Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Scalability of Gallic Acid Biotransformation by Laccase (CROSBI ID 677050)

Prilog sa skupa u zborniku | sažetak izlaganja sa skupa | međunarodna recenzija

Tišma, Marina ; Šibalić, Darijo ; Šimunović, Roberto ; Planinić, Mirela ; Bucić-Kojić, Ana ; Marques, Marco PC ; Szita, Nicolas Scalability of Gallic Acid Biotransformation by Laccase // 5th International Conference IMPLEMENTATION OF MICROREACTOR TECHNOLOGY IN BIOTECHNOLOGY – IMTB 2019. 2019

Podaci o odgovornosti

Tišma, Marina ; Šibalić, Darijo ; Šimunović, Roberto ; Planinić, Mirela ; Bucić-Kojić, Ana ; Marques, Marco PC ; Szita, Nicolas

hrvatski

Scalability of Gallic Acid Biotransformation by Laccase

Gallic acid is a non-toxic and naturally abundant phenolic compound widely presented in the plants1. It can be used as a substrate for the production of polyconjugated semiconducting polymer in laccase-catalyzed process2. Polyphenolics with highly conjugated structures can find their application in microelectronics, non-linear optics and sensors 2, 3. We present in this work the study of laccase-catalyzed oxidation of gallic acid (Figure 1) in different reactor types, ranging from microreactors to mesoscale reactors. The biotransformation potential is evaluated and scalability assessed. Initial experiments were performed in a 75 mL glass batch reactor using different initial concentrations of gallic acid, laccase and oxygen. Additionally, a repetitive cycles experiment were performed (6 cycles). After all gallic acid is oxidized, a new amount was added in such a way that it was dissolved in the smallest amount of buffer possible in order to avoid concentration and volume fluctuations. The reaction was also performed in a Y shaped glass microreactor with internal volume of 9.5 µL. Laccase was fed from one inlet while gallic acid was fed from the other inlet. Different residence time (constant flow rates of 10, 30 and 50 µL/min), gallic acid and laccase concentrations were tested. Results have shown that laccase has high operational stability at all reactor conditions. Furthermore, it was confirmed that substrate inhibition occurs and oxygen is not a rate-limiting reactant. In a batch reactor, a 98% conversion was reached after 40 min (0.1 mg/mL laccase, 0.1 mM gallic acid). The conversion time was reduced to solely 15 min when the laccase was increased five fold. Significant conversion improvements were obtained in the microreactor with 44% conversion of gallic acid just after 29 s (0.1 mg/mL laccase, 0.1 mM gallic acid). Higher conversion, up to 99%, were obtained when the laccase was increased five fold. These results show the potential of microreactor to perform this industrial relevant reaction in flow. The resulting polymer has been characterized, presenting poor solubility in organic solvents2 while being solubilized in aqueous solution up to 150 mg/mL. To mitigate substrate inhibition while increasing throughput to facilitate industrial uptake, a new microfluidic side-entry reactor was tested 4, 5. Figure 1. Experimental set-up: laccase oxidation of gallic acid in a) batch and repetitive batch, and b) microreactor Figure 2. Laccase oxidation of gallic acid in a) batch, b) repetitive batch, and c) microreactor (Initial conditions: T = 25 °C, pH = 5.0, c0, gallic acid = 0.1 mM, ɣ0, laccase = 0.1 and 0.5 mg/mL, ɣ0, oxygen = 0.165 mM)

gallic acid ; laccase ; batch reactor ; repetitive batch reactor ; microreactor ; polymerization

nije evidentirano

engleski

Scalability of Gallic Acid Biotransformation by Laccase

nije evidentirano

gallic acid ; laccase ; batch reactor ; repetitive batch reactor ; microreactor ; polymerization

nije evidentirano

Podaci o prilogu

2019.

nije evidentirano

objavljeno

Podaci o matičnoj publikaciji

5th International Conference IMPLEMENTATION OF MICROREACTOR TECHNOLOGY IN BIOTECHNOLOGY – IMTB 2019

Podaci o skupu

5th International Conference IMPLEMENTATION OF MICROREACTOR TECHNOLOGY IN BIOTECHNOLOGY – IMTB 2019

poster

19.05.2019-22.05.2019

Cavtat, Hrvatska

Povezanost rada

Biotehnologija