crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 650267

Časopis

Autori: Čić, Maja; Šoda, Joško; Bonković, Mirjana
Naslov: Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal
Izvornik: Computers in biology and medicine (0010-4825) 43 (2013), 12; 2110-2117
Vrsta rada: članak
Ključne riječi: EEG quantification; sleep classification; Empirical Mode Decomposition (EMD); Intrinsic Mode Function (IMF); Generalized Zero Crossing (GZC); Support Vector Machine (SVM)
Sažetak:
This study presents a novel approach for electroencephalogram (EEG) signal quantification in which the empirical mode decomposition method, a time-frequency method designated for nonlinear and non-stationary signals, decomposes the EEG signal into intrinsic mode functions (IMF) with corresponding frequency ranges that characterize the appropriate oscillatory modes embedded in the brain neural activity acquired using EEG. To calculate the instantaneous frequency of IMFs, an algorithm was developed using the Generalized Zero Crossing method. From the resulting frequencies, two different novel features were generated: the median instantaneous frequencies and the number of instantaneous frequency changes during a 30 s segment for seven IMFs. The sleep stage classification for the daytime sleep of 20 healthy babies was determined using the Support Vector Machine classification algorithm. The results were evaluated using the cross-validation method to achieve an approximately 90% accuracy and with new examinee data to achieve 80% average accuracy of classification. The obtained results were higher than the human experts’ agreement and were statistically significant, which positioned the method, based on the proposed features, as an efficient procedure for automatic sleep stage classification. The uniqueness of this study arises from newly proposed features of the time-frequency domain, which bind characteristics of the sleep signals to the oscillation modes of brain activity, reflecting the physical characteristics of sleep, and thus have the potential to highlight the congruency of twin pairs with potential implications for the genetic determination of sleep.
Projekt / tema: 023-0982886-1612, 023-0232005-2003
Izvorni jezik: ENG
Current Contents: DA
Citation Index: DA
Kategorija: Znanstveni
Znanstvena područja:
Elektrotehnika,Računarstvo
Puni text rada: 650267.Maja_Cic_EEG_sleep_classification_with_EMD_feature.pdf (tekst priložen 4. Ožu. 2014. u 13:29 sati)
Tiskani medij: da
URL Internet adrese: http://authors.elsevier.com/sd/article/S0010482513002801
http://www.sciencedirect.com/science/article/pii/S0010482513002801
Broj citata:
Altmetric:
DOI: 10.1016/j.compbiomed.2013.10.002
Google Scholar: Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal
Upisao u CROSBI: Maja Čić (Maja.Cic@fesb.hr), 28. Lis. 2013. u 11:51 sati



  Verzija za printanje   za tiskati


upomoc
foot_4