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Abstract. In this paper, a comparison of two different methods for a steam turbine energy analysis is
presented. A high-pressure steam turbine from a supercritical thermal power plant (HPT) was analysed
at three different turbine loads using the energy flow stream (EFS) method and isentropic (IS) method.
The EFS method is based on steam turbine input and output energy flow streams and on the real steam
turbine produced power. The method is highly dependable on the steam mass flow rate lost through
the turbine gland seals. The IS method is based on a comparison of turbine steam expansion processes.
Observed energy analysis methods cannot be directly compared because they are based on different
sources of steam turbine energy losses, so, an overall steam turbine energy analysis is presented. Unlike
most steam turbines from the literature, the analysed HPT did not have the highest overall energy
efficiency at a full load due to exceeding the water/steam critical pressure at the turbine inlet during
such operation.
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1. Introduction
The scientific and professional literature offers many
different energy and numerical analysis of entire steam
power plants as presented by Erdem et al. [1], Mitrović
et al. [2], Kumar et al. [3], Noroozian et al. [4],
Ahmadi and Toghraie [5] and Uysal et al. [6]. The
energy and numerical analysis can also be applied to
a research of steam power plant components, such as
steam turbines [7], [8], steam condensers [9], steam
generators [10, 11] and air heaters for steam generators
[12], feed water heaters [13], gland steam condensers
[14] and many others. An investigation of combined
power plants [15], CHP (Combined Heat and Power)
plants [16], solar power plants [17] or power plants,
which use solar assisting [18], can also be performed
by various types of energy analysis methods.

Along with the energy, an exergy analysis of various
power plants: solid fuel-fired [19], CHP [20], multi-
generation [21], steam supercritical [22] and nuclear
[23], which takes into account the ambient state (tem-
perature and pressure of the ambient) in which power
plant and all of the plant’s components operate, is
widely used nowadays.

Energy and exergy analyses are also commonly used
for the efficiencies and losses research of marine propul-
sion systems [24] and power plants [25], components
of such systems [26, 27] or the entire complex energy
systems on the cruise ships [28], container ships [29]
or chemical tankers [30]. A several industrial plants
can also be evaluated and optimized by using energy
and exergy analyses, such as a sugar factory [31], milk
powder production system [32], milk processing fac-
tory [33] and industrial-scale yogurt production plant
[34].

An energy analysis of some power plant components
will result in energy power losses equal to zero and
energy efficiency equal to 100%. For such components,
a specific enthalpy of the operating medium at compo-
nent inlet and outlet remains constant (change in the
operating medium specific enthalpy can be neglected).
For such components, the only relevant analysis is the
exergy analysis. Pressure reduction valves (throttle
valves) [35, 36] and steam turbine labyrinth seals [37]
are the best examples of such components.

The most complex analyses of power plants and its
components are 3E (Energy, Exergy and Economic/
Environmental) [38, 39] and 4E (Energy, Exergy, Eco-
nomic and Environmental) [40, 41] analyses, which
provide a complete insight into a power plant oper-
ation from various aspects. Such analyses are often
used for power plant optimization and research of the
pollutants reduction possibilities [42, 43]. A critical
review of 4E analysis for a various power plants can
be found in [44].
An essential element of any steam power plant en-

ergy analysis is the main steam turbine with all of
its cylinders [45]. Such analysis usually does not take
into account the flow details within the turbine [46]
or other steam turbine inner details.

In scientific literature, two methods of the steam tur-
bine energy analysis are presented. The first method
is an energy flow stream method, which is based on
the turbine input and output energy streams and real
turbine developed power. The results of the energy
flow stream method can be found in [5, 47]. In or-
der to calculate the steam turbine energy power loss
and energy efficiency by using the energy flow stream
method, the authors presented data of steam mass
flow rates lost through each turbine gland seal (or
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cumulative steam mass flow rate lost through both
turbine gland seals).

The second method for steam turbine energy anal-
ysis is the isentropic method and the results of the
steam turbine energy analysis using this method can
be found in [48, 49]. The isentropic energy analysis
method is based on a comparison of turbine steam
expansion processes - ideal (isentropic) and real (poly-
tropic) [50]. In an isentropic energy analysis of a
steam turbine, the authors do not present the data
of steam mass flow rates lost through turbine gland
seals [51] (in some situations, cumulative steam mass
flow rate lost through both turbine gland seals is ne-
glected because it is approximately 1% of the steam
mass flow rate at the turbine inlet). The usage of the
energy flow stream method for the energy analysis
of a steam turbine in such situations will result with
turbine energy power loss equal to zero, while the
energy efficiency of the steam turbine will be equal to
100%. Without data (or neglecting) regarding steam
mass flow rates lost through turbine gland seals, the
isentropic method is the only relevant method for the
energy analysis of any steam turbine.
As the authors of this paper, so far, did not found

a comparison of the energy flow stream and isentropic
method for the energy analysis of any steam turbine
in any literature, in this paper, there is an energy
analysis of a high pressure steam turbine (HPT) from
a supercritical thermal power plant [52] with both
energy analysis methods presented. The HPT is anal-
ysed at three different turbine loads in order to obtain
a complete insight into results of both energy anal-
ysis methods. Obtained results were compared and
discussed. The main conclusion obtained from the
performed analysis is that the results of the energy
flow stream method and isentropic method cannot be
directly compared because each method presents a
different cause of steam turbine energy losses (and
consequently different energy efficiencies). Overall,
the HPT energy analysis, which represents a combina-
tion of steam turbine energy power losses and energy
efficiencies obtained by both of observed methods, is
presented. An overall energy analysis of any steam
turbine (not only of the researched HPT) completely
defines the steam turbine energy power losses and
energy efficiencies.

