crta
Hrvatska znanstvena Sekcija img
bibliografija
3 gif
 Naslovna
 O projektu
 FAQ
 Kontakt
4 gif
Pregledavanje radova
Jednostavno pretraživanje
Napredno pretraživanje
Skupni podaci
Upis novih radova
Upute
Ispravci prijavljenih radova
Ostale bibliografije
Slični projekti
 Bibliografske baze podataka

Pregled bibliografske jedinice broj: 660621

Časopis

Autori: Martinović, Goran; Bajer, Dražen; Zorić, Bruno
Naslov: A Differential Evolution Approach to Dimensionality Reduction for Classification Needs
Izvornik: International Journal of Applied Mathematics and Computer Science (1641-876X) 24 (2014), 1; 111-122
Vrsta rada: članak
Ključne riječi: classification; differential evolution; feature subset selection; k-nearest neighbour algorithm; wrapper method
Sažetak:
The feature selection problem often occurs in pattern recognition, and more specific, classification. Although these patterns could contain a large number of features, some of them could prove to be irrelevant, redundant or even detrimental to classification accuracy. Thus, it is important to remove these kinds of features which in turn leads to problem dimensionality reduction and could eventually improve the classification accuracy. In this paper an approach to dimensionality reduction based on differential evolution which represents a wrapper and explores the solution space is presented. The solutions, subsets of the whole feature set, are evaluated using the k-nearest neighbour algorithm. High quality solutions found during execution of the differential evolution fill the archive. A final solution is obtained by conducting k-fold cross validation on the archive solutions and selecting the best. Experimental analysis was conducted on several standard test sets. Classification accuracy of the k-nearest neighbour algorithm using the full feature set and the accuracy of the same algorithm using only the subset provided by the proposed approach and some other optimization algorithms which were used as wrappers are compared. The analysis has shown that the proposed approach successfully determines good feature subsets which may increase classification accuracy.
Projekt / tema: 165-0362980-2002, 165-0361621-2000
Izvorni jezik: ENG
Current Contents: NE
Citation Index: DA
Ostale indexne publikacije: ACM DL;Adv. Tech. DB with Aerosp.;Appl. Mech. Rev.;BazTech;Compendex;Comp. Abs. Int. DB;Comp. & Comm. Sec. Abs.;Comp. and Inf. Sys. Abs.;CI to Stat;Current Math. Pub.;DBLP CS Bibl.;DL Zielona Góra;Earthquake Eng. Abs.;EBSCO;Google Scholar;High Tech Res. DB;INSPEC;JCR/Sci. Ed.;Math. Rev.;MathSciNet;Mech. & Transp. Eng.Abs.;Polish D. Math. L.;SCI Exp.;Scopus;Summon;Techn. Res. DB;VINITI;ZB MATH
Kategorija: Znanstveni
Znanstvena područja:
Računarstvo
Tiskani medij: da
URL Internet adrese: https://www.amcs.uz.zgora.pl/?action=online
Broj citata:
Altmetric:
DOI: 10.2478/amcs-2014-0009
OpenURL: https://www.amcs.uz.zgora.pl/?action=online
Časopis izlazi u samo elektroničkom izdanju: NE
Google Scholar: A Differential Evolution Approach to Dimensionality Reduction for Classification Needs
Upisao u CROSBI: Dražen Bajer (drazen.bajer@etfos.hr), 4. Pro. 2013. u 13:21 sati



Verzija za printanje   za tiskati


upomoc
foot_4