Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

The Corrosion Behavior of Sputter-Deposited Aluminum-Tungsten Alloys (CROSBI ID 93502)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Metikoš-Huković, Mirjana ; Radić, Nikola ; Grubač, Zoran ; Tonejc, Antun The Corrosion Behavior of Sputter-Deposited Aluminum-Tungsten Alloys // Electrochimica acta, 47 (2002), 15; 2387-2397-x

Podaci o odgovornosti

Metikoš-Huković, Mirjana ; Radić, Nikola ; Grubač, Zoran ; Tonejc, Antun

engleski

The Corrosion Behavior of Sputter-Deposited Aluminum-Tungsten Alloys

Thin films on aluminum-tungsten alloys were prepared by co-deposition of pure aluminum and pure tungsten, each sputtered by an independently controlled magnetron source, on glass and sapphire substrates. Completely amorphous films were obtained in the Al80W20 - Al67W33 composition range. Passivity and corrosion behavior of amorphous Al-W alloys were investigated in 1 M deaerated hydrochloric acid solution using polarization and impedance spectroscopy measurements and have been correlated with the properties of pure alloy components. Tungsten and sputter-deposited Al-W thin films are inherently passive materials while aluminum undergoes pitting corrosion in hydrochloric acid solution. The passive film formed at the OCP on each alloy possesses excellent electric and dielectric properties comparable to those of the isolating film on tungsten. The absolute impedance increases with increasing tungsten content in the alloy. According to electrochemical polarization measurements, alloying Al with W in solid solution significantly enhances the material’s resistance to pitting corrosion by shifting the breakdown potential above 2000 mV (Al67W33) and lowering the corrosion rate at the OCP by more than two orders of magnitude. The most likely mechanism explaining the passivity of amorphous Al-W alloys, the Solute Vacancy Interaction Model (SVIM), involves the formation of complexes between highly oxidized solute atoms (W+6) and mobile cation vacancies, which restrict the transport of Cl- through the oxide film and inhibit its breakdown in hydrochloric acid solution. The role that film stress relaxation effects and microscopic defects in amorphous Al-W films, of the some composition, and deposited on various substrates play in their corrosion resistance is discussed.

Al-W amorphous alloys; Al-base alloys; Sputter-deposited alloys; Passive films; Pitting corrosion.

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

47 (15)

2002.

2387-2397-x

objavljeno

0013-4686

Povezanost rada

Fizika, Kemija

Indeksiranost