2. High pressure steam turbine
from supercritical thermal
power plant

2.1. General energy analysis equations
An energy analysis, in general, is defined by the first
law of thermodynamics [53]. Mass and energy balance
equations for a standard volume in a steady state
disregarding potential and kinetic energy are defined
according to [54]:∑

ṁIN =
∑

ṁOUT , (1)

∑
ṁIN · hIN −

∑
ṁOUT · hOUT = P − Q̇. (2)

The energy power of a flow for any fluid stream can
be calculated by using the equation [55]:

Ėen = ṁ · h. (3)

The energy efficiency may take different forms and
types, which are dependable on the analysed com-
ponent (control volume) or system. Usually, energy
efficiency can be written, according to [56] as:

ηen = Energy output

Energy input
. (4)

2.2. High pressure steam turbine (HPT)
energy analysis

The scheme and steam flow marks of the analysed
high pressure steam turbine (HPT) from a supercriti-
cal thermal power plant are presented in Fig. 1. The
analysed steam turbine has one steam flow inlet, two
steam flow extractions and one steam flow outlet. The
second steam extraction (point 3 in Fig. 1) is posi-
tioned near a steam turbine outlet, therefore, the
steam operating parameters (pressure and tempera-
ture) at the second steam extraction are equal to the
steam operating parameters on the HPT outlet (steam
generator inlet on re-heat, point 4 in Fig. 1).

The analysis of steam mass flow rates lost through
the front and rear gland seal requires introducing two
additional operating points (points x and y in Fig. 1).
In the operating point x - the steam has an identical
temperature and pressure as the steam at the turbine
inlet (point 1 in Fig. 1) and as the steam lost through
the front gland seal. The steam mass flow rate in
the operating point x expand through the HPT. In
the operating point y - the steam has an identical
temperature and pressure as the steam at the turbine
outlet and as the steam lost through the rear gland
seal. The steam mass flow rate in operating point y is
the steam mass flow rate at the end of the expansion
process (after the second steam extraction).
The steam mass flow rate lost through the front

gland seal (1-x) is the difference of the steam mass
flow rates at the turbine inlet (point 1 in Fig. 1) and
at the beginning of the expansion process (point x in
Fig. 1), while the steam mass flow rate lost through
the rear gland seal (y-4) is the difference of the steam
mass flow rates at the end of the expansion process
(after second steam extraction - point y in Fig. 1) and
at the turbine outlet (point 4 in Fig. 1).

The required steam specific enthalpies and specific
entropies in both the HPT energy analysis methods
and in all turbine operating points were calculated
from the known pressure and temperature of each flow
stream by using Nist REFPROP 9.0 software [57].
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Figure 1. Scheme of the analysed high pressure steam turbine (HPT) along with steam flow stream marks.

2.2.1. Energy flow stream method
The energy flow stream method for the HPT (or any
other steam turbine) energy analysis is based on tur-
bine input and output energy flow streams (along
with the real steam turbine developed power). This
method is highly dependable on a steam mass flow
rate lost through the turbine gland seals and that the
lost steam mass flow rate (for both front and rear
gland seal) is the essential component, which defines
the steam turbine energy power loss.
According to Fig. 1, the HPT energy flow stream

analysis equations (which define energy power loss
and energy efficiency) are as follows:
• Steam turbine real (polytropic) developed power:

PRE = ṁx · (h1 − h2) + (ṁx − ṁ2) · (h2 − h3),
(5)

where:

ṁx = ṁ1 − ṁ(1−x) = ṁ2 + ṁ3 + ṁy, (6)

h1 = h(1−x) = hx. (7)
• HPT energy power input:

Ėen,IN,EF S = Ėen,1 = ṁ1 · h1. (8)
• HPT energy power output:

Ėen,OUT,EF S = Ėen,2 + Ėen,3 + Ėen,4 + PRE

= ṁ2 · h2 + ṁ3 · h3 + ṁ4 · h4 + PRE , (9)

where:

h3 = hy = hy−4 = h4. (10)
• Cumulative steam mass flow rate lost through both
the HPT gland seals (front and rear):

ṁlost,cumulative = ṁ1 − ṁ2 − ṁ3 − ṁ4 =
ṁ(1−x) + ṁ(y−4). (11)

• Cumulative steam mass flow rate lost through both
the HPT gland seals can be distributed on the steam
mass flow rate lost through the front gland seal:

ṁ(1−x) = ṁlost,cumulative · zfront(%), (12)

and on a steam mass flow rate lost through the rear
gland seal:

ṁ(y−4) = ṁlost,cumulative · zrear(%). (13)

In equations (12) and (13), zfront(%) and zrear(%)
represents the percentages of ṁlost,cumulative, which
is lost through the front and rear gland seal. The
steam, which passes through the front gland seal has
the same specific enthalpy as the steam at the turbine
inlet (point 1 in Fig. 1), while the steam, which passes
through rear gland seal, has the same specific enthalpy
as the steam at the turbine outlet (point 4 in Fig. 1),
as declared in [58].
• HPT energy power loss:

Ėen,P L,EF S = Ėen,IN,EF S − Ėen,OUT,EF S =
ṁ1 · h1 − ṁ2 · h2 − ṁ3 · h3 − ṁ4 · h4 − PRE =

ṁ(1−x) · h1 + ṁ(y−4) · h4. (14)

• HPT energy efficiency:

ηen,EF S = PRE

Ėen,1 − Ėen,2 − Ėen,3 − Ėen,4

= ṁx · (h1 − h2) + (ṁx − ṁ2) · (h2 − h3)
ṁ1 · h1 − ṁ2 · h2 − ṁ3 · h3 − ṁ4 · h4

. (15)

During the usage of the energy flow stream method,
it is important not to include the steam mass flow
rates lost through the turbine front and rear gland seal
in the equation for the energy power output (9) and
into the equation for the energy efficiency (15). In the
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Figure 2. Comparison of isentropic and polytropic
steam expansion processes for the analysed HPT.

literature, it can be found that some authors include
this steam mass flow rates (multiplied with steam
specific enthalpies) into the equations for the energy
power output and energy efficiency. The result is that
the energy power input and output becomes the same,
which further resulted in a turbine energy power loss
equal to zero, the equation (14), and turbine energy
efficiency is then equal to 100%, equation (15).

