NFINDR and fully constrained least square (FCLS), [27], algorithms were used to 
respectively estimate pure spectra and fractional abundances. To this end, Figure 3  shows spectra 
and spatial maps of metastasis of colon cancer and five non-cancerous tissues obtained from 
spectral unmixing of hyperspectral image of one H&E stained specimen. Figure 4(a) shows RGB 
color image of the same H&E stained specimen recorded by light microscope. Gray scale intensity 
image acquired by hyperspectral microscope at wavelength of 500 nm is shown in Figure 4(b). 
Figure 4(c) shows fractional abundance map associated with metastasis of colon cancer. 
Corresponding cancer patterns are pointed in each picture by arrows of the same color. Based on 
this information pathologist confirmed the fractional abundance map as the cancer map. The same 
procedure was used for hyperspectral images of all five specimens. These cancer maps served as 
ground truth for performance quantification of spectrum angle mapper (SAM) pixel-based 
diagnosis. Figure 5 shows cancer spectra estimated from five specimens by NFINDR algorithm. 
The average of these cancer spectra is also shown in Figure 6 and was used for the SAM classifier 
pixel-based diagnosis. 
 
 

Proc. of SPIE Vol. 10956  109560S-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

Figure 3. Spectra and spatial maps of cancer and non-cancer components obtained by spectral unmixing of 
the hyperspectral image cube as in Figure 2. 
 

 

Figure 4. Specimen of human liver with metastasis of colon cancer collected during intraoperative surgery 
procedure: (a) RGB color image of the H&E stained specimen; (b) gray scale intensity image recorded by 
hyperspectral microscope at 500 nm; (c) fractional abundance map of the cancer estimated by spectral 
unmixing. Corresponding cancer patterns are denoted in each image by an arrow of the same color.    
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Figure 5. Cancer spectra estimated from five specimens by NFINDR algorithm. Reference cancer spectrum 
(obtained as average of five cancer spectra) is shown in black color and pointed by an arrow.    
 
 

2.6 Spectral angle mapper diagnosis 

SAM is supervised pixel-based classifier that compares cancer spectra 351 1
0

c 
x   with the pixel 

spectra px  by calculating angle between the two spectra: 
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where ,   denotes the inner product between the two vectors and   denotes the 2 -norm of the 

vector. Diagnosis is established through comparison of p  with a threshold * : 
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Threshold *  was set on the basis of the values of maximal angle between the cancer spectra and 

minimal angle between the cancer and non-cancer spectra: * 0 012.32 , 13.34    .  To this end, 

Figure 6 shows spectra of the cancer tissue and non-cancerous tissues estimated by NFINDR 
algorithm from hyperspectral image of one H&E stained specimen.   
 

 
Figure 6. Cancer spectrum and spectra of non-cancerous tissues estimated by NFINDR algorithm 
from the hyperspectral image of H&E stained specimen of human liver with metastasis from colon 
cancer. 
 
 

3 EXPERIMENTS AND RESULTS 
 

3.1 Performance measure 

To quantify diagnoses performance we compared fractional abundance maps of the cancer 
estimated by FCLS algorithm in (3) with pixel-based diagnoses obtained by SAM classifier (4). To 
this end, sensitivity, specificity, accuracy and DC were estimated for cancer diagnosis for each of 
the five specimens. All metrics are greater than or equal to 0 and less than or equal to 1. While 
sensitivity and specificity emphasize respectively errors in diagnoses of cancer or non-cancer 
pixels, accuracy and DC emphasize errors in diagnoses of both cancer and non-cancer pixels. 
Figure 7(a) to 7(d) show respectively sensitivity, specificity, accuracy and DC estimated in 
diagnoses of cancer from five specimens as a function of angular threshold 

 * 0 0 0 0 012.32 ,12.5 ,12.83 ,13 ,13.2  . In particular, achieved sensitivity is between 81.23%  and 

97.12%, specificity between 85.85% and 97.3%,  accuracy between 86.85% and 96.92% and DC 
between 0.5971 and 0.9008.  
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Figure 7. Performance measures of SAM classifier pixel-based diagnosis as a function of angular threshold: 
(a) sensitivity in percentage; (b) specificity in percentage; (c) accuracy in percentage; (d) Dice coefficient 
(D). For Dice coefficient 0 stands for disagreement between diagnoses and ground truth and 1 stands for 
perfect agreement between diagnoses and ground truth.

4 DISCUSSION AND CONCLUSIONS 

The feasibility of the HSI to diagnose metastasis of colon cancer in liver from H&E stained 
specimens collected during intraoperative frozen section analysis is evaluated. For that purpose 
spectral unmixing of the acquired hyperspectral images was performed to decompose image of 
each specimen into spectra of pure tissues and fractional abundances that indicate spatial maps of 
pure tissues. Cancer related spatial maps were identified by pathologist and served as ground truth 
for performance assessment of SAM classifier pixel-based diagnoses. Angular threshold for SAM 
classifier based diagnoses was obtained from the experimentally found gap between maximal angle 
between cancer spectra and minimal angle between cancer and non-cancer spectra. Estimated 
sensitivity, specificity and accuracy are above 80%. Thus, it is conjectured capability of HSI 
modality for diagnosis, screening and image-guided surgery of metastasis of colon cancer in a liver. 
In the long term it is necessary to investigate possibility to build library of spectra of other types of 
gastrointestinal cancers. That is necessary in order to verify whether: (i) angle between the spectra 
of the same type of cancer is less than or greater than angle between the spectra of different types 
of cancer; (ii) angle between the spectra of cancers of interest is less than or greater than angle 
between spectra of cancer and non-cancerous tissues. The outcome of this investigation would 
confirm or eliminate conjecture that HSI imaging modality is capable for diagnosis, screening and 
image-guided surgery of cancers. Furthermore, it is also necessary to investigate whether more 
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advanced spectral unmixing methods, such as the ones based on nonlinear mixture models, can 
yield estimates of cancer spectra and corresponding spatial maps with smaller variability. 
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