Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Simulating large scale tropical waves (CROSBI ID 534738)

Prilog sa skupa u zborniku | sažetak izlaganja sa skupa | međunarodna recenzija

Sessions, Sharon L. ; Raymond, David J. ; Fuchs, Željka Simulating large scale tropical waves. 2008

Podaci o odgovornosti

Sessions, Sharon L. ; Raymond, David J. ; Fuchs, Željka

engleski

Simulating large scale tropical waves

Large scale tropical waves can trigger deep convection which, in turn, acts to maintain the wave propagation. Understanding the mechanisms which govern this feedback is important for understanding and modeling the interaction between deep tropical convection and the large scale atmospheric circulations. In recent work, Tulich and Mapes (2007) studied multi-scale propagating waves using a two-dimensional cloud resolving model (CRM) which was forced by uniform cooling. Their model spontaneously generated horizontally-propagating wave packets with phase speeds in the range 16-18 m/s. The modeled domain was 8192 km in the horizontal, with horizontal grid spacing of 2km. Other work by Bretherton et. al. (2005) used a three-dimensional CRM with a 576 km X 576 km horizontal domain and 3 km X 3km grid spacing. Rather than propagating modes, their model demonstrated convective self-aggregation. Though many details differentiate these experiments, it is imperative to understand whether modeled results capture true physics or if they are manifestations of the model itself. To probe this question in the context of large-scale propagating waves, we perform a series of experiments using a CRM. Three of the experiments use a two-dimensional domain spanning 7000 km in the horizontal, and one uses a three-dimensional "bowling alley" domain spanning 7000 km X 20 km in the horizontal. The 2D runs had horizontal grid spacings of 1 km, 2 km, and 4 km ; the 3D run used grid a 2 km X 2 km horizontal grid size. All simulations were run for 15 days. After 15 days, no obvious large-scale waves developed in the run with a 4 km horizontal grid size ; All other runs spontaneously generated propagating modes with phase speeds in the range 12-15 m/s. In addition to these runs, a 2D simulation on a 2000 km horizontal domain with a 1 km horizontal grid spacing produced no large-scale waves. These results indicate that both domain and grid size are important for generating large-scale wave propagation within our CRM. The important question of whether these waves are purely manifestations of 2D vertical momentum transport cannot completely be addressed with a 3D bowling alley domain, though our results suggest that these modes can exist in 3D models.

Kelvin waves; convective inhibition

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o prilogu

2008.

objavljeno

Podaci o matičnoj publikaciji

Podaci o skupu

28th Conference on Hurricanes and Tropical Meteorology

predavanje

28.04.2008-02.05.2008

Orlando (FL), Sjedinjene Američke Države

Povezanost rada

Geologija