2.2.2. Isentropic method
The isentropic steam turbine energy analysis method is
based on a comparison of turbine steam expansion pro-
cesses [59]. The real turbine steam expansion process
is polytropic and according to this steam expansion,
equation (5), the real HPT developed power is defined.
An ideal steam turbine expansion is isentropic, be-
cause this expansion assumes that the steam specific
entropy remains constant throughout the whole HPT
process. A comparison of ideal (isentropic) and real
(polytropic) steam expansion processes for the anal-
ysed HPT are presented in Fig. 2, according to steam
flow streams, Fig. 1. The main equations of the HPT
energy analysis by using isentropic method are:
• Steam entropy on the isentropic expansion line (ac-
cording to Fig. 2):

s1 = s2is = s3is = s4is. (16)

• HPT ideal (isentropic) developed power:

PIS = ṁx · (h1 − h2is) + (ṁx − ṁ2) · (h2is − h3is).
(17)

HPT real (polytropic) developed power is calculated
according to equation (5).
• HPT energy power loss:

Ėen,P L,IS = PIS − PRE . (18)

• HPT energy efficiency:

ηen,IS = PRE

PIS

= ṁx · (h1 − h2) + (ṁx − ṁ2) · (h2 − h3)
ṁx · (h1 − h2is) + (ṁx − ṁ2) · (h2is − h3is) .

(19)

3. Operating parameters of the
analysed HPT at three
different loads

The HPT operating parameters for all steam flow
streams, Fig. 1, were found in [52] and presented in Ta-
ble 1. Specific enthalpies, isentropic specific enthalpies
and specific entropies of all steam flow streams are
calculated with Nist REFPROP 9.0 software [57].
In Table 1, specific exergies of each steam flow

stream are also presented. As specific exergy is de-
pendable on the conditions of the ambient in which the
analysed turbine operates, specific exergies presented
in Table 1 are calculated for the ambient pressure
of 1 bar (0.1 MPa) and ambient temperature of 25
°C (298 K), as proposed in [60]. By using specific
exergies, the exergy analysis of the researched HPT
can be performed at each load. The specific exergy
of each steam flow stream is also calculated with Nist
REFPROP 9.0 software [57].

The analysed high pressure steam turbine is an inte-
gral part of supercritical thermal power plant process
with a maximum power of 660 MW (entire power
plant power, not only the HPT) at the highest load.
Authors in [52] analysed the complete power plant
process, under constant and pure sliding pressure op-
eration at three different loads (loads of 60%, 80%
and full load of 100%).

As presented in Table 1, the cumulative steam mass
flow rate lost through both the turbine gland seals is
known while the steam mass flow rate lost through
each HPT gland seal is not known. According to the
equations (11), (12) and (13), the steam mass flow rate
lost through both HPT gland seals can be distributed
on each gland seal in different percentage ratios. Such
distribution will surely influence the steam turbine
energy analysis (not only researched, but also any
other steam turbine energy analysis), regardless of
used energy analysis method.
The HPT gland seal distribution from Table 2 is

researched. It should be noted that the first and the
last combination (No.1 and No.11) are not usual com-
binations, which can be expected during the HPT
operation, because certain steam mass flow rate will
surely be lost through both (front and rear) gland
seals, but such combinations can be researched numer-
ically. For each combination from Table 2, both steam
turbine energy analysis methods (energy flow stream
method and isentropic method) at each observed HPT
load (load of 60%, 80% and full load of 100%) were
performed.
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Stream
flow

(Fig. 1)

Mass
flow
rate

Temperature Pressure Specific
enthalpy

Specific
entropy

Specific
exergy

Specific
enthalpy-
isentropic

kg/s K bar kJ/kg kJ/(kg·K) kJ/kg kJ/kg
HPT load 60%

1 327.60 766.5 138.10 3307.7 63.775 1411 3307.7
2 17.63 584.7 42.32 2986.4 63.833 1088 2983.0
3 24.26 537.4 28.68 2904.3 63.979 1001 2893.4
4 281.80 537.4 28.68 2904.3 63.979 1001 2893.4

HPT load 80%
1 435.70 787.0 183.00 3308.3 62.652 1445 3308.3
2 27.02 599.5 55.51 2987.8 62.753 1121 2981.7
3 35.52 550.0 37.36 2904.4 62.896 1034 2891.0
4 368.70 550.0 37.36 2904.4 62.896 1034 2891.0

HPT load 100%
1 562.20 805.1 229.20 3306.0 61.743 1470 3306.0
2 40.78 625.6 71.02 3021.6 62.322 1168 2985.7
3 49.21 571.9 47.07 2932.8 62.475 1075 2891.4
4 467.00 571.9 47.07 2932.8 62.475 1075 2891.4

Cumulative steam mass flow rate lost through both
gland seals (kg/s) - load 60%; 80%; 100% 3.91; 4.46; 5.21

Share of cumulative steam mass flow rate lost through both
gland seals in the steam mass flow rate
at the HPT inlet (%) - load 60%; 80%; 100%

1.19; 1.02; 0.93

Table 1. Steam flow data for the analysed HPT at all observed loads [52].

Percentage distribution of cumulative steam
mass flow rate lost through both gland seals
Combination

number
Front gland

seal
Rear gland

seal
No.1 100% 0%
No.2 90% 10%
No.3 80% 20%
No.4 70% 30%
No.5 60% 40%
No.6 50% 50%
No.7 40% 60%
No.8 30% 70%
No.9 20% 80%
No.10 10% 90%
No.11 0% 100%

Table 2. Distribution of HPT cumulative steam mass
flow rate lost through both gland seals - researched
combinations.

Steam mass flow rates extracted from the HPT
(stream flows 2 and 3 in Fig. 1) remains the same at
each turbine load as presented in Table 1 regardless
of the lost steam mass flow rate distribution.

4. Validation
In order to ensure that all operating parameters of
each steam flow stream and that for each HPT load
they are calculated correctly, the data presented in
Table 1 need to be validated. The steam temperature,
pressure and mass flow rate of each flow stream were
found in [52]. The authors in [52] analysed the whole
supercritical steam power plant from the energy and
exergy aspect and they assumed, for each turbine
cylinder (as well as for the HPT) at each load, that
the energy power loss is equal to zero and that energy
efficiency is equal to 100%.

From the above, it can be concluded that the HPT
analysed in this paper cannot be compared with the
results from [52] on the basis of the energy power loss
or energy efficiency regardless of used energy analysis
method. The parameter, on which a comparison of
calculated results can be performed is the HPT real
developed power at each turbine load. A good match
in the HPT real developed power will confirm the
proper calculation of steam specific enthalpies as well
as other steam parameters.

For a validation purposes, the HPT real developed
power is calculated using equation (5), with a note
that the steam mass flow rate lost through both tur-
bine gland seals is calculated as it would be lost only
on the rear gland seal (No.11 in Table 2), which was
the calculation procedure in [52]. The compared re-

113



S. Blažević, V. Mrzljak, N. Anđelić, Z. Car Acta Polytechnica

Turbine load 60% 80% 100%
HPT power (MW) 130.9 173.7 206.1
This analysis (MW) 130.71 173.73 206.19
Difference (%) -0.148 0.015 0.045

Table 3. Comparison of calculated HPT real devel-
oped power from [52] and by this analysis.

sults of the calculated HPT real developed power are
presented in Table 3.
It can be seen from Table 3 that the difference in

the calculated HPT real developed power between
[52] and this analysis is in the range of ±0.15% for all
observed turbine loads. This fact proves that all of
steam operating parameters, in each analysed turbine
operating point, Fig. 1, are correctly calculated.

5. Calculation results of two
presented HPT energy analysis
methods with discussion

5.1. Calculation results of HPT energy
flow stream method

Calculation results of the energy flow stream method
for all observed lost steam mass flow rate combinations
(Table 2) are presented in Table 4.

A decrease in steam mass flow rate lost through
front gland seal resulted with an increase in the steam
mass flow rate that expands through the HPT, which
finally leads to an increase in the turbine real devel-
oped power at each observed load.

The HPT energy power input represents an amount
of energy, which is delivered by steam at the turbine
inlet. For each turbine load, the energy power input
is calculated using an equation (8). Regardless of
the lost steam mass flow rate through gland seals
distribution, at each turbine load, the steam mass
flow rate and steam operating parameters (pressure
and temperature) at the turbine inlet are the same,
therefore, the energy power input remains constant
and is equal to 1083.6 MW for the HPT load of 60%,
1441.4 MW for HPT load of 80% and 1858.6 MW for
HPT full load (100%).
The energy power output of the analyzed HPT

increases during the increase in the steam mass flow
rate, which expands through the turbine, which is a
valid conclusion for each turbine load. Such occurrence
can be easily explained by using equation (9) - the
decrease in the steam mass flow rate lost through the
front gland seal increases the turbine real developed
power, which proportionally leads to an increase in
the turbine energy power output (at each turbine
load, other components of the equation (9) remain
unchanged).

The energy power loss of the HPT decreases during
the decrease in the steam mass flow rate lost through
the front gland seal at each turbine load, this can
be explained by using the last expression of equation

(14). The steam specific enthalpy at the HPT inlet
(h1) is much higher than the steam specific enthalpy
at the turbine outlet (h4), therefore, any decrease in
the steam mass flow rate lost through the front gland
seal (and the proportionaly increase in the steam mass
flow rate lost through the rear gland seal) will lead to
decrease in HPT energy power loss.

In the energy flow stream method, the equation (15)
defines the change of the HPT energy efficiency for
each observed load. An increase in the steam mass flow
rate, which expands through the HPT, results in an
increase in the turbine real developed power (turbine
real developed power is the numerator in equation
(15)). The denominator of equation (15) is a constant
for each turbine load, defined by data from Table 1., so
the increase in the HPT real developed power results
with a simultaneous increase in the turbine energy
efficiency.
From the comparison of different turbine loads, a

conclusion can be made that the HPT average energy
power loss increases with an increase in the turbine
load - from 12.14 MW on average at the HPT load
of 60%, to 13.85 MW on average at the HPT load of
80% and finally to 16.25 MW on average at the HPT
load of 100%. The dominant reason for such HPT
energy power loss trend is the increase in the steam
mass flow rate lost through both gland seals during
the increase in the turbine load, equation (14).
The increase in the HPT load also results in an

increase in the average turbine energy efficiency - from
91.45% on average at the HPT load of 60%, to 92.58%
on average at the HPT load of 80% and finally to
92.66% on average at the HPT load of 100%. Such
occurrence can be explained by using the equation
(15) where the HPT real developed power has a higher
intensity of increase than the denominator during the
increase in the turbine load. The increase in the HPT
real developed power is proportional to the increase
in the steam mass flow rate at the turbine inlet (and
simultaneously with the increase in the steam mass
flow rate, which will expand through the turbine)
during the load increase.
The main conclusion, which can be derived from

the results of the energy flow stream method is that
this method is the most dependable on the steam
mass flow rates (which expand through the turbine
and get partially lost through both gland seals). The
results obtained by the energy flow stream method are
expected for the analysed HPT - an increase in the
turbine load resulted with an increase in the turbine
energy power loss and with an increase in the turbine
energy efficiency.

5.2. Calculation results of HPT
isentropic method

The calculation results of the isentropic method for
all observed lost steam mass flow rate combinations
(Table 2) are presented in Table 5.
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Comb.
number
(Table 2)

Real
(poly.)
power

Energy
power
input

Energy
power
output

Energy
power
loss

Energy
eff.

MW MW MW MW %
HPT load 60%

No.1 129.13 1083.6 1070.67 12.93 90.90
No.2 129.29 1083.6 1070.83 12.78 91.01
No.3 129.44 1083.6 1070.98 12.62 91.12
No.4 129.60 1083.6 1071.14 12.46 91.23
No.5 129.76 1083.6 1071.30 12.30 91.34
No.6 129.92 1083.6 1071.46 12.14 91.45
No.7 130.08 1083.6 1071.62 11.99 91.56
No.8 130.23 1083.6 1071.77 11.83 91.67
No.9 130.39 1083.6 1071.93 11.67 91.78
No.10 130.55 1083.6 1072.09 11.51 91.90
No.11 130.71 1083.6 1072.25 11.36 92.01

HPT load 80%
No.1 171.92 1441.4 1426.67 14.76 92.10
No.2 172.10 1441.4 1426.85 14.57 92.19
No.3 172.28 1441.4 1427.03 14.39 92.29
No.4 172.46 1441.4 1427.21 14.21 92.39
No.5 172.64 1441.4 1427.39 14.03 92.48
No.6 172.83 1441.4 1427.57 13.85 92.58
No.7 173.01 1441.4 1427.75 13.67 92.68
No.8 173.19 1441.4 1427.93 13.49 92.77
No.9 173.37 1441.4 1428.11 13.31 92.87
No.10 173.55 1441.4 1428.29 13.13 92.96
No.11 173.73 1441.4 1428.47 12.95 93.06

HPT load 100%
No.1 204.25 1858.6 1841.4 17.22 92.22
No.2 204.44 1858.6 1841.6 17.03 92.31
No.3 204.64 1858.6 1841.8 16.84 92.40
No.4 204.83 1858.6 1842.0 16.64 92.49
No.5 205.03 1858.6 1842.2 16.45 92.57
No.6 205.22 1858.6 1842.4 16.25 92.66
No.7 205.41 1858.6 1842.6 16.06 92.75
No.8 205.61 1858.6 1842.8 15.86 92.84
No.9 205.80 1858.6 1843.0 15.67 92.93
No.10 206.00 1858.6 1843.2 15.47 93.01
No.11 206.19 1858.6 1843.4 15.28 93.10

Table 4. Calculation results of energy flow stream method.
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A decrease in the steam mass flow rate lost through
the front gland seal simultaneously increases the steam
mass flow rate, which expands through the HPT,
which results in an increase in both real (polytropic)
and ideal (isentropic) turbine power at each observed
turbine load. For each HPT load and for each combi-
nation of steam mass flow rate lost through both gland
seals, the real developed turbine power is calculated
according to equation (5), while an ideal turbine power
is calculated by using an equation (17). The same
increase in the steam mass flow rate which expands
through the HPT will result in a more intensive in-
crease in the turbine ideal than real developed power,
because steam specific enthalpy differences in equation
(17) are higher than in equation (5).

In the isentropic energy analysis method, more in-
tensive increase in the HPT ideal power, in comparison
with the real power during the increase in the steam
mass flow rate, which expands through the turbine,
will result in an increase in the energy power loss,
equation (18), which is a valid conclusion for each ob-
served turbine load. However, a change in the steam
mass flow rate, which expands through the HPT, has
a negligible influence on the turbine energy efficiency
while using the isentropic energy analysis method, at
any observed turbine load.
It can be seen from Table 5 that the change in

the steam mass flow rate, which expands through
the analysed HPT, results in a very small change
in the turbine energy power loss and in a negligible
change in the turbine energy efficiency while using
the isentropic method. Therefore, it can be concluded
that the change in the steam mass flow rate, which
expands through the HPT, at any load is not the
dominant element, which defines the turbine energy
losses and energy efficiencies in the isentropic energy
analysis method.
When comparing different HPT loads by the isen-

tropic energy analysis method, it can be concluded
that the turbine average energy power loss increases
with an increase in the turbine load - from 3.417 MW
on average at the HPT load of 60%, to 5.611 MW
on average at the HPT load of 80%, and finally, a
significant increase can be noted at the HPT load of
100% (22.943 MW on average).

In the isentropic method, an increase in the HPT
load resulted with a continuous decrease of the tur-
bine energy efficiency. An increase in the HPT load
from 60% to 80% resulted in a small decrease in the
turbine energy efficiency - from 97.437% to 96.855%.
A further increase in the HPT load from 80% to 100%
resulted with a significant decrease in the turbine
energy efficiency - from 96.855% to 89.944%.

The results obtained by the isentropic energy anal-
ysis method show an unexpected HPT behaviour dur-
ing increase in turbine load - the HPT average energy
power loss significantly increases at a full turbine load,
while the energy efficiency continuously decreases.

As it was proved before, the change in steam mass
flow rate, which expands through the HPT, does
not have a significant influence on the turbine en-
ergy power loss and energy efficiency in the isentropic
method, at any observed load. The most dominant
element in the applied isentropic method for the HPT
(or any other steam turbine) energy analysis is a real
(polytropic) steam expansion process and its com-
parison with an ideal (isentropic) steam expansion
process. The higher difference of the polytropic steam
expansion process from the isentropic steam expan-
sion process will result in a higher energy power loss
and, simultaneously, in a lower energy efficiency - this
conclusion is valid for an energy analysis of any steam
turbine while applying the isentropic method. The
difference in steam expansion processes (ideal and
real) can also be observed as a difference in steam
specific enthalpies between polytropic and isentropic
expansion processes (between two same steam pres-
sures) - a higher difference in steam specific enthalpies
will result in a higher energy power loss and lower
energy efficiency of any steam turbine.

A plot of steam expansion processes for the analyzed
HPT at each load, shown in Fig. 3, proves the above
made conclusion. The real (polytropic) steam expan-
sion process at the HPT load of 60% is the closest to
an ideal (isentropic) steam expansion process - there-
fore, at the lowest observed load, the HPT will have
the lowest energy power loss and the highest energy
efficiency. At the HPT load of 80%, the polytropic
steam expansion process deviates from the isentropic
expansion process a little more than during the HPT
load of 60% - therefore, at the HPT load of 80%, the
analysed turbine will have a higher energy power loss
and lower energy efficiency in comparison with the
HPT load of 60%.
Fig. 3 clearly presents that the polytropic steam

expansion process significantly deviates from the isen-
tropic steam expansion process at the HPT full load
(load of 100%). From such polytropic steam expan-
sion process at the HPT load of 100%, a much higher
energy power loss and much lower energy efficiency of
the analyzed turbine can be expected when compared
to lower loads. The reason of such difference between
polytropic and isentropic steam expansion processes at
the HPT full load is exceeding the critical pressure at
the HPT inlet (at the steam generator outlet, Fig. 1),
as the analyzed turbine operates in a supercritical ther-
mal power plant. The water/steam critical pressure,
as noted in the fluid information of Nist REFPROP
9.0 software [57] is 220.64 bars. It can be seen from
Table 1 that the critical pressure at the HPT inlet is
exceeded only at the turbine load of 100%. The ex-
ceeding of the critical pressure significantly influenced
the HPT steam real (polytropic) expansion process (in
comparison with polytropic steam expansion processes
under the critical water/steam pressure).
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Comb.
number
(Table 2)

Ideal
(isen.)
power

Real
(poly.)
power

Energy
power
loss

Energy
eff.

MW MW MW %
HPT load 60%

No.1 132.53 129.13 3.396 97.437
No.2 132.69 129.29 3.400 97.437
No.3 132.85 129.44 3.405 97.437
No.4 133.01 129.60 3.409 97.437
No.5 133.17 129.76 3.413 97.437
No.6 133.34 129.92 3.417 97.437
No.7 133.50 130.08 3.422 97.437
No.8 133.66 130.23 3.426 97.436
No.9 133.82 130.39 3.430 97.436
No.10 133.98 130.55 3.434 97.436
No.11 134.15 130.71 3.439 97.436

HPT load 80%
No.1 177.51 171.92 5.581 96.855
No.2 177.69 172.10 5.587 96.855
No.3 177.88 172.28 5.593 96.855
No.4 178.06 172.46 5.599 96.855
No.5 178.25 172.64 5.605 96.855
No.6 178.44 172.83 5.611 96.855
No.7 178.62 173.01 5.617 96.855
No.8 178.81 173.19 5.623 96.855
No.9 178.99 173.37 5.629 96.855
No.10 179.18 173.55 5.635 96.855
No.11 179.37 173.73 5.641 96.855

HPT load 100%
No.1 227.08 204.25 22.835 89.944
No.2 227.30 204.44 22.857 89.944
No.3 227.51 204.64 22.878 89.944
No.4 227.73 204.83 22.900 89.944
No.5 227.95 205.03 22.921 89.944
No.6 228.16 205.22 22.943 89.944
No.7 228.38 205.41 22.965 89.944
No.8 228.59 205.61 22.986 89.944
No.9 228.81 205.80 23.008 89.944
No.10 229.03 206.00 23.029 89.944
No.11 229.24 206.19 23.051 89.944

Table 5. Calculation results of isentropic method.

117



S. Blažević, V. Mrzljak, N. Anđelić, Z. Car Acta Polytechnica

Figure 3. Differences between the HPT ideal (isentropic) and real (polytropic) steam expansion processes for each
observed turbine load - plotted from Nist REFPROP 9.0 [57].

6. Comparison of energy flow
stream and isentropic energy
analysis methods for
researched HPT

In this section a direct comparison of the energy flow
stream and isentropic methods for the HPT energy
analysis are presented. Energy power losses and en-
ergy efficiencies of the analyzed HPT at each observed
turbine load and for each observed combination of lost
steam mass flow rate through both gland seals were
compared.
At the HPT load of 60%, the difference in the

turbine energy power loss calculated by the energy
flow stream method and isentropic method is between
7.92 MW and 9.54 MW, Fig. 4. An increase in the
steam mass flow rate, which expands through the
turbine, results in a decrease in the energy power loss
difference between observed methods. At the same
HPT load (load of 60%), the difference in the turbine
energy efficiency calculated by the isentropic method
and the energy flow stream method is between 5.43%
and 6.54%, Fig. 4, while the increase in the steam
mass flow rate, which expands through the turbine,
results in a decrease in energy efficiency difference
between observed methods (Table 4 and Table 5).

The same trends in differences of energy power loss
and energy efficiency between the energy flow stream
method and isentropic method are observed at the
HPT load of 80%, Fig. 5. The energy power loss
difference between the energy flow stream method
and isentropic method at the HPT load of 80% is
between 7.31 MW and 9.17 MW, while the difference
in the turbine energy efficiency between the isentropic
method and energy flow stream method is between
3.79% and 4.76%, Fig. 5. An increase in the steam

mass flow rate, which expands through the HPT, re-
sults in a decrease in both energy power loss difference
and energy efficiency difference between the observed
methods (Table 4 and Table 5) also at the HPT load
of 80%.

The trends in differences of the HPT energy power
loss and energy efficiency between energy flow stream
method and isentropic method are reversed at the
HPT load of 100% when compared to lower turbine
loads, Fig. 6. The reason of such occurrence can be
found in the fact that at the HPT load of 100%, the
energy power loss of the analysed steam turbine cal-
culated by the isentropic method is much higher than
the energy power loss calculated by the energy flow
stream method, while the turbine energy efficiency
calculated by the isentropic method is lower than the
energy efficiency calculated by the energy flow stream
method, for each steam mass flow rate, which expands
through the turbine (Table 4 and Table 5). There-
fore, at the HPT load of 100%, the energy power loss
difference between the isentropic method and the en-
ergy flow stream method is between 5.61 MW and
7.77 MW, while the difference in the turbine energy
efficiency between the energy flow stream method and
the isentropic method is between 2.28% and 3.16%,
Fig. 6. At the HPT load of 100%, an increase in
the steam mass flow rate, which expands through the
analysed turbine, results in an increase in the energy
power loss difference and energy efficiency difference
between observed methods.
When the observed HPT loads are compared, it

can be concluded that the average differences in the
turbine energy power loss and the energy efficiency
between the energy flow stream method and isentropic
method decreases during the increase in the turbine
load. An increase in the HPT load results in a decrease
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Figure 4. Comparison of energy flow stream method and isentropic method - difference in energy power loss and
energy efficiency (HPT load of 60%).

Figure 5. Comparison of energy flow stream method and isentropic method - difference in energy power loss and
energy efficiency (HPT load of 80%).

of the average energy power loss difference between the
energy analysis methods from 8.73 MW on average at
the HPT load of 60%, to 8.24 MW on average at the
HPT load of 80% and finally to 6.69 MW on average
at the HPT load of 100%. In the same turbine load
range, the average energy efficiency difference between
the observed energy analysis methods decrease from
5.99% on average (load of 60%) to 4.28% on average
(load of 80%) and finally to 2.72% on average (load of
100%).

A direct comparison of the energy flow stream
method and the isentropic method for the energy
analysis of the HPT showed that these two methods
cannot be directly compared. This conclusion is valid
not just for the analysed, but also for any other steam
turbine.
As presented for the HPT, the energy flow stream

method and isentropic method cannot be directly com-

pared because they present different steam turbine
energy losses (and consequently different energy effi-
ciencies). On the one hand the energy flow stream
method presents steam turbine energy efficiencies and
energy power losses which arise from the steam mass
flow rates (which expand through the turbine and get
partially lost through both turbine gland seals). The
isentropic method, on the other hand, presents en-
ergy power losses and energy efficiencies, which arise
from the steam real (polytropic) expansion process
through the turbine and its comparison with the ideal
(isentropic) steam expansion process. The change of
steam mass flow rates (which expand through the
turbine and lost one through both turbine gland seals)
has almost a negligible influence on the results of the
isentropic method, similarly, the comparison of steam
expansion processes (ideal and real) has an almost
negligible influence on the results of the energy flow

119



S. Blažević, V. Mrzljak, N. Anđelić, Z. Car Acta Polytechnica

Figure 6. Comparison of energy flow stream method and isentropic method - difference in energy power loss and
energy efficiency (HPT load of 100%).

stream method - which is proved by the presented
analysis of the HPT.

The question which arises from the presented com-
parison is - which method for the energy analysis of
any steam turbine gives more reliable and more pre-
cise results and which can be used as the relevant one?
The proper answer to this question is that a complete
(overall) energy analysis of any steam turbine should
be performed by using both of the presented methods.
Combination of the steam turbine energy power losses
and energy efficiencies obtained by both of these meth-
ods are relevant and such combination gives a better
insight in the energy analysis of any steam turbine.

7. The overall HPT energy
analysis

An overall energy analysis of the researched HPT
(or any other steam turbine) incorporates energy
power losses and energy efficiencies of both energy
flow stream and isentropic methods. Both of these
methods contribute to the overall HPT (or any other
steam turbine) energy efficiency and energy power
loss analysis. The overall energy power loss of the
analyzed HPT is calculated as a sum of energy power
losses obtained by the energy flow stream method and
isentropic method:

Ėen,P L,OV ERALL = Ėen,P L,EF S + Ėen,P L,IS , (20)

while the overall energy efficiency of the analyzed
HPT is calculated by multiplying the energy efficien-
cies obtained by the energy flow stream method and
the isentropic method:

ηen,OV ERALL = ηen,EF S · ηen,IS . (21)

The change in the overall energy power loss of the
analyzed HPT for each observed turbine load and for

each observed steam mass flow rate, which expand
through the turbine, is presented in Fig. 7.

When different HPT loads are compared, the lowest
overall energy power loss can be seen at the lowest
observed HPT load (load of 60%) due to the lowest en-
ergy power losses calculated by both observed energy
analysis methods (Table 4 and Table 5) with average
value of 15.56 MW. The energy flow stream method
and isentropic method give a slightly higher energy
power losses at the HPT load of 80% (compared to
the HPT load of 60%), therefore, the overall energy
power loss of the analyzed turbine at the load of 80%
has an average value equal to 19.47 MW (Table 4
and Table 5). A comparison of the highest observed
HPT load (load of 100%) with a lower HPT load
(load of 80%) shows that the overall turbine energy
power loss significantly increase and its average value
at the highest observed load is 39.20 MW. At the HPT
load of 100%, the energy flow stream method gives a
higher (but not significantly) energy power loss when
compared to lower turbine loads, while the isentropic
method gives a significantly higher energy power loss
when compared to lower turbine loads (Table 4 and
Table 5). Such increase in the energy power loss of
the isentropic method at the highest observed HPT
load is caused by exceeding the critical water/steam
pressure at the HPT inlet (polytropic steam expan-
sion significantly deviates from the isentropic steam
expansion (Fig. 4.)).
At each observed HPT load, increase in the steam

mass flow rate, which expands through the turbine, re-
sults in a decrease in the overall turbine energy power
loss due to the decrease of the HPT energy power
loss calculated by the energy flow stream method (the
same increase in the steam mass flow rate, which ex-
pands through the turbine, results in a small change
in the energy power loss calculated by the isentropic
method). The range of the overall HPT energy power
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loss during the increase in the steam mass flow rate,
which expands through the turbine, is between 14.79
MW and 16.33 MW at the HPT load of 60%, between
18.59 MW and 20.34 MW at the HPT load of 80%,
and, finally, between 38.33 MW and 40.06 MW at the
HPT load of 100%.
The change in the analysed HPT’s overall energy

efficiency for each observed turbine load and for each
observed steam mass flow rate, which expands through
the turbine, is presented in Fig. 8.
A comparison of different HPT loads shows that

the lowest overall energy efficiency is obtained at the
highest observed HPT load (load of 100%), which is
caused by exceeding the critical water/steam pressure
at the HPT inlet and a high deviation of the polytropic
steam expansion process from the isentropic steam
expansion process - the result is that the isentropic
method gives a much lower HPT energy efficiency
when compared to the lower turbine loads (regardless
of the highest energy efficiency obtained with the
energy flow stream method at the same HPT load).
The average overall energy efficiency of the HPT at a
load of 100% is 83.34%. The analysed HPT, at a load
of 60%, has a much higher overall energy efficiency
when compared to the highest observed turbine load
- at a load of 60%, the HPT has an average overall
energy efficiency equal to 89.11%, Fig. 8, due to the
highest energy efficiency obtained by the isentropic
method (when compared to other HPT loads).
The highest HPT average overall energy efficiency

is obtained at the HPT load of 80% and is equal
to 89.67%. The reason of such occurrence can be
found in comparison of the analysed turbine energy
efficiency obtained by both observed energy analysis
methods at a load of 60% and at a load of 80%. The
energy flow stream method gives higher HPT energy
efficiencies at a turbine load of 80% in comparison
with turbine load of 60%, while the isentropic method
resulted in a reversed conclusion (the energy efficiency
of the HPT obtained by the isentropic method is
higher at a load of 60%, in comparison with a load of
80%). The difference in the HPT’s energy efficiency
between the load of 60% and the load of 80% is higher
for the energy flow stream method, therefore, the
equation (21) results in higher values of the overall
energy efficiency for the load of 80% than for the load
of 60%.
The increase in the steam mass flow rate, which

expands through the analyzed turbine, results in an in-
crease in the turbine’s overall energy efficiency, which
is a valid conclusion for each observed HPT load,
Fig. 8. The reason of such occurrence is found in the
following fact - the increase in the steam mass flow
rate, which expands through the turbine, increases the
HPT energy efficiency calculated by the energy flow
stream method, while the same increase in the steam
mass flow rate, which expands through the turbine,
results in a negligible change in the turbine energy
efficiency calculated by the isentropic method. The

range of the overall HPT energy efficiency during the
increase in the steam mass flow rate, which expands
through the turbine, is between 82.95% and 83.74% at
the HPT load of 100%, between 88.57% and 89.65%
at the HPT load of 60% and, finally, between 89.20%
and 90.13% at the HPT load of 80%.

8. Conclusion
In this paper, a comparison of two methods for a
steam turbine energy analysis is presented. A high
pressure steam turbine from a supercritical thermal
power plant was analysed with both presented meth-
ods - the energy flow stream method and isentropic
method, at three different turbine loads.

The energy flow stream method and its results are
mostly influenced with two steam mass flow rates -
the first one is the steam mass flow rate, which ex-
pands through the HPT, and the second one is the
cumulative steam mass flow rate lost through both
HPT gland seals (and its distribution on the front and
rear gland seal). The steam real (polytropic) expan-
sion process throughout the turbine and its deviation
from the ideal (isentropic) expansion process has a
negligible influence on the energy flow stream method.
For the analysed HPT, only the cumulative steam
mass flow rate lost through both gland seals is known.
As the steam mass flow rates lost through each (front
and rear) gland seal are unknown, various combina-
tions of the lost steam mass flow rate distribution are
performed.
The isentropic energy analysis method and its re-

sults are mostly influenced by the real (polytropic)
steam expansion process and its deviation from the
ideal (isentropic) steam expansion process. For the
analyzed HPT, this deviation is the highest at the
highest observed turbine load (load of 100%) due to
exceeding a critical water/steam pressure. A steam
mass flow rate, which expands through the analysed
turbine, and the cumulative steam mass flow rate lost
through both HPT gland seals has a very low influ-
ence on the HPT energy power loss and a negligible
influence on the HPT energy efficiency calculated by
using the isentropic energy analysis method.

The energy flow stream method and the isentropic
energy analysis method of any steam turbine (not
only the researched HPT) are not directly comparable
because they are based on different sources of steam
turbine energy losses (and consequently different en-
ergy efficiencies).
At the end of this paper, an overall steam turbine

energy analysis, which involves energy efficiencies and
energy losses of both methods for the steam turbine
energy analysis, is presented. The change in energy
power loss and energy efficiency of the HPT obtained
by the overall energy analysis is:
• an increase of the HPT load (load of 60%, 80% and
100%) results in an increase of the average overall
HPT energy power loss (15.56 MW, 19.47 MW and
39.20 MW),
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Figure 7. Overall energy power loss change of the analyzed HPT.

Figure 8. Overall energy efficiency change of the analyzed HPT.

• an increase of the steam mass flow rate, which
expands throughout the HPT, at any load results
in a decrease of the overall HPT energy power loss,

• the lowest HPT average overall energy efficiency
(83.34%) is obtained at a turbine load of 100%
(full load). Such low average overall HPT energy
efficiency at a full load is caused mostly because of
exceeding a critical water/steam pressure,

• the highest HPT average overall energy efficiency
(89.67%) is obtained at a turbine load of 80%, while
at a turbine load of 60%, the average overall energy
efficiency is 89.11%.

List of symbols
Latin Symbols:

Ė energy stream flow power [kJ/s]
h specific enthalpy [kJ/kg]

ṁ mass flow rate [kg/s]
P power [kJ/s]
Q̇ heat transfer [kJ/s]
s specific entropy [kJ/(kg K)]

Greek Symbols:
η efficiency

Subscripts
en energy
EFS energy flow stream (method)
IN inlet (input)
IS isentropic
OUT outlet (output)
PL power loss
RE real

Abbreviations:
HPT high pressure turbine
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